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Abstract
An organocatalytic [4+2] annulation of N-sulfonyl ketimines with aminochalcones has been developed to afford 
the benzenesulfonamide fused tetrahydroquinazoline compounds under mild conditions with excellent 
stereoselectivity (up to 99% ee). This method provides a concise and efficient approach for the construction of 
N-heterocyclic compounds bearing 1,3-nonadjacent stereocenters with a quaternary carbon center.

Keywords: Benzenesulfonamide, tetrahydroquinazoline, 1, 3-nonadjacent stereocenters, aminochalcones, 
N-sulfonyl ketimines, [4+2] annulation

INTRODUCTION
Chiral benzofused 5-membered sultam with a quaternary stereocenter as an important structural motif 
shows a broad spectrum of biological activities[1-4], such as HIV-1 inhibitors, γ-secretase inhibitors and 
aldose reductase inhibitors [Figure 1]. It is also used as chiral auxiliaries in asymmetric chemistry[5]. On the 
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Figure 1. Bioactive compounds containing benzofused sultams and quinazolines.

other hand, quinazoline skeleton widely exists in natural products[6-9] and marketed drugs [Figure 1]. For 
instance, antiviral drug Letermovir[10], with 3,4-dihydroquinazoline, has potent anti-cytomegaloviral activity 
both in vitro and in vivo, and it is used clinically to treat patients who are seropositive for cytomegalovirus 
after undergoing allogeneic hematopoietic stem cell transplantation. The serum high-density lipoprotein 
cholesterol raising agent (R)-SDZ 267-489[11] can reduce the risk of atherosclerosis by raising cholesterol 
levels.

The combination of two pharmacophores through covalent bonds to create new bioactive molecules is a 
traditional method of drug design. We envisioned that the N-heterocyclic compounds, combining the two 
chiral structures mentioned above containing 1,3-nonadjacent stereocenters, might possess potential 
biological activities. Meanwhile, N-heterocyclic compounds bearing 1,3-nonadjacent stereocenters also 
serve as the fundamental structure of biologically active natural products[12-15], such as tetraponerines, which 
act as inhibitors of neuronal nicotinic acetylcholine receptors [Scheme 1A]. Moreover, in the total synthesis 
of this class of natural products, the construction of 1,3-nonadjacent stereocenters usually starts with chiral 
substrates[16-18] or requires the participation of chiral auxiliaries[19,20]. There is only one example of 
asymmetric catalytic approach, which requires the stepwise introduction of two chiral centers to construct 
the chiral hexahydropyrimidine skeleton[21]. Therefore, the development of an efficient approach to the 
construction of benzenesulfonamide fused tetrahydroquinazoline compounds bearing 1,3-nonadjacent 
stereocenters in a direct, concise and stereoselective manner is of great importance. Currently, there are 
limited asymmetric catalytic synthetic methods available for constructing N-heterocyclic compounds with 
1,3-nonadjacent stereocenters. As shown in Scheme 1, He et al. developed a cascade hydroamination/redox 
reaction for the synthesis of cyclic aminals under the combined catalysis of gold complexes and Brønsted 
acid[22]. Sim et al. developed organocatalyzed stereoselective [4+2] annulations of cyclic N-sulfimines, 
affording benzosulfamidate fused tetrahydroquinazoline and hexahydropyrimidine derivatives, 
respectively[23,24]. Mun et al. also developed a palladium-catalyzed decarboxylative [4+2] annulation of vinyl 
benzoxazinanones with cyclic N-sulfimines for the synthesis of benzosulfamidate fused 
tetrahydroquinazolines[25].

It is widely recognized that quaternary carbon chiral centers represent a prominent research focus and 
challenge in the field of asymmetric catalysis due to their steric hindrance. Therefore, the development of 
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Scheme 1. Asymmetric synthesis of N-heterocycles bearing 1,3-nonadjacent stereocenters.

1,3-nonadjacent stereocenters with a quaternary carbon center is of great significance. Notably, there is lack 
of documented techniques for producing N-heterocyclic frameworks bearing 1,3-nonadjacent stereocenters 
with a quaternary carbon center, as illustrated in Scheme 1. Herein, we reported a catalytic enantioselective 
[4+2] annulation of N-sulfonyl ketimines with aminochalcones to access benzenesulfonamide fused 
tetrahydroquinazoline compounds bearing 1,3-nonadjacent stereocenters with a quaternary carbon center.

EXPERIMENTAL
To a stirred solution of cyclic N-sulfonyl ketimine 1 (0.10 mmol, 1.0 equiv) and aminochalcone 2 
(0.15 mmol, 1.5 equiv) in CHCl3 (1.0 mL) was added catalyst (0.01 mmol, 10 mol%) at 25 °C. Then, the 
resulting mixture was stirred at the same temperature. After completion of the reaction as monitored by 
thin-layer chromatography (TLC), the reaction mixture was directly charged to column chromatography on 
silica gel (petroleum ether/ethyl acetate = 20/1 to 5/1) to give the product 3.

RESULTS AND DISCUSSION
To evaluate the practical feasibility of our proposal, the model reaction between N-sulfonyl ketimine 1a and 
aminochalcone 2a was carried out in MeCN at 25 °C. As indicated in Table 1, several chiral catalysts with 
hydrogen bond donors and acceptors were first examined. Cyclohexyl guanidine catalysts C1, C2, C5, C6 
and benzocyclohexyl guanidine catalysts C3, C4 were tested first (Table 1, entries 1 to 6). It was found that 
catalyst C2 led to the best enantioselectivity, and the reaction proceeded well, producing the desired [4+2] 
cycloadducts in 54% yield with 89% ee (Table 1, entry 2). We then tested different types of cyclohexyl 
catalysts without guanidino C7-C9. To our delight, the enantioselectivity was further improved, and C8 
exhibited the most effective catalytic effect (7:1 dr, 95% ee) (Table 1, entry 8), which is supposed to follow 
the catalytic pathway of the catalyst to form a ketimine intermediate with the aminochalcone to catalyze the 
reaction. Next, the reaction conditions were further optimized by varying solvents (Table 1, entries 10-15). 
When halogenated hydrocarbon solvents were tested, the enantioselectivity improved, and CHCl3 as the 
solvent gave the best enantioselectivity (99% ee) and diastereoselectivity (10:1 dr) (Table 1, entry 14).
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Table 1. Evaluation of catalysts and optimization of reaction conditionsa

Entry Cat. Solvent Yield (%)b Drc Ee (%)d

1 C1 MeCN 42 2:1 0

2 C2 MeCN 54 2:1 89

3 C3 MeCN 39 1:1 11

4 C4 MeCN < 5 - -

5 C5 MeCN 51 2:1 76

6 C6 MeCN 58 2:1 81

7 C7 MeCN 56 5:1 92

8 C8 MeCN 52 7:1 95

9 C9 MeCN 55 5:1 91

10 C8 EtOAc 21 2:1 80

11 C8 Toluene 45 2:1 74

12 C8 THF 35 5:1 88

13 C8 Et2O 52 2:1 78

14 C8 CHCl3 60 10:1 99

15 C8 DCM 41 7:1 92

aConditions: 1a (0.10 mmol), 2a (0.15 mmol), and catalyst (0.01 mmol) in solvent (1.0 mL) at 25 °C; bIsolated yield; cDetermined by 1H NMR of 

the crude reaction mixture; dThe ee values were determined by chiral HPLC analysis. THF: Tetrahydrofuran; DCM: dichloromethane.

With the optimal reaction condition in hand, we then investigated the substrate scope of N-sulfonyl 
ketimines 1 and aminochalcones 2. As shown in Scheme 2, a range of substituted N-sulfonyl ketimines were 
evaluated to examine the generality of the method. The electron-withdrawing groups and electron-donating 
groups at different positions of the aromatic ring of 1 were tolerated well in this catalytic reaction, giving the 
corresponding chiral benzenesulfonamide fused tetrahydroquinazoline products 3b-3g with good 
diastereoselectivities (> 8:1) and excellent enantioselectivities (97%-99% ee). When replacing the benzene 
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Scheme 2. Substrate scope of cyclic N-sulfonyl ketimines 1 a. aConditions: 1 (0.10 mmol), 2a (0.15 mmol), and catalyst (0.01 mmol) in 
CHCl3 (1.0 mL) at 25 °C; bIsolated yield; cDetermined by 1H NMR of the crude reaction mixture; dThe ee values were determined by 
chiral HPLC analysis.

ring with naphthalene rings of N-sulfonyl ketimines 1, the transformation also maintained excellent 
enantioselectivities, affording 3h in 98% ee and 3i in 95% ee. Additionally, the replacement of ethyl ester 
with methyl ester in N-sulfonyl ketimines 1 also worked well to give the desired product 3j with 10:1 dr and 
99% ee.

Next, a variety of aminochalcones 2 were investigated. Firstly, we tried different R3 substituents on the 
benzene ring. As shown in Scheme 3, electron-withdrawing R3 groups (4-F, 4-Cl, 4-Br, 5-F, 5-Cl) and 
electron-donating R3 groups (4-Me, 4-OMe) worked well, delivering products 3k-3q with good 
diastereoselectivities and excellent enantioselectivities. In addition, the R4 groups of 2, which involved a 
phenyl ring containing electron-withdrawing or donating substituents, were all well tolerated. The reactions 
proceeded smoothly with excellent efficiency, furnishing products 3r-3u with 10:1 dr and excellent 
enantioselectivities (96%-98% ee). Heterocyclic aromatic rings such as thienyl and furyl also worked well, 
and the reactions proceeded efficiently to afford the corresponding products 3v and 3w with excellent 
enantioselectivities. The absolute configuration of 3s was confirmed by X-ray single crystal diffraction 
(detailed data are in Supplementary Materials) and those of other products were assigned accordingly.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/cs4058-SupplementaryMaterials.pdf
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Scheme 3. Substrate scope of aminochalcones 2 a. aConditions: 1a (0.10 mmol), 2 (0.15 mmol), and catalyst (0.01 mmol) in CHCl3 (1.0 
mL) at 25 °C; bIsolated yield; cDetermined by 1H NMR of the crude reaction mixture; dThe ee values were determined by chiral HPLC 
analysis.

To demonstrate the potential application of this protocol, the scale-up reaction of N-sulfonyl ketimines 1a 
with aminochalcone 2a was carried out under the standard condition [Scheme 4], and the corresponding 
product 3a could be obtained in 56% yield (1.04 g) with 99% ee. Then, the reduction of the carbonyl group 
of 3a using NaBH4 and CeCl3·7H2O furnished the hydroxy-functionalized compound 4 in 60% yield. We 
also tried the Suzuki coupling of 3r, and the desired product 5 was obtained with a 55% yield.

CONCLUSIONS
In summary, we have developed a concise and efficient [4+2] annulation of N-sulfonyl ketimines and 
aminochalcones. The reaction proceeds with excellent enantioselectivity under mild conditions, providing a 
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Scheme 4. Scale-up reaction and further synthetic transformation.

convenient approach to benzenesulfonamide fused tetrahydroquinazoline compounds with 1,3-nonadjacent 
stereocenters containing a quaternary carbon center. This straightforward synthetic protocol exhibited 
excellent yields with a wide substrate scope. Studies on the bioactivities of the benzenesulfonamide fused 
tetrahydroquinazoline compounds are in progress in our laboratory. Additionally, the GAP (Group-assisted 
purification) protection groups[26-28] could be further considered for catalyst recycling/recovery purposes for 
this reaction, especially for large-scale synthesis with larger loading of catalysts.
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