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Abstract
Seismocardiography (SCG) is the measure of local vibrations in the chest due to heartbeats. Typically, SCG signals 
are measured using rigid integrated circuit (IC) accelerometers and bulky electronics. However, as alternatives, 
recent studies of emerging flexible sensors show promise. Here, we introduce the development of wireless soft 
capacitive sensors that require no battery or rigid IC components for measuring SCG signals for cardiovascular 
health monitoring. Both the capacitive and inductive components of the circuit are patterned with laser 
micromachining of a polyimide-coated copper and are encapsulated with an elastomer. The wearable soft sensor 
can detect small strain changes on the skin, which is wirelessly measured by examining the power reflected from 
the antenna at a stimulating frequency. The performance of the device is verified by comparing the fiducial points 
to SCG measured by a commercial accelerometer and electromyograms from a commercial electrode. Overall, the 
human subject study demonstrates that the fiducial points are consistent with data from commercial devices, 
showing the potential of the ultrathin soft sensors for ambulatory cardiovascular monitoring without bulky 
electronics and rigid components.
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INTRODUCTION
Cardiovascular diseases (CVD) account for over 19 million deaths annually in the United States[1]. Early 
detection and diagnosis of this broad group of diseases are imperative in treatment. The clinical standard for 
detecting cardiovascular abnormalities is the electrocardiogram (ECG)[2]. However, ECG alone cannot 
capture a holistic view of heart function[3]. Therefore, numerous other cardiovascular signals have offered 
crucial information to assist in the detection of CVD[4]. One of these signals is the seismocardiogram (SCG). 
SCG is traditionally measured using an accelerometer to capture the local vibrations of the heart[3]. While 
ECG measures myocardial conduction, SCG measures myocardial contractions and can capture the timing 
of fiducial points, such as mitral valve openings (MO) and closings and atrial valve openings and closings, 
which ECG cannot capture[3,5]. SCG is typically measured using integrated circuit (IC) accelerometers[3]. 
However, these accelerometer systems are rigid and bulky, making them more uncomfortable to wear for 
long periods. In addition, accelerometers are also prone to the global inertia of the body[6]. Although thin 
and flexible electronics are now becoming a widespread research field, exploring soft sensors for SCG is 
relatively unexplored. Soft and flexible sensors can offer solutions to these problems[7-12]. Liu et al. 
demonstrated a flexible serpentine interconnecting device over a rigid printed circuit board[5]. However, the 
fabrication was still largely dependent on cleanroom processes and photolithography.

Ha et al. first reported a stretchable piezoelectric strain sensor based on polyvinylidene fluoride (PVDF) that 
could stretch 110%[7]. Nayeem et al. also reported a PVDF-based mechanoacoustic sensor with high 
sensitivity[13]. Additionally, Lo Presti et al. reported an SCG sensor using optical strain sensors[14]. All of these 
are improvements on the traditional MEMS accelerometers, yet they still require additional components for 
transmission. Adding the seamless wireless capability to these thin sensors is essential for ambulatory 
monitoring and patient comfort. Standard accelerometer-based SCG sensors have communicated data using 
Bluetooth[15], WiFi[16], and Zigbee[17]. On the other hand, thin-film SCG sensors have only been measured 
wirelessly using active near-field communication (NFC) components[18]. Additionally, these sensors are still 
limited by rigid circuit components and power consumption limits[18]. All the current SCG sensors are either 
limited by low-throughput fabrication processes or bulky hardware for transmission. Thus, in this work, we 
aim to combine the comfort of thin film SCG sensors, a rapid one-step fabrication method, and passive 
wireless capability.

Here, we propose a batteryless, wireless, chipless, and passive soft SCG sensor that can be measured using 
inductive coupling. The sensor and coil are incorporated in a single layer of copper, backed by polyimide 
(PI), eliminating the need for cleanroom processes or other time-consuming methods. The thin sensor is 
encapsulated with elastomer and attached to the skin using a low-modulus silicone gel, allowing the device 
to attach to the human skin with limited restrictions conformally. Furthermore, the passive sensor does not 
require any batteries or IC components, allowing the entire sensor to be flexible, stretchable, and nearly 
invisible to the user. To validate the sensor, both an SCG measured with a commercial accelerometer and a 
single-lead ECG were used to compare the fiducial points. The fiducial points, including mitral valve closing 
(MC), isovolumic movement (IM), aortic valve opening (AO), aortic valve closing (AC), and MO[19], 
showed a strong association between the reported device and the commercial accelerometer.

EXPERIMENTAL
Assembly of passive sensors
First, a glass slide was spin-coated with silicone elastomer (Ecoflex 00-30, Smooth-On, Inc.) at 500 rpm for 
30 s and cured in an oven at 60 °C for 20 min. On a separate glass slide, polydimethylsiloxane (Sylgard 184, 
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Sylgard) was spin-coated at 800 rpm for 60 s. Copper foil (6 μm, BR0214, MSE Supplies LLC) was then laid 
across the slide. PI (PI2545, HD MicroSystems) was spin-coated onto the copper foil at 800 rpm for 60 s and 
cured on a hot plate at 240 °C for 60 min. Afterward, the copper and PI were transferred to the glass slide 
coated with elastomer. The sensor was then patterned on a laser micro-machining system (Femtosecond 
Laser Micro-Machining System, OPTEC). A bridge made of commercial high gauge enameled magnet wire 
was soldered across the pads connecting the interior of the coil with the end of the capacitive sensor. 
Elastomer was spin-coated across the device at 500 rpm for 30 s, and the device outline was cut out using 
laser micromachining. Finally, a thin coat of high tack silicone gel (A-4717, Factor 2) was added to one side 
of the sensor for adhesion to the skin. The assembly steps are shown in Supplementary Figure 1.

Wireless transmission
The capacitive sensor and coil form an LC circuit with a varying capacitive value. When the capacitance of 
the sensor decreases, the resonant frequency of the circuit increases. A vector network analyzer (Tektronix 
TTR506A) was connected to a spiral receiving antenna. A custom MATLAB program was used to record 
the S11 parameter at a stimulus frequency close to the resonant frequency. The resonant frequency was 
determined by locating the frequency at the minimum S11 value in the range of 10-60 MHz. The recording 
stimulus frequency was then determined by subtracting 0.1 MHz from the resonant frequency.

Validation
Commercial Ag/AgCl electrodes across Lead I were used for the reading of the ECG, and a low-power 
commercial accelerometer (ADXL355, Analog Devices, Inc.) was used for the reference SCG.

RESULTS AND DISCUSSION
We developed a wireless, ultrathin, and soft sensor with no rigid components such as batteries and IC chips, 
demonstrating a seamless integration with the human skin. When mounted on the chest, this device can 
measure high-fidelity strain changes due to cardiac vibrations. Figure 1A shows the mounting location of 
the wearable sensor when placed on the lower chest. Figure 1B captures a series of photos showing a very 
small form factor and mechanical compliance of the thin-film soft sensor. This device, encapsulated with 
elastomeric membranes, shows superior stretchability and flexibility with multi-modal bending, pulling, and 
twisting. Figure 1C shows a schematic of the measurement system of the device and its capabilities in 
passive wireless sensing using antennas. The device comprises a capacitive strain sensor and an inductive 
coil, forming an LC oscillator circuit[20,21]. This passive circuit offers wireless detection of the measured 
capacitive signals without rigid circuits and batteries. When mounted on the skin, this sensor is inductively 
coupled with an external antenna to record strain changes caused by cardiac vibrations. Overall, the soft 
sensor can measure SCG, pulse, and heart rate data. Table 1 captures the unique advantages of the 
developed sensor when compared to the prior work showing different types of sensors.

Figure 2A shows the layer structure of the developed chip-less, battery-less sensor. The thickness of the 
entire device is 471 μm. The fabrication of the sensor only requires the patterning of one layer. Using a 
femtosecond laser, the sensor is fabricated by micromachining a 6-μm copper foil backed by PI. Laser 
micromachining was chosen as the fabrication process since it represents a promising alternative to 
traditional cleanroom lithography processes. To avoid direct contact with the human skin, the sensor is 
encapsulated in a low-durometer silicone elastomer, providing conformal contact with the skin. An 
additional layer of high tack silicone gel was added between the device and the skin to maximize 
conformality[2]. It was also important for the elastomer to be as thin as possible to maximize conformality to 
the skin. Since copper is not stretchable, the fingers are supported by connections with serpentine structures 
[Figure 2B]. The laser micromachining process allowed interdigitated electrode spacings to be as small as 
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Table 1. Comparison of flexible SCG sensors

Reference Sensor 
type Material Transmission Battery-free Sensitivity

This work Capacitive strain sensor Copper LC resonance coupling Yes 2 MHz per 1% ε

[7] Piezoelectric strain sensor PVDF Wired No 0.4 mV per με

[13] Piezoelectric strain sensor PVDF nanofiber Wired No 10 V per  Pa

[18] Piezoelectric strain sensor PVDF NFC Yes Not reported

[14] Fiber-optic strain sensor Acrylate fiber Wired No 0.045 nm per mε

[22] Resistive strain sensor Porous graphene Wired No 96 Ω per 1% ε

NFC: near-field communication; PVDF: Polyvinylidene fluoride; ε: strain.

Figure 1. Overview of a wireless soft sensor system for cardiovascular health monitoring. (A) A soft capacitive sensor mounted on the 
chest for wireless detection of data; (B) Photos of a fabricated thin-film soft sensor showing flexibility and stretchability; (C) Schematic 
of the inductive coupling measurement method. The soft wearable sensor can measure seismocardiography, pulse, and heart rate. SCG: 
Seismocardiography.

8 μm. This is important since the spacing between the interdigitated electrodes of the capacitive strain 
sensor determines the sensitivity[23]. As the sensor is stretched, these serpentine structures expand to allow a 
large difference in spacing between the fingers. In addition, the serpentine pattern changes between the coil 
and the sensor to enable strain at the interface while minimizing stress on the copper [Figure 2C]. To show 
the reliability of the sensor, it was stretched and unstretched for 100 cycles. Figure 2D shows repeatable 
capacitance measurements with negligible hysteresis as a function of strain. The sensor also shows great 
stability and reliability; the capacitances stay constant for 100 cycles [Figure 2E]. The sensor shows virtually 
no degradation over the cycles, as the amplitude of the capacitance of the 100th cycle shows the same 
amplitude of the 1st cycle (0.362 pF). To measure the relationship between the S11 parameter and the strain, 
an experiment was conducted where continuous frequency sweeps were conducted at varying sensor 
strains. Figure 2F shows a consistent resonant shift based on the strain. This was important to the design of 
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Figure 2. (A) Schematic of the sensor layers; (B) Photograph of the sensor of human skin with a close-up of the fingers; (C) Photograph 
of the sensor mechanism with and without strain; (D) Sensor capacitance as a function of strain; (E) Capacitance changes of the sensor 
during 100 stretching cycles; (F) Resonant frequency sweeps at different strains. The resonant frequency increases with increasing 
sensor strain; (G) Resonant frequency at low strain values; (H) Resonant frequency at high strain values.

the device as the S11 parameter is the measurement we use for capturing the SCG signal. The sensor shows 
an excellent linear resonant frequency response in low strains [Figure 2G]. This is especially important for 
SCG measurement as the skin strain is on the micrometers scale. The sensor showed repeatable 
measurements at each strain (n = 4), indicating low hysteresis and high signal repeatability. Even at higher 
strains, the response is still predictable using a square root curve fit [Figure 2H]. The sensor still behaves 
predictably at strains much higher than 7%, which is the highest strain under normal conditions[24].

The resonance of the LC circuit is measured using an external coil antenna and vector network analyzer. 
Figure 3 summarizes the inductive coupling method, system setup, and experimental results. Figure 3A and 
B demonstrates how the sensor is coupled with a vector network analyzer and a data acquisition system. As 
the capacitance of the sensor decreases, the resonance frequency increases, as described in Supplementary 
Note 1. To measure the SCG signal, the S11 parameter is measured at a stimulus frequency slightly lower 
than the resonance frequency of the unstretched device. This is to ensure that the polarity of the signal stays 
consistent throughout the measurement since the direction of the S11 parameter with respect to a changing 
resonant frequency will depend on whether the stimulus frequency is higher than or lower than the 
resonant frequency. When the stimulus frequency is lower than the resonant frequency, the S11 parameter of 
the stimulus frequency will increase as the resonance frequency increases. This method allows for fast 
measurement of the SCG signal. Figure 3C shows the S11 value at the resonant frequency. As expected, the 
signal quality decreases as the distance between the coils increases [Supplementary Figure 2]. The coupling 
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Figure 3. (A) Schematic of the inductive coupling method of detecting signals using the wireless soft sensor; (B) Photo of the inductive 
coupling system setup. The sensor is attached to the inductive transmitting coil, which is coupled with the receiving coil. The receiving 
coil is connected to the vector network analyzer; (C) S11 at the resonant frequency at different distances between the coils. The coils are 
kept concentric; (D) Quality factor from resonant frequency sweeps at different distances between the coils. The coils are kept 
concentric.

shows the highest quality factor at approximately 6 mm between the coils [Figure 3D]. The quality factor is 
calculated in Supplementary Note 2.

A set of human subject studies have been conducted to validate the performance of our device in detecting 
SCG signals on the skin. Figure 4 summarizes the experimental results of high-quality detection of heart 
vibration data. A subject wears the soft sensor patch on the lower chest, as shown in Figure 4A. The 
ultrathin sensor makes seamless integration and intimate contact with the skin without causing discomfort. 
In this study, we found that the lower chest location (slightly below and to the right of the left nipple) is the 
best place to receive large signal amplitudes by the sensor. This location also gives us the advantage of 
visualizing the pulse rate, which can be seen in the raw data. However, the pulse data are removed in the 
SCG signal detection by using digital filtering. Figure 4B shows the measured raw SCG signals (top graph) 
and filtered signals (bottom graph). First, a 1st-order low pass filter at 24 Hz is applied, and a 3rd-order high 
pass filter at 4 Hz is used. The high pass filter removes baseline wander from the pulse. The low pass filter 
removes power line noise and any movement artifacts that are not in the desired frequency range, where the 
desired frequency range for SCG falls below around 24 Hz[25]. In the graph of Figure 4C, the SCG signals are 
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Figure 4. (A) Photograph of the device on the lower chest; (B) Raw seismocardiography (SCG) signals and filtered signals between 4 
and 24 Hz; (C) SCG signals recorded during a breath hold; (D) Ensembled averaged SCG signals, showing mitral valve opening (MO), 
mitral valve closing (MC), isovolumic movement (IM), aortic valve opening (AO), and aortic valve closing (AC) fiducial points; (E) 
Comparison of SCG data between our device, a commercial SCG device, and a commercial electrocardiogram (ECG) device.

clearly visible for 10 seconds. During this specific measurement, the subjects were instructed to hold their 
breath to minimize motion artifacts. Tests were also conducted while standing and lying in the supine 
position [Supplementary Figure 3]. With the system setup, the soft sensor can measure meaningful 
cardiovascular signals, as demonstrated in Figure 4D, showing the ensemble average using the beats of data 
and the MO, MC, IM, AO, and AC fiducial points. Figure 4E shows the simultaneous signal measurement 
of the soft sensor we developed in this work and commercial SCG reference and ECG reference systems 
[Supplementary Figure 4]. The SCG signals show an excellent agreement on the locations of the S1 and S2 
complexes. The soft device also offers the ability to measure systolic time intervals from simultaneous ECG 
and SCG collection.

CONCLUSIONS
This paper introduces a wireless wearable soft capacitive sensor patch that can measure high-fidelity SCG 
signals on the skin without using batteries and circuits. The thickness of the entire device is less than 1 mm, 
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providing an imperceptible lamination to the skin without discomfort. To our knowledge, this device is the 
first to wirelessly read SCG data accurately without wires or rigid chips. The highly sensitive strain sensor in 
the patch can measure heart vibrations in the chest and identify fiducial points corresponding to cardiac 
events using inductive coupling. This stretchable thin-film sensor offers usefulness in ambulatory and 
remote healthcare applications where mechano-acoustic signals are essential, such as arrhythmia detection 
or obstructive sleep apnea. Future work will develop more sensors in the patch that would offer high-
amplitude signals from the atrial and mitral valves. A dense sensor array can also help to mitigate motion 
artifacts by eliminating common noise elements. In addition, we will improve the breathability of our device 
by permeating the substrate and using conductive meshes.
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