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Abstract
Protein homeostasis, the balance between protein synthesis and degradation, requires the clearance of misfolded 
and aggregated proteins and is therefore considered to be an essential aspect of establishing a physiologically 
effective proteome. Aging alters this balance, termed “proteostasis”, resulting in the progressive accumulation of 
misfolded and aggregated proteins. Defective proteostasis leads to the functional deterioration of diverse 
regulatory processes during aging and is implicated in the etiology of multiple pathological conditions underlying a 
variety of neurodegenerative diseases and in age-dependent cardiovascular disease. Detergent-insoluble protein 
aggregates have been reported by us in both aged and hypertensive hearts. The protein constituents were found to 
overlap with protein aggregates seen in neurodegenerative diseases such as Alzheimer’s disease. Therefore, 
targeting these protein components of aggregates may be a promising therapeutic strategy for cardiovascular 
pathologies associated with aging, ischemia, and/or hypertension.
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INTRODUCTION
Cardiovascular diseases (CVD) have been and remain the leading cause of death worldwide, and account 
for 23.5% of U.S. mortality (CDC 2017). Hypertension, high blood cholesterol, diabetes, obesity, smoking, 
physical inactivity, gender, age, and genetics are the leading contributors to CVDs. Disruption of protein 
homeostasis, accumulation of misfolded proteins, and protein aggregation have also been linked to several 
types of CVDs[1]. A deeper understanding of protein homeostasis and protein aggregation, and their 
impairment in diseased hearts, may enable the development of new strategies and therapeutic targets for 
CVD prevention and intervention.

Protein homeostasis is fundamental for proper cell function and survival. A healthy proteome contains both 
proteins that are properly folded into a well-structured native state, as well as many intrinsically disordered 
proteins which have regions lacking a stable structure, or which achieve stability only upon binding of one 
or more ligands, or in association with other proteins in dimeric or multimeric complexes. Whereas most 
proteins fold spontaneously, many proteins require molecular chaperones to assist in folding[2,3]. There are 
several monitoring systems in the cell that detect any proteins that have been misfolded, partially folded, or 
are intrinsically disordered or unstructured. Misfolded proteins have exposed hydrophobic regions that can 
adhere to similar regions in nearby proteins, leading to nonfunctional binding and aggregation. 
Accumulating such aberrant complexes was previously shown to be highly toxic to cells[4].

The accumulation of misfolded proteins in a cell or subcellular compartment elicits the Unfolded Protein 
Response (UPR), which recruits chaperones required for proper protein folding[5-8]. Accumulation of 
misfolded proteins in the endoplasmic reticulum (ER) triggers the ER-associated degradation (ERAD) 
pathway via glucose-regulated protein 78 (GRP78), inositol-requiring protein 1 (IRE1), activating 
transcription factor 6 (ATF-6), and PKR-like ER kinase (PERK). The UPR pathway helps to limit misfolding 
by halting or reducing protein synthesis at the endoplasmic reticulum[9-12]. The Ubiquitin-Proteasome 
System (UPS) chiefly handles misfolded proteins, whereas autophagy provides an alternative degradation 
route for degraded organelles and larger aggregates[13-16].

THE UBIQUITIN-PROTEASOME SYSTEM
UPS is a highly regulated process that degrades proteins, most of which are structurally aberrant (and thus 
potentially dysfunctional), due to misfolding, oxidation, excessive post-translational misfolding, and/or 
entanglement of intrinsically disordered proteins or regions. UPS machinery has been identified in nucleus 
and cytosol, and degrades proteins from all cell compartments including membranes, nucleus, cytoplasm, 
and the ER lumen. UPS is an ATP-dependent system comprising two complementary processes: 
ubiquitination and proteasomal degradation[17,18]. Ubiquitination occurs in three steps. First, a ubiquitin-
activating enzyme (E1) binds ATP and transfers AMP-adenylate to a C-terminal carboxylate; it then 
captures that ubiquitin monomer through a Cys-thioester linkage and transfers it to carrier protein E2 via a 
thioester exchange. Ubiquitin ligases (E3) then catalyze substrate-specific ubiquitination of target proteins. 
There are over 600 substrate-specific E3 ligases[19], which recognize misfolded target proteins (or their 
associated chaperones) and catalyze the transfer of the ubiquitin moiety to proteins destined to be degraded 
after assembly of a polyubiquitin chain. Since ubiquitin modification is a dynamic process, not all 
polyubiquitinated proteins are destined for degradation; they also serve as signaling molecules that trigger 
DNA repair or activate kinases and stabilize certain proteins in cancer cells[20-22]. Polyubiquitinated proteins 
destined to be degraded are transferred to proteasomes, where they are deubiquitinated and cleaved into 
fragments of < 30 residues[23,24].
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UPS in the mammalian heart is distinguished by several features. E3 ligases such as atrogin-1, the muscle 
ring finger (MuRF) family, and C-terminal HSP70-interacting protein (CHIP) assist in the conjugation of 
ubiquitin to substrates peculiar to or especially abundant in the heart[25]. All proteasomes consist of two sub-
complexes: a 20S proteasome, also known as the catalytic core particle (CP), and one or two 19S proteasome 
activators, also known as regulatory particles (RPs). The CP comprises subpopulations of α and β catalytic 
subunits, which exist in constitutive forms (β1, β2, and β5), as well as immune forms (β1i, β2i, and β5i) that 
make up the immunoproteasome[26,27]. The 20S core of cardiac proteasomes contains a mixture of 
constitutive and immune proteasome subunits. The 19S regulatory particle may also be replaced by an 11S 
regulatory particle in mouse heart, complexed with the 20S catalytic core particle. The resulting 20S-11S 
complex appears to improve the catabolism of many cardiac substrates[17,28,29].

UPS IN THE DISEASED HEART
The relationship between abnormal UPS activity and pathogenesis was first recognized in diverse 
neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and Huntington’s diseases. Subsequently, 
several studies have determined the role of UPS and UPS-related therapeutic targets in disease states of 
other organs, including the heart[30,31]. MDM2 (an E3 ligase) has been shown to target the p53 protein, which 
is both a tumor suppressor and an inducer of apoptosis, for ubiquitination and proteasomal processing[32,33]. 
Elevated levels of p53 and MDM2 have been observed in heart failure patients, suggesting that increased 
apoptosis may be directly related to UPS dysregulation in diseased hearts[34]. Several studies have reported 
that proteasome subunits can undergo post-translational modifications (PTM) or oxidative damage that 
inhibit their catabolic function in ischemia-reperfusion (IR) injury models, thus perhaps contributing to 
UPS dysfunction leading to pathologic hypertrophy during and after CVD[35-37]. Total ubiquitinated protein 
load has been found to increase in several cardiovascular pathologies[38-41]. Impairment in coupling of 
ubiquitination and proteasomal degradation has also been shown to be a contributing factor to models of 
myocardial ischemic-reperfusion injury in both yeast and mice[42,43].

AUTOPHAGY
Lysosomes are the key degradative organelles in autophagy, an intracellular “recycling” pathway that serves 
to eliminate large, defective cellular components including cell organelles (e.g., mitochondria) as well as 
pathogens and cytosolic aggregates. Such structures are too large to be degraded by proteasomes but can be 
cytotoxic if not eliminated. Recycling of damaged and/or harmful cellular components by degradation 
allows the recovery of ATP, amino acids, and nucleotides for cell metabolism. There are three main types of 
autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Previous 
studies have also discovered crosstalk between UPS and autophagy[44]. Under normal conditions or 
moderate stress, autophagy clears old and damaged cell organelles, and dysfunctional protein complexes, as 
a cytoprotective alternative to apoptosis. The balance between apoptosis and autophagy, essential for proper 
functioning of the heart, is maintained by mTOR and Endoplasmic Reticulum (ER) stress pathways but 
disrupted by rapamycin treatment[45]. Cardiomyocytes, specialized muscle cells that maintain the 
contraction-relaxation cycle of the heart, are rich in mitochondria - resulting in a dependence on 
mitochondrial autophagy (termed “mitophagy”) for achieving homeostasis.

AUTOPHAGY IN THE DISEASED HEART
Mortality of cardiac cells can arise via apoptosis, ischemic cell death, or autophagic cell death[46-49]. Mice with 
Atg5- or Atg7-deficient hearts are more susceptible to cardiac dysfunction induced by ER and mitochondrial 
stress than mice with wild-type hearts[50,51]. Cardiomyocytes in hearts from animal models of ischemia-
reperfusion (I/R) injury have elevated abundance of autophagosomes, suggesting an impairment in their 
clearance after I/R injury[52]. Mice with myocardial infarction (MI) were found to have reduced autophagic 
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flux and mitochondrial respiration relative to sham-operated mice. This decrease in flux results in an 
accumulation of damaged organelles, polyubiquitinated proteins, and spheroidal (more rounded) 
mitochondria[53,54]. Autophagy is an essential protective mechanism that fails during long-term heart 
dysfunction[49,55-57]. Oxidative damage to proteins required for autophagic functions (e.g., Atg4, Atg5, and 
Atg7) can lead to the failure of cardioprotection in CVD[58-61].

CROSSTALK AND COOPERATION BETWEEN UPS AND AUTOPHAGY
Inhibition of UPS proteasomes disrupts the ERAD pathway and increases ER stress markers (e.g., IRE1, 
ATF6, PERK). IRE1 activation results in recruitment of TRAF2 required for phosphorylation of JNK, and 
expression of autophagy-pathway genes. Upon cleavage, ATF6 translocates to the nucleus and triggers 
expression of DAPK1 and phosphorylation of beclin-1 required for autophagosome biogenesis. Also, 
activated PERK through eIF2alpha activates ATF4 and CHOP, in turn inducing expression of diverse 
autophagy (ATG) genes[62-66]. Inhibition of autophagy leads to compromised UPS-associated substrate 
protein clearance[67]. Shuttling proteins, such as SQSTM-1/p62, responsible for the proper conveyance of 
ubiquitinated substrates to the proteasome, also accumulate in aggregates due to the inhibition of 
autophagy[67,68].

UPS and autophagy also work together in the clearance of unnatural, misfolded, and unrequired 
proteins[26,69]. This has been well documented in Huntington’s disease, Parkinson’s disease, and amyotrophic 
lateral sclerosis (ALS), characterized by aggregation of their respective hallmark proteins such as Htt. α-
synuclein and TDP-43. All these aggregates require both proteasomal and lysosomal degradation 
pathways[70,71]. Also, molecular chaperones such as CHIP and BAG have multiple functionalities. CHIP acts 
as a co-chaperone for HSP70 and HSP90 for proteasomal degradation, but can also mediate autophagic 
degradation of Lys63-specific misfolded proteins[72,73]. Among proteins in the BAG family, BAG1 mediates 
proteasomal degradation, while BAG3 cooperates with Hsp70, CHIP and SQSTM-1/p62 for autophagic 
degradation[74,75].

MOLECULAR MECHANISMS LEADING TO CVD
Myocardial ischemia and heart failure (HF) are the most common conditions that lead to CVD mortality. 
Each of these conditions initiates hypoxia, oxidative stress, ER and mitochondrial stress, and cardiac 
remodeling. Several studies have shown that a cascade of cellular-stress events can alter the machinery of 
UPS and/or autophagy, resulting in their disrupted clearance functions and the intracellular accumulation 
of misfolded proteins[38,69,75-79].

HYPOXIA (ISCHEMIA)
Organ-specific oxygen consumption depends on the type and condition of each tissue. The heart and brain 
create the highest demand for oxygen, and cardiac consumption rises sharply during vigorous exercise. 
Hypoxia refers to an oxygen level (partial pressure) that is below the physiological requirements of an 
organism or a tissue. Genes that are elicited in hypoxic environments are termed hypoxia-inducible and are 
upregulated by hypoxia-inducible factor-1α (HIF-1α) and HIF-2α acting as transcription factors or co-
factors. In normoxic conditions, HIF-1α is hydroxylated through an oxygen-dependent process and is 
degraded through a UPS pathway. HIF-1α protein is stabilized in hypoxic conditions and translocates into 
the nucleus, where it binds to hypoxia-response elements (HREs) to activate the transcription of hypoxia-
inducible genes. Genes directly targeted by HIF-1α are chiefly those responsible for glycolysis, angiogenesis, 
and erythropoiesis, but there are numerous secondary targets[80-82]. Hypoxia negatively impacts protein 
synthesis through such mechanisms as inhibition of mTOR signaling, and activation of PERK in the ER - 
both of which are responsible for regulation of translation initiation[83-86]. Hypoxia also leads to activation of 
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UPR machinery. Hypoxia-induced phosphorylation of eIF2α activates ATF4, a transcription factor that 
regulates autophagy and expression of CHOP (which induces apoptosis) and GADD34 (involved in the 
integrated stress response pathway)[87,88]. Hypoxia also induces protein misfolding, especially in the ER, 
which is itself a trigger of inflammation pathways[88]. Disrupted UPR, an oxygen-dependent process, 
contributes to the accumulation of misfolded proteins in aggregates. Other branches of the ER-stress 
pathway, mediated by ATF6 and IRE1, are also activated by hypoxia[89,90]. Additional pathways impacted by 
hypoxia include apoptosis, cell-cycle regulation, DNA repair, and metabolism, as shown by microarray 
analysis comparing normoxic vs. hypoxic cells[91].

Decreased oxygen delivery, leading to tissue hypoxia, occurs in several cardiovascular diseases including 
atherosclerosis, hypertension, and heart failure. In atherosclerosis, monocytes recruited by inflammatory 
signals to the arterial wall differentiate into macrophages, whose nitric oxide (NO) production is enhanced 
by HIF-1α but opposed by HIF-2α[92,93]. Since NO is a primary mediator of inflammation, hypoxia is pro-
inflammatory in atherosclerosis. HIF-1α has been shown to regulate hypertension in mice; HIF-1α+/- mice 
show a significant decrease in hypertension induced by chronic-intermittent hypoxia compared to wild-
type mice[94,95]. In humans, chronic hypoxia causes activation of the sympathetic nervous system and 
increased systemic arterial pressure[96]. Prolonged hypoxia leads to activation of autophagy, which protects 
cardiomyocytes from ER stress and apoptosis[97,98]. Angiotensin receptor-neprilysin inhibitor (ARNI), a 
compound recently developed to treat heart failure, reduces hypoxia-induced myocardial injury through 
inhibition of autophagy[99].

OXIDATIVE STRESS
Elevated levels of free radicals, chiefly reactive oxygen species (ROS), result in the disruption of several cell-
signaling and growth-mediating pathways. At low physiological levels, ROS play a critical role in diverse 
cellular processes including phosphorylation and activation of several transcription factors[100,101]. Protein 
carbonylation increases during oxidative stress, as observed for the 19S regulatory S6 proteasome subunit, 
considered to be the oxidation-sensitive subunit in 26S proteasomes[102]. Post-translational modifications 
related to oxidative stress, such as carbonylation, were shown to accumulate in proteins in aged mice[103]. 
Carbonylation of side-chain amino acids is linked to protein aggregation by promoting unfolding[104,105].

ROS are generated as metabolic by-products of oxidative phosphorylation by mitochondria, which are 
especially abundant in cardiomyocytes; however, they also originate from nitric oxide synthase (NOS) and 
diverse other enzymes such as NADPH oxidase (NOX) and cytochromes p450. Mitochondria play a 
dominant role in determining ROS levels, as they amplify NOX-derived ROS and thus function as redox 
hubs in cardiac physiology and disease. High ROS levels affect the disposition of myocardial calcium, 
induce arrhythmia, and can contribute to cardiac remodeling[106]. In addition to free radicals generated in 
the myocardium (cardiomyocytes), leukocytes produce a large proportion of cardiac ROS. Although small 
amounts of ROS are also generated under normal physiological conditions, the antioxidant defense 
mechanisms are often adequate to remove excess ROS and maintain oxidative balance.  However, during 
hypoxia, the oxidant load surpasses the heart’s ability to counter the ROS load resulting in oxidative stress. 
ROS are highly reactive toward proteins, lipids, and DNA; oxidative damage to DNA leads to somatic 
mutations, the vast majority of which are deleterious, whereas their impact on proteins and membranes can 
result in cell dysfunction or death. Alterations in protein and calcium homeostasis due to oxidative stress 
have been previously implicated in the heart, where they are most readily observed through structural 
modifications to cardiomyocytes[107,108]. NOX4, a member of NADPH oxidase family of proteins, is 
responsible for transfer of electrons from either NADPH or NADH to molecular oxygen to generate 
O2

-[109,110]. NOX4 is constitutively active, and elevation of its expression is closely associated with increased 
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oxidative stress[111]. Mitochondrial abundance of NOX4 is upregulated in aging heart leading to increased 
ROS production and cardiac hypertrophy[112,113]. HSP17, one of the heat shock proteins, was shown to 
ameliorate myocardial injury and oxidative stress[114-117].

ER STRESS
The endoplasmic reticulum (ER) is a vital organelle responsible for essential cellular functions such as 
protein synthesis, protein folding, calcium homeostasis, and the generation of autophagosomes. Under 
normal physiological conditions, GRP78 (a key ER chaperone) remains bound to effector molecules such as 
ATF6, IRE1, and PERK; during stress, however, these effectors dissociate from GRP78 and become 
activated. Activated ATF6 is cleaved in Golgi bodies, releasing its N-terminal fragment that acts as a 
transcription factor to induce genes that protect against ER stress and ROS. Activated IRE1 splices mRNA 
encoding X-box binding protein 1 (XBP1); the spliced XBP1 isoform translocates to the nucleus to initiate 
transcription of molecular chaperones. Activated PERK phosphorylates eukaryotic initiation factor 2 alpha 
(eIF2α) which in turn activates ATF4 and then C/EBP homologous protein (CHOP)[118]. As discussed above, 
there is interplay and crosstalk between various pathways involved in ER stress, hypoxia, and UPS. 
Senstrin2 is an important regulator of cell responses to various stresses[119,120]. In a recent study, ER stress was 
shown to induce cardiac autophagy and myocardial dysfunction in Sestrin2-knockout mice[121].

Mild ER stress is beneficial for the cell, as it clears any unfolded or damaged proteins via an ER-specific 
UPR termed UPRER; however, prolonged ER stress leads to cell death and is cardiotoxic since it leads to 
apoptosis of cardiomyocytes[122]. Because cardiomyocytes cannot regenerate, extended periods of ER stress 
can cause irreparable damage to the heart. Since ER plays a vital role in the metabolism of lipids and the 
maturation and folding of transmembrane proteins, suppression of ER stress is critical to survival.  ER stress 
nevertheless occurs in atherosclerotic plaques in humans and in animal models of atherosclerosis, although 
ameliorated by flavonoids[123-125].

MITOCHONDRIAL STRESS
Mitochondria are another essential cell organelle responsible for generating ATP as the principal energy 
currency required for cell metabolism and enabling cardiomyocyte contraction and relaxation. Other 
critical functions of mitochondria include biosynthetic metabolic processes, chiefly through the Krebs cycle, 
the maintenance of sustainable ROS levels, monitoring protein integrity, and preventing the accumulation 
of damaged proteins[118]. Under physiological stress, mitochondria activate their own UPR, termed UPRMit. 
This initiates transcription of the mitochondrial protease ClpP, mitochondrial chaperones or heat-shock 
proteins (HSP60 and HSP10), and proteins involved in ROS detoxification. The transcription of these 
factors is believed to be initiated by activated ATF5. Another stress-induced pathway is the activation of 
PERK and c-Jun N-terminal kinase 2 (JNK2), both of which participate in the translation of ATF4, CHOP, 
and ATF5 - proteins that contribute to cardiomyocyte dysfunction and apoptotic cell death. Mitochondrial 
stress also activates an autophagy-variant clearance pathway to remove dysfunctional mitochondria, called 
mitophagy[126,127]. Glutathione is involved in cellular homeostasis, protects cells from oxidative stress, and 
inhibits apoptosis[128]. Treatment with exogenous glutathione can help to restore mitochondrial redox status 
and eventually decrease mitochondrial stress leading to improvement in cardiovascular function of aged 
mice[129].

Crosstalk between mitochondria and ER has been observed and is believed to be a vital process in 
maintaining cardiac function. Calcium sequestered in ER is channeled to mitochondria, where it is required 
for ATP production. Proteins implicated in mitochondrial calcium uptake include Mfn2, VAPB, PTPIP51, 
and STIM1. STIM1 is an ER-resident calcium sensor; its genetic knockout in mice disrupts both ER and 
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mitochondrial functions, leading to cardiac fibrosis and myopathy. Similar interactions between ER and 
mitochondria are implicated by autophagy dysregulation via JNK, Bcl-2, and Atg6[130-132]. Both mitochondrial 
and ER stress responses are tightly connected to other mechanisms involved in protein homeostasis, 
including UPS, autophagy, hypoxia, and oxidative stress during cardiac dysfunction; consequently, proteins 
involved in these stress responses might be valuable targets for therapeutic interventions.

CARDIAC REMODELING
Cardiac tissue is susceptible to damage after ischemic injury, or cardiomyopathy, arising from hypoxia, 
oxidative stress, ER, or mitochondrial stress. Changes in size, mass, geometry, and function of the heart, as 
well as its overall morphology and function, are observed after cardiac injury - changes collectively known 
as cardiac remodeling. Following ischemic injury, there is extensive death of cardiomyocytes. The necrotic 
tissue after MI is replaced by extracellular matrix (ECM), resulting in fibrosis. Cardiac fibroblasts have high 
plasticity and are involved in the generation of ECM, scar formation, and inter-cellular signaling[133-135]. They 
increase their collagen synthesis, causing fibrosis not only of infarct tissue but also of non-infarct areas, thus 
participating in further cardiac remodeling[136,137]. Although initial remodeling of the heart is important to 
compensate for damage incurred, prolonged remodeling leads to the deterioration of cardiac function and 
may culminate in heart failure[138]. Prolonged remodeling of the heart is associated with ventricular 
arrhythmias, increased neurohormonal activation, and excessive vasoconstriction[139,140]. Several treatment 
strategies to reverse cardiac remodeling after heart failure have been studied in recent years. Renin-
angiotensin system modulators, beta-blockers, neprilysin inhibitors and aldosterone antagonists are some of 
those drugs shown to promote angiogenesis after MI and to alter cardiac remodeling[141,142].

RELATIONSHIP BETWEEN MYOCARDIAL ISCHEMIA, AGING, AND HYPERTENSION
Hypertension, a common consequence of vascular remodeling, is a major health problem that often 
accompanies aging. With increasing age, the arteries and blood vessels become stiffer, which increases 
vascular resistance. Elevated blood pressure leads to CVD, kidney disease, vascular dementia, and/or eye 
problems. We recently reported that detergent-insoluble protein aggregates, isolated from aging and 
hypertensive mouse hearts, increased several-fold relative to young, normal hearts[143]. About 50% of all 
aggregate proteins increased in abundance with aging, while 55% increased with hypertension; a shared 30% 
of aggregate proteins increased with both aging and hypertension[143]. Remarkably, one-fifth of these 
“overlap” aggregate proteins were previously implicated in age-related neurodegenerative diseases (e.g., 
Alzheimer’s disease) and CVDs[143-147]. Many of these proteins are involved in protein homeostasis and 
specifically in UPS, including proteasome α subunits, and NEDD4, an E3 ligase that increases in protein 
aggregates with aging and hypertension[143,148]. Similarly, TOMM22 and TOMM40, proteins involved in 
mitochondrial protein import, are enriched in hypertensive mouse hearts[143,149]. NADH dehydrogenase 
implicated in cardiotoxicity through oxidative stress is seen to be enriched in both aged and hypertensive 
mice hearts. Other proteins such as Serine peptidase inhibitor 1 (Serpinh1) and Prohibitin are enriched with 
aging and hypertension[143,150].

Myocardial infarction (MI) following prolonged ischemia is associated with cardiomyocyte death (necrosis 
or apoptosis)[151]. Post-MI cardiomyocyte death is followed by cardiac remodeling (heart chamber dilation, 
ventricular wall thinning, and loss of cardiac function). Several studies have reported that following MI, 
cardiomyocytes undergo an unfolded protein response (UPR) that leads to increased apoptosis[152]. 
Prolonged ischemia results in mitochondrial swelling and the release of cytochrome C, contributing to 
contractile dysfunction[153]. In the ER, ischemia leads to impaired protein folding due to abnormal activation 
and dysregulation of ER chaperones, contributing to protein misfolding, impaired calcium homeostasis, and 
apoptosis[154]. After simulating MI in wild-type mice with left coronary artery (LCA) ligation, we showed for 
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the first time that detergent-insoluble aggregates increase ~2.7-fold after MI relative to sham mice 
(unpublished data).  Of the cardiac proteins enriched after experimental MI, ~9% coincided with proteins 
previously observed in aged and hypertensive heart aggregates [Figure 1]. Proteins previously implicated in 
protein homeostasis failure associated with neurodegenerative and/or CVDs, such as CAND1, SerpinH1, 
NEDD4, UCP1, Plectin-1, 14-3-3[155], ApoE, Cardiac Phospholamban, and HSP-90[156], were shared in 
common between MI, aging, and hypertension — suggesting that these conditions accrue protein 
aggregates due to defects in the same or similar pathways [Figure 1].

The overlap among proteins enriched in cardiac aggregates due to aging, hypertension (HT), and 
experimental myocardial infarction (MI) implicates novel targets for therapeutic intervention.

THERAPEUTIC IMPLICATIONS OF IMPAIRED PROTEIN HOMEOSTASIS
Proteins involved in UPS, autophagy, mitochondrial and ER stress, and those directly affected by hypoxia 
and oxidative stress, are regulated by known pathways and suggest novel therapeutic interventions to 
mitigate CVDs. These proteins can either be upregulated, silenced, or otherwise manipulated to restore or 
maintain proteostatic equilibrium [Figure 2]. Drugs can be screened and evaluated for affinity to these 
proteins by methods employed previously[157-162], thus regulating their activity or interactions.  Mitochondrial 
and ER proteins (e.g., PERK, IRE1, eiF2α, BiP, CHOP, GRP78, XBP1, ATF6, and ATF4) are known to be 
altered in diverse neurodegenerative diseases, and may be similarly aberrant in cardiac tissue, leading to 
protein aggregation and cardiomyopathy. In addition, autophagy regulators that include Atg4, Atg7, Atg3, 
and Atg10 have also been documented as reporters of CVD[163-165].

Proteins may misfold during translation or subsequently due to oxidation, other damage, or excessive post-
translational modification. Misfolded proteins may be refolded with the help of chaperones, but if they 
remain in a disordered state, they are vulnerable to aggregation.  Individual proteins or complexes can be 
cleared by the ubiquitin-proteasome system, but if not, then they can only be eliminated via autophagy.

Additional proteins specific to myocardial ischemia and related conditions, as well as those shared with 
hypertension and aging, may be implicated as contributors to abnormal proteostasis. Understanding protein 
homeostasis pathways and how aggregated protein components contribute to aggregate accumulation and 
consequent functional decline are novel areas of cardiovascular research. Unconventional methods 
developed to combine proteomics and interactome analyses have allowed us to identify proteins and 
protein-protein interfaces that are especially influential for aggregation.  These provide novel targets for the 
discovery of drugs that oppose aggregation [Figure 2] as described recently[166].

Since dysfunctions of proteasomes and autophagy have been implicated in aging and age-related diseases, 
with consequences as diverse as those of Alzheimer’s disease and CVD, small molecules targeting influential 
aggregate proteins may also benefit those afflicted with a wide range of other age-associated 
conditions[167,168]. Targeting these aggregate-specific proteins with small molecules rescued aggregate-
associated functional declines in AD models[155,157,160,166,169]. In view of the substantial overlaps between 
proteins sequestered into aggregates in aged, hypertensive and post-MI hearts, these aggregate-specific 
proteins and their interfaces (especially the shared protein sets) offer attractive drug targets to relieve 
protein aggregation and its associated physiological impairments. Therapies that improve cardiac function 
impaired by cardiac aging or by specific CVD events, especially myocardial ischemia, may target proteins 
defective in multiple pathologies, and thus serve as therapeutic approaches with the potential to ameliorate a 
wide range of age-related diseases.
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Figure 1. Proteins sequestered into aggregates overlap between aged, hypertensive (HT), and infarcted (MI) hearts.

Figure 2. Drugs targeting cardiac-aggregate proteins can improve clearance of misfolded proteins and restore protein homeostasis 
compromised by cardiovascular disease (such as ischemia) and/or aging.
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