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Abstract
The air braking system is crucial for the safe operation of high-speed trains but is susceptible to faults from harsh
environments and prolonged use. However, faulty data in practice are still rare because of the “safety oriented prin-
ciple”. For this purpose, fault injection is regularly employed. Due to the stochastic nature of faults in the system,
random fault injection can more realistically simulate faulty scenarios compared to the deterministic fault injection.
The traditional method entails analyzing a significant amount of raw data to extract the fault distribution function, fol-
lowed by random sampling. However, the obstacles lie in the scarcity of raw fault data and the labor-intensive nature
of constructing the fault distribution function. This paper proposes a layered random fault injection method based on
multiple Markov chains. First, a multi-layer structured fault model base is established for the system, followed by the
implementation of layered fault injection. Then, the random fault types and degrees are realized usingMarkov chains,
in which the fault probability function is determined by the state transition matrix. Subsequently, a low-complexity
Alias sampling algorithm is proposed for discrete random sampling. The nominal model is transformed into a corre-
sponding fault model based on the sampling outcomes, facilitating the acquisition of fault data. Finally, a graphical
user interface is developed to present and visualize the validation results.
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1. INTRODUCTION
High-speed trains play an essential role in both railway passenger transportation and the economic develop-
ment of regions [1,2]. However, owing to their elevated speeds, the braking system has emerged as a critical
safety consideration [3,4]. The air braking system (ABS) serves as the central subsystem; however, its intricate
operational conditions and prolonged usage frequently result in wear, aging, and sudden abnormalities in cer-
tain components. ABS constitutes a primary origin of train malfunctions, and the failure to promptly detect
and address these faults can result in significant safety incidents, causing substantial casualties and property
damage [5]. The derailment incident of the Talgo 250 Hybrid high-speed train in Spain on July 24, 2013, was
attributed to a braking systemmalfunction, leading to a substantial number of casualties. However, simulating
faults on real high-speed trains is expensive and challenging, with the majority of existing platforms primar-
ily concentrating on modeling regular train operations [6]. Therefore, investigating fault injection in ABS of
high-speed trains holds significant importance. To fulfill the criteria of minimizing risk, reducing costs, and
achieving short development cycles, simulation-based fault injection is often used to simulate and inject faults
into ABS. Fault injection is a fault simulation technique proposed in the 20th century [7]. Its essence is to arti-
ficially introduce faults into the target system with a certain strategy for a specified fault type so as to observe
and analyze the operation behavior of the target system under the condition of injected faults. It has garnered
significant attention [8,9].

In the fault injection of automotive systems: Abboush et al. [10] proposed a new method based on hardware
in the loop (HIL) simulation and automatic real-time fault injection method for generating, analyzing, and
collecting data samples in the presence of single and concurrent faults. In the fault injection of aviation con-
trol systems: Joshi et al. [11] first proposed the application of Microsoft baseline security analyzer to the fault
modeling and verification process of aviation control systems. Linnosmaa et al. [12] used architecture analysis
and design language or its fault extension language to verify the safety requirements of aviation control system
fault models. In the fault injection of hydraulic systems: Liu [13] used AMESim to establish a simulation model
of the hydraulic control module of the drilling machine loop and studied the fault tolerance and fault detec-
tion of hydraulic systems. Karpenko and Sepehri [14] built mathematical models and physical experiments of
servo-hydraulic positioning systems and studied leakage between actuator cavities. Niksefat and Sepehri [15]

established the mathematical model of the electro-hydraulic servo system and analyzed the influence of sensor
fault and hydraulic pump fault on the system through experiments. In the fault injection of heating, ventila-
tion, and air-conditioning (HVAC) systems, Kiamanesh Bahareh [16] presents modeling patterns of numerous
faults in HVAC systems based on data from field failure rates and maintenance records. The extended fault
injection framework supports the injection of multiple faults with exact control of the timing, locality, and
values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the
occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into
the behavior of the system for concrete example scenarios using multiple fault patterns. In the fault injection
of the train system: Zhou et al. [17] built a 1:1 electric multiple-unit platform. The brake cylinder leakage fault
is realized by adding components to the platform. This fault injection method simulates a single fault type and
causes a certain degree of damage to the components when simulating the fault, which hinders the feasibility
of conducting experiments repeatedly. Gou et al. [18] and Youssef et al. [19] reported fault injection of open-
circuit faults of rectifiers, gain and noise faults of grid-side current sensors and direct current voltage sensors
in a hardware-in-the-loop simulation platform. Chen et al. [20] used Simulink/AMESim co-simulation to re-
alize the fault injection of brake cylinders, train pipes and other components in the train braking system and
developed a new open-source benchmark for validating the fault diagnosis methods of the electro-pneumatic
brake system (EPBS). Yang et al. [8] proposed a fault injection strategy based on signal conditioning that real-
ized the simulation of fault scenarios, such as sensors, traction converters, and motors, in the traction drive
system. The fault injection simulations mentioned above all involve deterministic faults. By observing the be-
havior of the system under specific fault scenarios and acquiring faulty data, it becomes possible to formulate
targeted fault diagnosis algorithms [21,22]. Presently, the majority of validation methods for diagnostic algo-
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rithms entail the establishment of deterministic experiments to assess fault scenarios. Given the stochastic
nature of fault occurrences in the system, random fault injection simulates the fault occurrences of the entire
system in real-world scenarios. This enhances the objectivity of fault injection and introduces greater flexibil-
ity in the injection process. Therefore, employing random fault injection represents a more convenient and
efficient approach for validating fault diagnosis algorithms [23]. Presently, the prevalent approach for injecting
random faults into a system involves fitting a fault injection model density function using an extensive dataset
derived from the system. Subsequently, the fault parameters are randomly sampled based on this function to
accomplish the random fault injection [24]. However, the creation of the fault injection model density function
involves multiple steps, including data processing, parameter estimation, and function fitting, rendering it a
laborious process. Furthermore, the existing challenge for ABS lies in the absence of comprehensive and ac-
curate raw statistical data on fault distribution. This scarcity hampers the comprehensive construction of the
fault injection model density function. Therefore, finding a convenient and effective method for conducting
random fault injection on ABS is a pressing issue.

The main contributions of this paper are as follows:
1. A layered random fault injection method based on multiple Markov chains (MCs) is proposed, leveraging
multiple MCs to systematically represent fault scenarios. This approach constructs both convergent fault type
MCs and fault degree MCs, effectively diminishing reliance on initial fault data and significantly streamlining
the laborious process of establishing fault distribution.
2. The Alias Sampling (A-S) algorithm has been augmented, incorporating queue operations in lieu of arrays,
which serves to decrease the computational complexity involved in constructing Alias tables. This adjustment
enhances the efficiency of conducting random sampling within fault distributions.
3. A random fault injection and fault diagnosis platform for the ABS is designed and developed based on
Simulink/AMESim co-simulation, including modules for the underlying simulation model, random fault in-
jection, fault diagnosis, and visual display.

Preliminary research has been reported at [25]. The rest of this paper is organized as follows: Section 2 describes
the construction of ABS fault model base. Section 3 proposes the method of constructing a random fault
distribution based on steady-state MCs and uses the A-S algorithm for random sampling. In Section 4, the
simulation results are given. Finally, Section 5 presents the main conclusions.

2. PRELIMINARY
2.1. Typical faults
ABS comprises diverse components, including EP valves, train pipes, brake cylinders, and sensors. Subject
to diverse and intricate operational environments and factors, each device category is inevitably prone to en-
countering various types and degrees of faults. This paper simulates typical fault scenarios of ABS, including
sensors, EP valves, brake cylinders, and train pipes. For the sensor, four kinds of faults, including offset, gain,
drift and impact, are simulated. For the EP valve, external leakage, internal leakage and spring damage are
simulated. For the brake cylinder, the air leakage fault is simulated. For the train pipe, the air leakage fault is
simulated. The fault parameters for each fault type are categorized into specific ranges, classifying the fault de-
grees into three categories based on the national standard GB/T709-2006, which divides equipment status into
four levels: normal, mild, average, and severe. Train pipe fault: Compressed air is transmitted in the train pipe.
Due to wear and tear over long periods of operation, the walls of the train pipe are thinned or even damaged,
eventually leading to gas leaks. This means that the braking system lacks adequate air pressure, resulting in
prolonged braking response time as the air pressure decreases within the braking system, thereby delaying the
desired braking effect. This leads to a sluggish response of the braking system to braking commands issued by
the train driver, consequently affecting the overall braking performance of the train. Sensor offset fault: This
particular fault typically induces a fixed deviation in the measurement of the raw signal. The braking system
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Table 1. Summary of typical faults

Fault component Fault type Fault degree Changes

Sensor

Offset fault Normal/ Mild/ Average/ Severe The output signal increases by a fixed offset
Gain fault Normal/ Mild/ Average/ Severe The output signal is multiplied proportionally

Drifting fault Normal/ Mild/ Average/ Severe
The output signal adds an extra signal that is

proportional to time

Shock fault Normal/ Mild/ Average/ Severe
The output signal is added with a pulse signal

at a certain time

EP valve
External air leakage Normal/ Mild/ Average/ Severe

The pressure values of the four brake
cylinders are reduced

Internal air leakage Normal/ Mild/ Average/ Severe
The pressure values of the four brake

cylinders increase and the exhaust time
becomes longer

Spring fault Normal/ Mild/ Average/ Severe
The speed of gas-filled changes in the
charging time of the brake cylinders

Brake cylinder Air leakage fault Normal/ Mild/ Average/ Severe
The corresponding brake cylinder pressure

value decreases

Train pipe Air leakage fault Normal/ Mild/ Average/ Severe
The pressure values of the four brake

cylinders are reduced

relies on sensor data to ensure precise control and distribution of braking force to the wheels. Sensor offset
can lead to erroneous detection of wheel speed or other parameters, causing uneven distribution of braking
force across the wheels. This can result in an imbalance in the vehicle during braking, affecting both the effec-
tiveness of braking and overall stability. Brake cylinder fault: The realization of air braking ultimately depends
on the gas pressure in the brake cylinder through which the basic braking device is propelled. However, after
prolonged operation, tiny gaps inevitably develop between the piston and the housing. These tiny gaps allow
the gradual infiltration of gas from the gas chamber, leading to a reduction in chamber pressure. As a result,
the force applied to the basic braking device is also reduced, ultimately affecting the overall braking effect. The
impact of other faults is briefly summarized in Table 1.

2.2. Multi-layer fault injection model base
In order to guarantee coverage of the diverse fault scenarios outlined above, it is essential for the fault injec-
tion system to encompass a maximal number of faults. If the foundation of the fault model relies on directly
enumerating fault cases, four types of fault devices are involved, with a total of eight fault types for each device,
and each type has three degrees of severity. Therefore, there are a total of 24 corresponding fault scenarios.
Following this enumerative method would occupy a significant amount of storage resources. Moreover, gen-
erating a significant quantity of random fault cases during subsequent fault injection and diagnosis proves to
be inconvenient.

To solve the above problems, Fang et al. [24] have created a fault model base for the train traction system with a
multi-layer structure, organized into three layers. This paper establishes a fault model base for ABS. The first
layer stores the fault components; the following layer encompasses the fault types, and the subsequent layer
accommodates the fault degrees, denoted as (𝑺𝑪, 𝑺𝑻, 𝑺𝑫). The first layer stores the fault components, and
there are 𝑛 kinds of fault components, which constitute the fault component set 𝑺𝑪 = {𝑠𝑐1, 𝑠𝑐2, 𝑠𝑐3, . . . , 𝑠𝑐𝑛}.
The second layer stores fault types, including normal operation and fault states composed of 𝑘 fault types, which
form a fault type set 𝑺𝑻 = {𝑠𝑡1, 𝑠𝑡2, 𝑠𝑡3, . . . , 𝑠𝑡𝑘 }. The third layer stores the fault degrees, including the fault state
composed of normal and 𝑙 fault degrees, which forms the fault degree state set 𝑺𝑫 = {𝑠𝑑1, 𝑠𝑑2, 𝑠𝑑3, . . . , 𝑠𝑑𝑙}. A
comprehensive fault injection can be denoted as (𝑠𝑐𝑖 , 𝑠𝑖𝑡 𝑗 , 𝑠

𝑗
𝑑𝑘 ).

Within the three-layer fault model base, real-world scenarios allow for clear classification of both fault devices
and fault types. For example, fault devicesmay consist of train pipes, sensors, and similar components, whereas
fault types may cover leakage faults, blockage faults, and so forth. However, the differentiation of fault severity
demands distinctions based on the parameter ranges influencing the fault, spanning from mild to average to
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Figure 1. Sensor gain fault at different parameters.

Figure 2. Cluster tree of sensor gain faults.

severe. This paper tackles this challenge by employing spectral clustering algorithms [26], which have become
one of the most popular modern clustering algorithms. It is simple to implement and very often outperforms
traditional clustering algorithms.

Using the gain fault of the sensor as an illustration, the fault curve is generated by selecting the gain coefficient
parameter (ranging from 1 to 6 with a step size of 0.5), and the results are shown in Figure 1. Subsequently,
the spectral clustering algorithm is applied for classification, and Figure 2 represents the dendrogram obtained
from the classification. Due to the need to categorize the fault severity into three classes, the classification
results are outlined as follows: minor (1-2.5), moderate (2.5-4.5), and severe (4.5, 6).

2.3. MC
MC [27] illustrates the interrelated transition process among different states once the system is initiated. Given
the determination of the previous state of the system, the probability of the next state is independent of the
previous state. In ABS, owing to the fault and repair of diverse components, there is a bidirectional transition
between the normal and fault states at each level, with the probability of the next state contingent upon the
previous state. As shown in Figure 3, the fault state transition in ABS can be viewed as a MC.
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Figure 3. MC of fault. MC: Markov chain.

TheMC possesses a distinct “memoryless” attribute, signifying that once the random variables in the 𝑛th step
are known, those in the (𝑛+1)th step are independent of others [28]. For the randomvariable set 𝑿 = {𝑋𝑛 : 𝑛 > 0}
in the probability space with a one-dimensional countable set as the exponent set, the values of random vari-
ables are included in the countable set 𝑺 = {𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑚}, which is called the state set. The “homogeneity”
in a homogeneous MC is evident in the fact that the transition probability is solely connected to the state be-
fore and after the transition, rather than being dependent on the two time points. A homogeneous MC can be
expressed as follows:

Prob (𝑋𝑛+1 | 𝑋𝑛, . . . , 𝑋1) = Prob (𝑋𝑛+1 | 𝑋𝑛) (1)

𝝅𝑖 is defined as its probability distribution and 𝚷𝑖, 𝑗 as its one-step transition probability. The mathematical
expression is as follows:

𝝅𝑖 = Prob(𝑋𝑛 = 𝑠𝑖), 𝑠𝑖 ∈ 𝑺. (2)

𝚷𝑖, 𝑗 = Prob(𝑋𝑛+1 = 𝑠 𝑗 | 𝑋𝑛 = 𝑠𝑖), 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑺. (3)

When all objects of a MC satisfy the following properties: recurrence, aperiodicity and pairwise connectivity,
it has a unique steady-state solution [29,30], which is independent of the initial state, and can be expressed as [31]:

lim
𝑛→∞

Prob (𝑋𝑛 = 𝑠𝑖) = 𝜋𝑖 (4)

The algorithm for solving the steady-state probability of MC is shown in Algorithm 1.

Algorithm 1: Steady-state probability of MC (SM)
Input: A state-transition matrix 𝑀 .
Output: A steady-state probability matrix.
𝑃ℎ𝑎𝑠𝑒_𝑛 = 𝑀
𝑃ℎ𝑎𝑠𝑒_𝑛1 = 𝑃ℎ𝑎𝑠𝑒_𝑛1 ∗ 𝑀
while not (𝑃ℎ𝑎𝑠𝑒_𝑛 == 𝑃ℎ𝑎𝑠𝑒_𝑛1).all( ) do

𝑃ℎ𝑎𝑠𝑒_𝑛 = 𝑃ℎ𝑎𝑠𝑒_𝑛1
𝑃ℎ𝑎𝑠𝑒_𝑛1 = 𝑃ℎ𝑎𝑠𝑒_𝑛1 ∗ 𝑀

Return the matrix: 𝑃ℎ𝑎𝑠𝑛.

3. LAYERED RANDOM FAULT INJECTION METHOD BASED ON MULTIPLE MCS
3.1. Fault probability distribution construction
In this paper, a multi-layer fault injection model base is established, which is divided into fault components,
types and degrees. However, considering the background of ABS, the majority of components exhibit only
a single type of fault. Therefore, the combination of fault components and types is called a fault type. In the
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Figure 4. Fault type state transition diagram.

subsequent construction of aMCmodel, only the construction of fault type and fault degreeMC is considered,
which simplifies the model.

3.1.1 Fault type transfer MC model construction
When constructing the state transition diagram for fault types, the following conditions must be satisfied:
1⃝ When examining the state transition of an individual fault within the system, every fault state and the
normal state should be mutually reachable and interconnected. However, distinct fault states should not be
mutually reachable. Because the faults addressed in this manuscript are all individual faults and do not involve
compound faults, that is, scenarios where two ormore faults occur simultaneously. The state transition diagram
must adhere to the following formula:

𝑠𝑖𝑡 ↔ 𝑠0𝑡 𝑖 = 1, 2, . . . , 𝑘 (5)

2⃝ In the case of single fault state transfer, different fault states are unreachable, and the state transition diagram
must adhere to the following formula:

𝑠𝑖𝑡 ↛ 𝑠
𝑗
𝑡 𝑖, 𝑗 = 1, 2, . . . , 𝑘, 𝑖 ≠ 𝑗 (6)

For fault type MC in Figure 4: there are 𝑘 fault types except for the normal operation state. The state transition
probability matrix 𝑯𝒕 of the fault typeMC can be constructed by using the steady-state probability distribution
of the fault degree MC.

In Figure 4, 𝜆𝑖(i=1,2,...,k) is defined as the probability of fault occurrence of the 𝑖th fault type, specifically, the
probability of transition from state 𝑠0𝑡 to state 𝑠𝑖𝑡 . 𝜇𝑖 (𝑖 = 1, 2, ..., 𝑘) represents the probability of transition from
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Figure 5. Fault degree state transition diagram.

state 𝑠𝑖𝑡 to state 𝑠0𝑡 . The state transition probability matrix 𝑯𝒕 of the fault type MC is constructed as follows:

𝑯𝒕 =


1 −∑𝑘

𝑖=1 𝜆𝑖 𝜆1 · · · 𝜆𝑘
𝜇1 1 − 𝜇1 · · · 0
...

...
. . .

...

𝜇𝑘 0 · · · 1 − 𝜇𝑘


(7)

𝝅𝒕 is defined as the stationary probability distribution ofMCwith fault type, and 𝜋𝑡0, 𝜋𝑡1, ..., 𝜋𝑡𝑘 are respectively
the steady-state probability of normal operation state and 𝑘 fault states.

𝝅𝒕 = [𝜋𝑡0, 𝜋𝑡1, ..., 𝜋𝑡𝑘 ] (8)

𝝅𝒕𝑯𝒕 = 𝝅𝒕 (9)

𝑘∑
𝑖=0

𝜋𝑡𝑖 = 1 (10)

The specific value of 𝜋𝑡𝑖 (𝑖 = 0, 1, ..., 𝑘) can be determined by simultaneously solving Eqs. (8)-(10), representing
the steady-state solution. At this point, the steady-state probabilities corresponding to the aforementioned 𝑘+1
states have been acquired.

3.1.2 Fault degree transfer MC model construction
When constructing the state transition relationships for the fault degree state transition diagram, the following
conditions must be satisfied:
1⃝Without accounting for the repairability of the system, faults consistently progress in a more severe direc-
tion, and the state transition diagram must adhere to the following formula:

𝑠𝑖𝑑 → 𝑠
𝑗
𝑑 𝑖, 𝑗 = 1, 2, . . . , 𝑙, 𝑖 ≤ 𝑗 (11)

2⃝ Taking into account the reparability of the system, any fault state can be directly restored to the normal
state, and the state transition diagram must adhere to the following formula:

𝑠𝑖𝑑 → 𝑠0𝑑 𝑖 = 1, 2, . . . , 𝑙 (12)
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In Figure 5, 𝑯𝒅 is defined as the state transition probability matrix of the fault degree MC. Using 𝑙 = 3 as an
illustration, the expression of 𝑯𝒅 is as follows:

𝑯𝒅 =


1 −∑3

𝑖=1 𝜆𝑑𝑖 𝜆𝑑1 𝜆𝑑2 𝜆𝑑3
𝜇𝑑1 1 − 𝛾14 − 𝜆𝑑5 𝜆𝑑4 𝜆𝑑5
𝜇𝑑2 0 1 − 𝛾26 𝜆𝑑6
𝜇𝑑3 0 0 1 − 𝜇𝑑3

 (13)

where 𝛾𝑖 𝑗 = 𝜇𝑑𝑖 + 𝜆𝑑𝑗 . 𝜆𝑑𝑗 ( 𝑗 = 1, 2, ..., 2𝑙) represents the probability of transition from state 𝑠 𝑗−1
𝑑 to state 𝑠 𝑗𝑑 ,

which is recorded as the fault rate. 𝜇𝑑𝑖 (𝑖 = 1, 2, ..., 2𝑙) represents the probability of transition from state 𝑠𝑖𝑑 to
state 𝑠0𝑑 , which is recorded as the repair rate.

𝝅𝒅 is defined as the stationary probability distribution of MC with fault degree, and 𝜋𝑑0, 𝜋𝑑1, ..., 𝜋𝑑𝑙 represent
the steady-state probability of normal and 𝑙 fault degree, respectively.

𝝅𝒅 = [𝜋𝑑0, 𝜋𝑑1, ..., 𝜋𝑑𝑙] (14)

𝝅𝒅𝑯𝒅 = 𝝅𝒅 (15)

𝑙∑
𝑖=0

𝜋𝑑𝑖 = 1 (16)

The specific value of 𝜋𝑑𝑖 (𝑖 = 1, 2, ..., 𝑙) can be obtained by solving Eqs. (14)-(16). The steady-state probabilities
corresponding to the aforementioned four fault levels have been determined.

3.2. Random sampling of probability distribution
Upon acquiring the probability distribution of faults in ABS, efficiently simulating this distribution and con-
ducting a substantial number of sampling tests have emerged as pivotal challenges.

3.2.1 Data processing
Random sampling from the calculated failure probability distribution may result in around 70% of the 1000
samples being in normal conditions, leading to significant resource wastage. Considering that faults are not
introduced from the outset, the fault data inherently comprises both normal operational and fault data. Sub-
sequently, following the acquisition of the steady-state probability distribution for fault types, the normal op-
erational state can be eliminated, and a re-computation of the probability distribution can be conducted.

Eq. (8) and Eq. (14) are transformed into:

𝝅𝒕 = [𝜋𝑡1, 𝜋𝑡2, ..., 𝜋𝑡𝑘 ]/(1 − 𝜋𝑡0) (17)

𝝅𝒅 = [𝜋𝑑1, 𝜋𝑑2, ..., 𝜋𝑑𝑙]/(1 − 𝜋𝑑0) (18)

3.2.2 Random sampling method based on Alias algorithm
The Simple sampling (S-S) method shows a substantial discrepancy with the actual probability, particularly as
the actual probability decreases. Additionally, each sampling operation in the S-S method has a complexity of
O(𝐾); even if the binary search method is used, the complexity is O(log(𝐾)). Given the necessity for hundreds
of samplings in a single test, a lower-complexity algorithm is required. The A-S algorithm [32] is a cutting-edge
sampling algorithm that significantly mitigates the time complexity of sampling. Given a discrete random
probability distribution Prob(𝑋 = 𝑥𝑖) = 𝑝𝑖 , the A-S algorithm treats the entire probability distribution as 𝑁
rectangles with an area of 1 ∗ 𝑝𝑖 , and all events are converted into corresponding rectangular areas. Next, the
area of each rectangle is normalized by 1/𝑁 to obtain 𝑁 rectangles with an area of 𝑁 ∗ 𝑝𝑖 . Fill the rectangles
with an area of more than 1 into the rectangles with an area of less than 1, and record the details of the filling
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operation. Finally, 𝑁 rectangles with a total area of 1 ∗ 1 are formed. Two arrays are constructed according to
the original area and filling condition of the rectangle. One is the probability array, which is recorded as 𝑝𝑟𝑜𝑏
and stores the original probability of the corresponding event of each rectangle. The other is an alias array. It
stores the event number of the rectangle that is not filled enough, which is recorded as 𝑎𝑙𝑖𝑎𝑠. If it is not filled,
it is represented by 𝑁𝑈𝐿𝐿.

The algorithm constructed using the abovemethod has a time complexity of O(𝐾2). Amore efficient approach
involves using two queues, A and B, to separately store node labels greater and less than 1. In each iteration,
a node is selected from each queue, and the larger one is merged into the smaller one. The smaller node is
then dequeued. Subsequently, the merged node is examined, and if its value is greater than 1, it is enqueued
into queue A. If the value is equal to 1, it is dequeued. If the value is less than 1, it is enqueued into queue
B. This algorithm achieves a time complexity of O(𝐾). The algorithm for constructing the above A-S table
and sampling process is shown in Algorithm 2. From the aforementioned process, it is evident that the A-S
algorithm is designed to trade space for time. Despite having a space complexity of O(𝐾), its time complexity
is merely O(1). Given sufficient physical space, this results in a significant reduction in time complexity and
an acceleration in sampling speed.

This section combines the model built in Section 2 with the fault model to extract specific faults hierarchically

Algorithm 2: Alias Sampling
Input: A list 𝑃 of length 𝑛, store the discrete distribution
Output: An integer in range [0, 𝑛)
Create arrays 𝐴𝑙𝑖𝑎𝑠 and 𝑃𝑟𝑜𝑏, each of size 𝑛
Create two queues, 𝑆𝑚𝑎𝑙𝑙 and 𝐿𝑎𝑟𝑔𝑒.
Multiply each probability by 𝑛.
if 𝑝𝑖 < 1 then

add 𝑖 to 𝑆𝑚𝑎𝑙𝑙
else

add 𝑖 to 𝐿𝑎𝑟𝑔𝑒
while 𝑆𝑚𝑎𝑙𝑙 and 𝐿𝑎𝑟𝑔𝑒 are not empty do

Remove the first element from 𝑆𝑚𝑎𝑙𝑙, and call it 𝑙
Remove the first element from 𝐿𝑎𝑟𝑔𝑒, and call it 𝑔
Set 𝑃𝑟𝑜𝑏[𝑙] = 𝑝𝑙 . And set 𝐴𝑙𝑖𝑎𝑠[𝑙]= 𝑔
Set 𝑝𝑔 := (𝑝𝑔 + 𝑝𝑙) − 1
if pg<1 then

add 𝑔 to 𝑆𝑚𝑎𝑙𝑙
else

add 𝑔 to 𝐿𝑎𝑟𝑔𝑒

while 𝐿𝑎𝑟𝑔𝑒 is not empty do
Remove the first element from 𝐿𝑎𝑟𝑔𝑒, and call it 𝑔. And set 𝑃𝑟𝑜𝑏[𝑔] = 1

while 𝑆𝑚𝑎𝑙𝑙 is not empty do
Remove the first element from 𝑆𝑚𝑎𝑙𝑙, and call it 𝑙. And set 𝑃𝑟𝑜𝑏[𝑙] = 1

Generation a fair die roll from an n-sided die, call the side 𝑖
Flip a biased coin that comes up head with probability 𝑃𝑟𝑜𝑏[𝑖]
if the coin comes up heads then

return 𝑖
else

return 𝐴𝑙𝑖𝑎𝑠[𝑖]
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from the fault model library according to sampling results, to achieve effective fault injection. The specific
operational process is as follows:
1⃝ A layered fault injection model (𝑺𝑻, 𝑺𝑫) for the ABS is established according to Section 2, storing collec-
tions of fault types and degrees separately;
2⃝ Users set the MC state transition matrix for fault types and degrees according to requirements and use it
as input parameters; this matrix must meet certain conditions; for instance, the sum of elements in each row
must equal 1;
3⃝The steady-state probability calculation module is responsible for calculating the steady-state probabilities
of the MC state transition matrices for fault types and degrees and uses them as the fault probability distribu-
tion;
4⃝ In the random fault generation module, the improved A-S algorithm is applied to randomly sample from
the fault type probability distribution and the fault degree probability distribution, successively, obtaining
(𝑠𝑡𝑖 , 𝑠𝑖𝑑𝑗 );
5⃝ Upon receiving a model switching signal, the model switching module will switch the switch from the
normal state model to the corresponding fault model, thus implementing the injection of random faults. The
model switching signal refers to a signal when the system’s randomly preset or user-defined fault injection time
arrives.
Following these steps allows for the single instance of random fault injection into the ABS; repeating these
steps can achieve multiple instances of random fault injections.

3.3. Overview
Most fault injections are deterministic, requiring users to manually set fault parameters for each injection. In
contrast, random fault injection canmore accurately simulate real-world fault scenarios, providing robust data
support for subsequent fault detection and diagnosis research while reducing manual labor in extensive exper-
iments. The prevalent method for implementing random fault injections involves fitting a large volume of
raw sample data to obtain a distribution function that meets certain conditions. Then, based on this function,
fault parameters are randomly sampled to achieve random fault injection. However, constructing a fault dis-
tribution function is a tedious process that requires data processing and parameter estimation. Additionally,
a significant challenge in current research is the lack of raw fault data for ABSs, making it difficult to fit a fault
distribution function comprehensively and accurately.

To address these issues, this chapter introduces a hierarchical random fault injection method based on multi-
ple MCs. By leveraging the steady-state characteristics of MCs, users only need to provide the system’s state
transition matrix to construct a fault probability distribution, circumventing the need for complete raw data
and tedious function fitting. Following the probability distribution acquisition, an improved A-S algorithm
is proposed to sample the fault probability distribution accurately, efficiently, and with minimal repetition.
This approach effectively resolves the challenges of constructing fault probability distributions and sampling
fault probabilities, facilitating convenient and effective random fault injection into ABSs. The overall process
is shown in Figure 6, and the algorithm is given in Algorithm 3.

4. SIMULATION AND ANALYSIS
4.1. Platform introduction
For the convenience of user verification, a fault injection and diagnosis platform for ABS is designed and
implemented in this paper. The operational interface of this platform is illustrated in Figure 7, allowing the
selection of position 2⃝ for deterministic and random fault injections. It incorporates the multiple MCs-based
layered random fault injection method proposed in this paper. Click 2⃝ in Figure 7, select Random fault
injection, and the random fault injection parameter setting interface, as shown in Figure 8, will pop up. 1⃝
Introduction describes the use process of the interface. 2⃝ Fault type state transition matrix setting on the left

http://dx.doi.org/10.20517/ces.2024.02


Page 12 of 20 Chen et al. Complex Eng Syst 2024;4:7 I http://dx.doi.org/10.20517/ces.2024.02

Algorithm 3:Multiple MCs-based layered random fault injection method
Input: A fault type state-transition matrix 𝑀𝑡. A fault degree state-transition matrix 𝑀𝑑. The sample

size 𝑛
Output: An array of fault type sample results 𝑅𝑒𝑠_𝑡. An array of fault degree sample results 𝑅𝑒𝑠_𝑑
𝑃𝑡 = SM(𝑀𝑡)
𝑃𝑑 = SM(𝑀𝑑)
for 𝑖 = 1 to 𝑛 do

𝑅𝑒𝑠_𝑡 (𝑒𝑛𝑑 + 1) = A-S(𝑃𝑡)
for 𝑖 = 1 to 𝑛 do

𝑅𝑒𝑠_𝑑 (𝑒𝑛𝑑 + 1) = A-S(𝑃𝑑)
Return the array of fault degree sample results 𝑅𝑒𝑠_𝑡
Return the array of fault degree sample results 𝑅𝑒𝑠_𝑑
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Figure 6. Multiple MCs-based layered random fault injection method. MC: Markov chain.

should be filled in. 4⃝ Fault degree state transition matrix setting on the right should be filled in. Click OK
after filling in; the platform will automatically calculate the steady-state solution of the MC according to the
state transition matrix filled in by the user and display it in 3⃝ Steady state probability of fault types and 5⃝
Steady state probability of fault degrees below. Click 6⃝ Start Fault Injection; the platform will automatically
conduct random fault injection according to user settings, and the final simulation results will be displayed
in the 18⃝ data visualization module and 19⃝ fault diagnosis module in Figure 7. In addition, for the specific
operation process, please refer to the platform’s help document for details, which is available at http://gfist.csu.
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Figure 7. EPBS_FIDMV main function model diagram. 1⃝Set up the fault level. 2⃝Set the fault type. 3⃝Load form. 4⃝Run the simulation.
5⃝Set up the initial braking speed. 6⃝Exit interface. 7⃝Save observation point data. 8⃝Stop the simulation. 9⃝Select carriage. 10⃝Display
user-defined algorithm path. 11⃝Save the online and offline fault diagnosis results. 12⃝Lists simulation logs. 13⃝Select fault diagnosis algo-
rithms. 14⃝Load offline fault data. 15⃝Set the offline fault flag mode. 16⃝Display train operation structure diagram. 17⃝Introduce abbreviations.
18⃝Display the online and offline fault diagnosis results. 19⃝Display the data curve of the fault observation point.

Figure 8. Fault injection and diagnosis platform of ABS. 1⃝Introduce the operation process. 2⃝Set the fault type state transition matrix.
3⃝ Display steady-state probability of fault type. 4⃝Set the fault degree state transition matrix. 5⃝Display steady-state probability of fault
degree. 6⃝Start fault injection.

edu.cn/Download.html.

4.2. Simulation results and comparative analysis
One test in the above figure is taken as an example. The fault types include normal operation state, sen-
sor deviation fault, sensor gain fault, EP valve external leakage, train pipe air leakage fault, and so on. The
above states form the fault type state set 𝑺𝒕 = {𝑠0𝑡 , 𝑠1𝑡 , 𝑠2𝑡 , 𝑠3𝑡 , 𝑠4𝑡 , 𝑠5𝑡 , 𝑠6𝑡 , 𝑠7𝑡 , 𝑠8𝑡 } in turn. The fault degree in-
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Figure 9. 1000 sampling results based on A-S.

Figure 10. Frequency distribution histogram based on A-S.

cludes normal, minor, general, and severe. The above states, in turn, constitute the fault degree state set
𝑺𝒅 = {𝑠0𝑑 , 𝑠

1
𝑑 , 𝑠

2
𝑑 , 𝑠

3
𝑑 , 𝑠

4
𝑑 , 𝑠

5
𝑑 , 𝑠

6
𝑑}. For the fault type MC, the state transition probability matrix 𝑯𝒕 of the fault

type MC is constructed as follows:
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Table 2. Frequency statistics of A-S and S-S

Fault type Truth Frequency statistics (1000times) Frequency statistics (100times)
Alias Simple Alias Simple

1 17% 17.00% 15.90% 17.00% 12.00%
2 14% 14.90% 12.70% 13.00% 16.00%
3 13% 13.50% 15.50% 15.00% 17.00%
4 9% 8.80% 9.80% 10.00% 5.00%
5 17% 16.80% 17.50% 15.00% 14.00%
6 11% 11.40% 11.20% 12.00% 9.00%
7 10% 10.00% 9.90% 8.00% 15.00%
8 9% 7.60% 7.50% 10.00% 12.00%

Table 3. Comparison of run time between A-S and S-S under different sample sizes

Sample size 100 500 1000 5000 10000 50000 100000
A-S time[ms] 0.627 1.274 1.492 2.131 2.518 6.827 12.187
S-S time[ms] 6.819 10.329 10.890 10.954 12.233 19.164 26.633

𝑯𝒕 =



0.7991 0.0335 0.0202 0.0268 0.0201 0.0335 0.0269 0.0200 0.0200
0.4286 0.5714 0 0 0 0 0 0 0
0.3103 0 0.6897 0 0 0 0 0 0
0.4444 0 0 0.5556 0 0 0 0 0
0.5000 0 0 0 0.5000 0 0 0 0
0.4286 0 0 0 0 0.5714 0 0 0
0.5122 0 0 0 0 0 0.4878 0 0
0.4286 0 0 0 0 0 0 0.5714 0
0.5122 0 0 0 0 0 0 0 0.4878



(19)

The specific value of 𝜋𝑡𝑖(i=0,1,...,8) can be obtained by solving Eqs. (8)–(10) simultaneously: [0.68495, 0.053537,
0.044589, 0.041307, 0.027535, 0.053537, 0.035839, 0.031962, 0.026745], which is the steady-state solution.

For theMCof fault degree of EP valve solenoid valve leakage, the state transition probabilitymatrix is expressed
as follows:

𝑯𝒅 =


0.8642 0.0741 0.0494 0.0123
0.3000 0.2000 0.3000 0.2000
0.6000 0 0.1000 0.3000
0.7778 0 0 0.2222


(20)

The specific value of 𝜋𝑑𝑖(i=0,1,2,3) can be obtained by solving Eqs. (14)-(16) simultaneously is [0.7993, 0.1141,
0.0685, 0.0181], which is the steady-state solution. After excluding the normal operational state, the probability
distribution for pure fault types is recalculated as [0.1699, 0.1415, 0.1312, 0.0875, 0.1699, 0.1137, 0.1014, 0.0849].
Similarly, excluding the normal status, the probability distribution for pure fault degrees is recalculated as
[0.5687, 0.3413, 0.0900]. These two probability distributions are subjected to 1000 tests simultaneously using
the A-S algorithm. The sampling results are illustrated in Figure 9.

The graph displays three data columns on the fault degree axis, denoted as 1 - 3 representing three fault levels.
Additionally, eight data columns on the fault type axis are labeled as 1 - 8 representing eight fault types. Observ-
ing the graph, it is evident that among the 1000 sampling points, the method achieves a uniform distribution
of sampling points for fault types and degrees. No substantial clustering is observed, indicating a high degree
of randomness. The fault type and degree are arranged in ascending order based on their probabilities, and
the frequency statistics results are presented in Figure 10. It can be seen that the probabilities of various fault
degrees and types are different. The frequency distribution histogram exhibits a step-like pattern, with lower
probabilities associated with higher fault degrees, aligning with the anticipated expectations for the frequency
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Figure 11. Frequency histogram of A-S and S-S.

Figure 12. Run time comparison of A-S and S-S.

distribution based on fault degrees and types. The following compares A-S and S-S based on three aspects:
accuracy, run time, and repetition rate.

4.2.1 Accuracy
The accuracy rate evaluation ensures that the random fault injection process closely resembles the real system
situation and is more reliable. After 1000 and 100 samples, respectively, the fault type is sampled for frequency
statistics and compared with the real value calculated based on MC, the frequency statistics table of A-S and
S-S shown in Table 2 and the frequency histogram shown in Figure 11. The results indicate that with a large
sampling volume (1000 times), the error between the frequency statistics and the actual values is small. How-
ever, with a smaller sampling amount (100 times), S-S exhibits greater errors than A-S, and the magnitude of
the error amplifies with a decrease in sample probability.

4.2.2 Run time
Run time evaluation aims to minimize waiting time when injecting a large number of faults, enhancing effi-
ciency. A-S and S-S undergo joint sampling of fault types and degrees, and the running time for sampling 𝑛
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Figure 13. Repetition rate comparison of A-S and S-S.

times is computed. The results, as shown in Table 3 and Figure 12, indicate that A-S outperforms S-S in terms
of sampling run time, enhancing the overall efficiency of random fault injection. This significantly contributes
to reducing user waiting times and improving the overall user experience.

4.2.3 Repetition rate
The repetition rate evaluation ensures that redundant workload caused by multiple occurrences of the same
fault can be avoided during small-scale random fault injection. The fault types are sampled 100 times by A-S
and S-S, respectively, and the results of 100 sampling are shown in Figure 13. Any repeated sampling occurring
three times or more is deemed unacceptable. The results reveal that both A-S and S-S exhibit two consecutive
sampling repetitions. However, S-S has three consecutive sampling repetitions of three or more. While a high
repetition rate may not influence fault injection and subsequent fault diagnosis, repeated faults can result in
redundant and inconsequential fault diagnosis, leading to a waste of time and space resources.

Random fault sampling is performed using the A-S method described above, and the corresponding fault is
injected into the ABS simulation model. The resulting speed curve and brake cylinder pressure curve are
illustrated in Figure 14. The graph depicts that the high-speed train undergoes an acceleration phase from 0
km/h to 160 km/h within the time interval of 0 - 10 s, with the brake cylinder pressure remaining at 0 kPa.
Between 10 - 105 s, the train gradually decelerates, reducing its speed from 160 km/h to 0 km/h. Throughout
this process, the pressure within the brake cylinder steadily increases. In a fault-free operation of a high-speed
train, the pressure across all four brake cylinders should be uniform. However, the P1 curve in the figure
deviates from the overall trend, indicating a system failure during this period. To substantiate the injection
of a fault into the system, Inter-variable Variance (IVV) [17,33] is employed. IVV is a statistical metric that

http://dx.doi.org/10.20517/ces.2024.02


Page 18 of 20 Chen et al. Complex Eng Syst 2024;4:7 I http://dx.doi.org/10.20517/ces.2024.02

Figure 14. The speed and brake cylinder pressure of the train.

Figure 15. The result of fault diagnosis.

quantifies the variability or dispersion among different variables within a dataset. This measure is instrumental
in gauging the extent of variance across the variables under examination, which is pivotal for tasks such as
feature selection, elucidating the interrelations among variables, and in the realm of predictivemodeling, where
the independence of variables could influence the efficacy of themodel. Utilizing IVV for fault detection during
braking demonstrates a shift in the fault flag bit from 0 (indicating a no-fault state) to 1 (indicating a fault state),
as illustrated in Figure 15.

5. CONCLUSIONS
This paper proposes a layered random fault injection method based on multiple MCs for ABS and provides
a platform for fault injection and diagnosis. The random fault types and degrees are realized using MCs, in
which the fault probability function is determined by the state transition matrix. The A-S algorithm is then
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employed for random sampling of the fault distribution, enabling efficient fault injection due to its low com-
plexity. Additionally, a graphical user interface (GUI) is developed to present and visualize the validation
results, including modules for the underlying simulation model, random fault injection, fault diagnosis, and
visual display. The test results show that the proposed method can achieve more comprehensive and efficient
random fault injection for ABS. The current version mainly includes the functions of random fault injection
and fault diagnosis. In the future, the function of evaluating fault diagnosis algorithms will be added based on
this, providing evaluation indicators suitable for ABS.
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