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Abstract
Reliable planning, execution, and postoperative monitoring in microvascular free flap reconstruction are essential 
to optimize clinical outcomes. Artificial intelligence has demonstrated value in several applications to clinical 
medicine and surgery, including image analysis and simulation, outcomes modeling, and evaluation of large 
datasets. Within microvascular reconstruction, artificial intelligence has been increasingly applied to preoperative 
planning, intraoperative decision making, and postoperative monitoring. The present paper aims to review salient 
applications to each. The authors conclude by suggesting areas suitable for future analysis.
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INTRODUCTION
Reliable preoperative planning, intraoperative assessment, and postoperative monitoring in free flap 
microvascular are essential to guarantee successful long-term reconstructive outcomes[1,2]. Clinical 
examination during the pre-, intra-, and postoperative periods remains the gold standard of assessment for 
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free flap reconstruction. In the preoperative period, this includes physical examination of patient anatomy, 
including close evaluation of donor site fitness[3], recipient site reconstructive need, and patient past medical 
history[4]. During the intra- and postoperative periods, clinical monitoring primarily relies on physical 
examination, including serial arterial and venous signal evaluations, as well as clinical characteristics, such 
as flap color, capillary refill, temperature, and caliber.

The advent of artificial intelligence has yielded improvements in clinical medicine[5], including but not 
limited to genetics and personalized medicine[6], cardiovascular health[7], and pulmonary/critical care[8]. 
Within surgical subspecialties, artificial intelligence has been applied to clinical outcomes in orthopedic 
surgery[9], vascular surgery[10], plastic surgery[11], and craniofacial surgery[12-14].

In the present paper, the authors aim to review the salient literature and studies regarding the applications 
of artificial intelligence to augment planning, assessment, and monitoring for free flap microvascular 
reconstruction [Table 1]. While this review aims to provide a broad overview of artificial intelligence 
applications across microvascular reconstruction, it should be noted the studies highlighted have nuances 
that render results more or less applicable to specific anatomic regions, types of procedures, and certain 
subpopulations of patients. Despite the nuances or focuses of each article, the generalizable principles of 
these studies provide a future avenue for broader artificial intelligence research and investigation.

PREOPERATIVE PLANNING
Preoperative planning has played an increasingly important role in free flap microvascular 
reconstruction[15]. Factors including patient selection, donor site fitness, and recipient site evaluation 
continue to play an essential role in overall success and outcomes[16]. The advent of artificial intelligence has 
provided a welcome opportunity for further evaluation of factors most important in preoperative planning 
and predicting overall outcomes.

Vascular mapping has become increasingly employed prior to flap dissection and reconstruction, and this 
has been an area fit for applications with artificial intelligence[17-19]. A recent study by Lim et al. focused on 
the accuracy of artificial intelligence models in evaluating computed tomographic angiography (CTA) data 
for preoperative flap planning, and the team assessed the ability of different large language models to 
evaluate these preoperative CTA data for DIEP flap planning[20]. When attending plastic surgeons assessed 
AI-generated CTA evaluations, they found that these models could provide a general summary of relevant 
CTA data but lacked important nuances that the surgical team desired for preoperative planning[20]. This 
can be applied for preoperative evaluation and flap selection, which is dependent on patient-specific factors 
and defects for reconstruction. There may also be applications for determining flap volume appropriateness 
for defect reconstruction, though this has not yet been described in any current studies.

Other studies aim to apply artificial intelligence to clinical datasets to predict overall outcomes following 
flap microvascular reconstruction. Within head and neck surgery[21], machine learning successfully 
leveraged patient characteristics to predict flap complications and loss[22]. Models predicting total flap loss 
exhibited accuracy of 0.63 to 0.98, with significant identified factors including gender, smoking status, use of 
vein graft, hypertension, and laryngectomy[22]. Similar machine learning models have created decision trees 
to predict free flap complications based on preoperative demographics[23]. Such research has important 
applications to preoperative patient selection, family counseling, and clinical shared decision making[22]. 
Moreover, the trainability of predictive machine learning models allows for generative growth and accuracy 
improvement over time. Another systematic review study protocol describes a study in process that aims to 
summarize artificial intelligence applications in predicting flap outcomes[24].
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Table 1. Salient studies applying AI to microvascular reconstruction

Author, year, journal Aim Implications

Asaad et al., 2023, Annals 
of Surgical Oncology[22]

Determine factors predictive of head and neck 
microvascular flap failure

Machine learning models determined predictors of flap 
complications, most commonly smoking, flap type, and vein graft

Kuo et al., 2018, 
Oncotarget[35]

Use neural networks to predict surgical site 
infection after head and neck free flap 
reconstruction

Neural networks were more predictive than logistic regression for 
surgical site infections after head and neck microvascular 
reconstruction

Kim et al., 2024, 
JAMA Network[33]

Develop an AI-based automated free flap 
monitoring system via evaluation of clinical 
photography

An AI-based flap monitoring system may reduce postoperative 
clinician burden and workload

O’Neill et al., 2020, 
Annals of Surgical 
Oncology[34]

Develop a machine learning model that can 
predict flap failure from a large clinical dataset

Machine learning model identified high-risk patient factors 
including obesity, comorbidities, and smoking

INTRAOPERATIVE ASSESSMENT
Intraoperative assessment and decision making are fundamental parts of reliable and repeatable 
microvascular surgery. Artificial intelligence not only has roles in intraoperative monitoring, but has 
recently been applied to intraoperative decision making for troubleshooting complications.

Objective data on intraoperative flap perfusion can help identify perforasomes and guide clinical decision 
making. Specifically, indocyanine green fluorescence angiography has been increasingly employed to assess 
intraoperative flap perfusion[25]. A recent study leveraged artificial intelligence-based applications to review 
and assess intraoperative videos of flap perfusion with indocyanine green fluorescence angiography 
(Singaravelu 2024). The authors found over 99% validation and testing accuracy with the need to retain or 
excise peripheral flap portions[26]. The study also identified a threshold of regions with fluorescence intensity 
less than 22.1 grayscale units that were significantly more likely to be predicted as “excise” by these 
models[26]. Such models may be beneficial in corroborating intraoperative decision making regarding flap 
perfusion and the extent of peripheral tissue included in the flap[26].

Another study evaluated the efficacy and accuracy of artificial intelligence models in providing 
intraoperative guidance during deep inferior epigastric perforator flap surgery[27], in which artificial 
intelligence responses were evaluated by board-certified plastic surgeons on several objective, quantitative 
scales[27]. Prompts included a broad range of intraoperative scenarios such as iatrogenic damage to 
perforator vessels or acute arterial thrombosis[27]. The study found that while answers generated by artificial 
intelligence were generally accurate, they lacked nuance specific to individual patient factors and were more 
comparable to resident knowledge level than to experienced attending surgeons[27].

Critically relevant to trainees, artificial intelligence has also demonstrated utility in microsurgery education. 
Groups have trialed the intraoperative use of augmented reality overlays in free fibula harvest, allowing 
surgeons and trainees to visualize bony anatomy and vascular paths in real time[28,29]. Others have utilized 
technology to digitize preoperative imaging and project vascular anatomy into the surgical field during 
anterolateral thigh free flap procedures, thus improving vessel identification with impressively high 
accuracy and sensitivity[30]. Similar applications of augmented reality headsets during microvascular 
anastomosis performed by resident trainees demonstrated improved visualization and ergonomics[31]. These 
technologies, although in their infancy, can assist residents not only during simulated microsurgery but also 
during the intraoperative setting. Utilizing artificial intelligence technology prior to even entering the 
operating room may yield improvements to surgical understanding, trainee dexterity, and procedure safety.



Page 136                                                  Villavisanis et al. Art Int Surg. 2025;5:133-38 https://dx.doi.org/10.20517/ais.2024.89

POSTOPERATIVE MONITORING
Much of the discussion and research centered on artificial intelligence and machine learning in 
microvascular reconstructive surgery has been dedicated to postoperative flap monitoring, given the 
importance of early identification of postoperative complications and timely return to the operating 
room[32].

A recent study in the JAMA network described the development of a cellphone-based application for 
postoperative free flap monitoring[33]. The authors leveraged artificial intelligence to develop models 
sensitive to venous and arterial insufficiency, based on over 11,000 unique clinical photos[33]. The models 
were 97.5% sensitive in recognizing arterial insufficiency and 92.8% sensitive in recognizing venous 
insufficiency based on clinical photographs alone (Kim et al. 2024). Such models may aid clinicians in the 
early identification of flap failure and may be especially useful in regions, or units, typically naïve to 
postoperative flap monitoring[33]. This particular initiative may also encourage postoperative monitoring 
with clinical photographs at regular postoperative intervals, which may allow clinicians to remotely monitor 
free-flap postoperative progression[33].

Other groups have applied artificial intelligence methods to large datasets to analyze postoperative risk 
factors for flap failure[34]. Colleagues in Toronto conducted a clinical study of over one thousand patients 
undergoing microvascular free flap breast reconstruction. Among the twelve patients who experienced flap 
failure, the authors identified significant predictors including obesity and smoking[34]. While these risk 
factors have been previously described, the application of artificial intelligence to large datasets may aid 
clinicians in predicting more nuanced outcomes for patient cohorts undergoing a diverse range of free flap 
reconstruction. As additional data or images are accrued, artificial intelligence can be trained and 
broadened to more accurately calculate risk or outcome occurrences.

FUTURE APPLICATIONS
Future endeavors should aim to build upon previously established work to expand the depth, breadth, and 
accuracy of applications. This may involve the application of artificial intelligence to preoperative flap 
imaging. With a predictive model, clinicians could envision artificial intelligence predicting and selecting 
the most viable vascular perforators for a reconstructive flap; however, this type of data should be leveraged 
in the context of patient-specific anatomy and surgeon experience. Intraoperatively, additional opportunity 
exists for refining artificial intelligence-generated support of intraoperative decision making, which may be 
especially useful in lower-resource settings or single-provider practice models. Augmented reality driven by 
artificial intelligence could augment surgical dissection in a real-time manner to help identify critical 
structures, vascular anatomy, or hazardous surgical maneuvers. Finally, postoperative monitoring may be 
supported by systems leveraging artificial intelligence to aid in automating flap monitoring to generate 
additional real-time data that may reduce the time from flap complication identification to return to the 
operating room.

CONCLUSIONS
Artificial intelligence has had an undeniable impact on clinical medicine and surgery; within microvascular 
free flap reconstruction, artificial intelligence continues to impact patient selection and prediction of 
preoperative outcomes, intraoperative assessment, and postoperative monitoring. While artificial 
intelligence will augment our ability to plan, implement, and monitor free flap reconstruction for our 
patients, clinicians and surgeons should continue to rely on in-person physical examination to corroborate 
data from emerging technology to yield the most optimal clinical outcomes. Based on the potential impact 
and implications of this work to patients and clinicians alike, we believe future research in this arena to be a 
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worthwhile pursuit.
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