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Abstract
Host-bacteria and bacteria-bacteria interactions can be facilitated by extracellular vesicles (EVs) secreted by both 
human and bacterial cells. Human and bacterial EVs (BEVs) propagate and transfer immunogenic cargos that may 
elicit immune responses in nearby or distant recipient cells/tissues. Hence, direct colonization of tissues by 
bacterial cells is not required for immunogenic stimulation. This phenomenon is important in the feto-maternal 
interface, where optimum tolerance between the mother and fetus is required for a successful pregnancy. Though 
the intrauterine cavity is widely considered sterile, BEVs from diverse sources have been identified in the placenta 
and amniotic cavity. These BEVs can be internalized by human cells, which may help them evade host immune 
surveillance. Though it appears logical, whether bacterial cells internalize human EVs or human EV cargo is yet to 
be determined. However, the presence of BEVs in placental tissues or amniotic cavity is believed to trigger a low-
grade immune response that primes the fetal immune system for ex-utero survival, but is insufficient to disrupt the 
progression of pregnancy or cause immune intolerance required for adverse pregnancy events. Nevertheless, the 
exchange of bioactive cargos between human and BEVs, and the mechanical underpinnings and health implications 
of such interactions, especially during pregnancy, are still understudied. Therefore, while focusing on the feto-
maternal interface, we discussed how human cells take up BEVs and whether bacterial cells take up human EVs or 
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their cargo, the exchange of cargos between human and BEVs, host cell (feto-maternal) inflammatory responses to 
BEV immunogenic stimulation, and associations of these interactions with fetal immune priming and adverse 
reproductive outcomes such as preeclampsia and preterm birth.

Keywords: Extracellular vesicles, placenta, fetal membranes, feto-maternal interface, immune priming, outer 
membrane vesicles

INTRODUCTION
Extracellular vesicles (EVs) are lipid bilayer, nano-sized, non-replicating (non-nucleated) subcellular 
particles released by all cells to facilitate cell-free intercellular communication and transport of 
molecules[1-3]. EVs promote cell-to-cell interaction by transferring diverse bioactive molecules and genetic 
information[4]. EVs represent the real-time snapshot of the parent cells’ physiologic or pathophysiologic 
state, and they protect their cargo (DNA, RNA, proteins, lipids, and metabolites) from degradation[5-10]. 
Hence, EVs serve as a valuable source of circulating indicators of the physiologic and pathologic state of a 
tissue that can be used as biomarkers or to develop targeted therapies[4-10]. EVs, as paracrine signalers, can 
deliver their cargo and elicit a response. Often, EVs interact with receptors on their target cells and trigger 
intracellular signaling via surface ligands[11,12]. For example, receptors expressed on EVs can engage in a 
ligand-receptor interaction with a cell expressing appropriate receptors, where cell signaling can be 
triggered. EVs can also signal through intracellular target molecules[13,14].

Like humans, prokaryotic organisms like bacteria also produce vesicles referred to as outer membrane 
vesicles (OMVs), primarily from Gram-negative bacteria or, in general, bacterial extracellular vesicles 
(BEVs)[15]. Both human and bacterial-derived EVs are widely studied, although often exclusively. Human 
body sites (mouth, gut, skin, respiratory, and genital tracts), where host cells co-exist with bacterial species 
(microbiota) in a dynamic mutualistic relationship (microbiome)[2,16-24], are sources of EVs from both 
humans and microbes. The host-bacteria and bacteria-bacteria interactions at such niches can be mediated 
by the exchange of biomolecules between both cell types, some of which are packaged and transported by 
EVs in a paracrine fashion[2,16,25,26]. Some researchers believe that EVs are the main communication pathway 
between human cells and the microbiota[27] because EVs guarantee host-microbiome interaction without 
direct contact and in a bidirectional fashion[24,28-30]. Importantly, this EV-mediated communication channel 
is utilized or exploited by both commensal and infectious species[31].

Accordingly, our group recently reported the presence of BEVs in placental tissues and postulated that the 
human placenta harbors BEVs secreted by endogenous commensal microbes or microbes from the 
individual’s environment (air, water, or food)[26]. However, the exchange of biomolecular cargos between 
human and bacterial EVs, and the mechanical underpinnings and health implications of such interactions, 
especially in pregnancy, are still understudied. Therefore, this review highlights the putative mechanisms 
and potential immunologic, physiologic and pathologic, biomarker, and therapeutic implications of cargo 
exchange between human and bacterial EVs. With a focus on the feto-maternal interface, we discussed how 
human cells take up BEVs and whether bacterial cells take up human EVs or their cargo, the exchange of 
cargos between human and BEVs, host cell (feto-maternal) inflammatory responses to BEV immunogenic 
stimulation, and associations of these interactions with fetal immune priming and adverse reproductive 
outcomes such as preeclampsia and preterm birth.

Physiological role of human EVs
Besides direct cellular contacts, multicellular organisms, including humans, employ secreted molecules 
packaged in EVs to mediate physiological and pathological activities[11,32,33]. Depending on their origin, size, 
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biosynthesis, cargo contents, tissue tropism and function, human EVs are classified into exosomes
(30-160 nm), microvesicles (MVs, 100-1,000 nm), and apoptotic bodies (~50-5,000 nm)[3,6,34-39]. Exosomes
are formed from the classic endocytic pathway in multivesicular bodies (MVBs). In contrast, MVs and
apoptotic bodies are secreted into the extracellular space by direct budding of the plasma membrane of live
and dying (apoptotic) cells, respectively[37,38]. Other human EVs include microparticles, oncosomes,
prostasomes, and migrasomes[3,6,11,39-44].

The secretion of EVs is mediated by endosomal sorting complexes required for transport (ESCRT) pathway
proteins and their homologs, and ESCRT-independent pathways[42-44]. Furthermore, EVs express specific
transmembrane or lipid-bound extracellular and cytosolic protein markers [Table 1][3,34,40,43,45-59]. Generally,
exosomes are enriched in TSG101, ALIX, or HSP70 when the intraluminal vesicles (ILV) are formed
through the ESCRT-dependent pathway. However, the tetraspanins (CD9, CD63, and CD81) are enriched
when the vesicles are formed via the ESCRT-independent pathway[60-65]. Documentation of these protein
markers [Table 1] is part of the minimum criteria for reporting studies involving EV isolation and
characterization[3,40].

Humans employ EVs, especially exosomes, in several physiological processes, including cell growth,
proliferation and differentiation, angiogenesis, immune responses, cellular signaling, migration, and
metabolism. In pregnancy, an area where the authors of this review are primarily focused, EVs are involved
in implantation[66,67], feto-placental growth[68-70], feto-maternal communication[29,30], pregnancy immune
homeostasis[71-73], and most importantly, function as signalers of parturition between the fetus and the
mother[35,74-77]. They are also indicated in pathological conditions, including autoimmune and
neurodegenerative diseases, cancer progression, cardiovascular, respiratory, metabolic, and neurological
disorders, infectious diseases, and host-bacteria interactions[13,26,36,39,42,78-82].

Cargo packaging in human (eukaryotic) EVs
EVs package their cargos through ESCRT-dependent or -independent pathways[37,38,80]. Both pathways are
believed to work in synergy, which may explain how exosomes can carry unique contents different from the
parental cell[38,80].

Proteins: The sorting of proteins into EVs follows specific ESCRT, tetraspanins, and lipid-dependent
mechanisms[37,38,80]. The packaging of ESCRT proteins such as ALIX and TSG101, along with tetraspanins
such as CD63, in EVs indicates the biogenesis as well as the selective protein sorting machinery present in
EVs[37,38,44,80].

The ESCRT is composed of four multi-protein complexes (ESCRT-0, -I, -II, and -III) and their accessory
proteins, particularly the AAA ATPase VPS4, VTA1, and ALIX, which successively recognize and load
protein cargos into ILVs[80,83]. ESCRT facilitates the loading of ubiquitinated proteins into ILVs by
recognizing the ubiquitin tags in the proteins’ lysine residue(s)[37,38,44,60,80]. For example, soluble
Mycobacterium tuberculosis proteins are transported into exosomes after ubiquitination[84]. The early-acting
complexes (ESCRT-0, -I, -II) contain ubiquitin-binding domains and bind to and load ubiquitinated
proteins into EVs. At the same time, the late-acting ESCRT-III and VPS4 terminate EV formation and
budding[44,85]. ALIX can also load proteins, for example, protease activator receptor 1 and purinergic receptor
P2Y1, into developing EVs in a ubiquitin-independent manner[86,87].

In addition to ubiquitination, selective protein cargo sorting in EVs is also mediated by other post-
translational modifications (PTMs), including the addition of proteins such as small ubiquitin-like
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Table 1. Typical human extracellular vesicle protein markers

Transmembrane or lipid-bound extracellular Cytosolic

Tetraspanins: CD9, CD63, CD81, CD82 Tumor susceptibility gene 101 (TSG101)

Major histocompatibility complex (MHC) class I (HLA-
A/B/C)

Flotillin-1 and 2 (FLOT1/2)

Epithelial cell adhesion molecule (EpCAM) Programmed cell death 6 interacting protein (ALIX)

Platelet endothelial cell adhesion molecule-1 (PECAM-1) Vacuolar protein sorting-associated protein 4 (VPS4A/B)

Intercellular adhesion molecule-1 (ICAM1) Arrestin domain-containing protein 1 (ARRDC1)

Heparan sulfate proteoglycans, including syndecans Annexins (ANXA)

Integrins (ITGA/ITGB) Caveolins

RHOA

ADP-ribosylation factor 6 (ARF6)

Syntenin

Heat shock proteins: HSC70 (HSPA8), HSP70 (HSPA1A), and HSP84 (
HSP90AB1)

Rabs (Ras-related protein GTPases)

Tau [microtubule-associated proteins (MAPT), neurons]

m o d i f i e r s  ( S U M O ,  SUMOylation),  N E D D 8  ( NEDDylation),  I S G 1 5  ( ISGylation),  F A T 1 0  
(FAT10ylation)[37,38,88-90], and removal of ubiquitin (Deubiquitination)[80]. Other PTMs that can sort proteins 
into EVs include phosphorylation, acetylation, myristoylation, glycosylation, citrullination, oxidation, 
prenylation, palmitoylation, amidation, biotinylation, deamination, formylation, glycation, hydroxylation, 
methylation, farnesylation, glutathionylation, geranylgeranylation, mono-ADP-ribosylation, GPI-anchor, 
WW domain and coiled-coil domain[37,38,80,90].

These PTMs regulate the structure, subcellular localization (e.g., sorting into EVs), and function of the 
protein in a context-specific manner[91,92]. However, they may not be often observed in all molecules or cell 
types[37]. For example, besides ubiquitination, HSC71, HSP90, 14-3-3ε, C20, and pyruvate kinase type M2 
(PKM2) may drive the sorting of MHC II cargo in dendritic cell (DC)-derived exosomes[93]. This shows that 
the sorting of MHC II into exosomes of DCs is not dependent on MHC II ubiquitination in contrast to the 
sorting of MHC II at MVBs destined for degradation by lysosomal hydrolases[60,94,95]. Therefore, the content 
of EVs does not always mirror the protein composition of the cells of origin, and this does not occur 
randomly[37]. However, the EV cargo changes reflect the cell's physiological or pathological state[96].

RNA: Different types of RNA species -small and long non-coding RNAs, miRNAs, mRNAs, siRNA, and 
structural RNAs are actively and passively packaged into EV compartments[97-99] via six different pathways: 
(1) RNA-binding proteins (RBP) (e.g., heterogeneous nuclear ribonucleoprotein (hnRNP) and SYNCRIP) 
and miRNA motifs (EXO-motifs); (2) 3’ miRNA sequence-dependent pathway; (3) miRNA-induced 
silencing complex (miRISC)-related pathway; (4) other RBPs-related pathways (e.g., YBX-1, Ago2, MVP, 
MEX3C, and La protein); (5) membrane proteins-dependent pathway (e.g., Caveolin-1, VPS4A, and 
nSMase2); and (6) lipid raft-related pathway (based on the mechanism of EV biogenesis)[37,38,80,100-102]. The 
binding and sorting of miRNAs into EVs by various RBPs and membranous proteins are summarized in the 
review by Groot and Lee[100].

DNA: The majority of EV-associated DNA is located on the surface of the vesicle, while the gDNA and 
mtDNA exist inside the vesicle, protected from digestion by DNase[103]. gDNA is believed to be packaged 
into EVs from micronuclei (MN), which are cytoplasmic structures derived from unstable nuclei and 
surrounded by nuclear membrane[104,105]. As shown in cancer cells, the unstable envelope of MN easily breaks 
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down during cell division, releasing the gDNA and other nuclear contents. CD63 interacts with the 
disrupted MN and its contents to shuttle the DNA into exosomes referred to as nExo[105-107]. The ESCRT 
proteins can also facilitate the loading of DNA into small EVs, while ARF6 and RhoA mediate DNA loading 
into large EVs (MVs) from the cytosol[105,108]. Cell-free DNA (cfDNA) released by dead cells can also be 
packaged into EVs by sticking on the surface of released EVs[106]. However, packaging of mtDNA and other 
DNA types occurs through yet unknown mechanisms[105,106,109], or through pathways similar to gDNA 
loading[108].

Lipids: EVs are enriched in lipids, particularly the plasma membrane phosphatidylserine, sphingomyelin, 
and ceramide, and to a lesser extent, phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, 
and phosphatidylglycerol[110,111]. Sorting of lipids and proteolipids in EVs is suggested to be associated with 
the yield and size of the EVs but independent of protein sorting[111] and can be mediated by lipid raft 
domains[38,112-114].

Cargo sorting in MVs depends on plasma membrane oligomerization[37]. Plasma membrane anchors target 
cytoplasmic proteins into MVs and to the budding site[115]. Like exosomes, MVs can also package proteins 
via the ESCRT-dependent pathway. For example, the binding of ARRDC1 and a component of ESCRT-I 
(TSG101) facilitates the loading of proteins into MVs and subsequent exocytosis via Gag-mediated 
budding[37,54,116].

In summary, packaging of EV cargo (DNA, RNA, proteins, lipids) is a selective rather than random process 
mediated by selective ESCRT-dependent and -independent mechanisms. Understanding the mechanistic 
processes is important as the pathways of EV biogenesis, cargo sorting, and packaging considerably impact 
the functioning of an EV, namely, the determination of its targeted destination, cargo delivery, and recipient 
cell’s function[37,38,80,100]. For example, genetic deletion of CD81 hinders/reduces the incorporation/presence 
of the Rac gene (Rho family of GTPases) within EVs[117]. DCs isolated from CD9 knockout mice also exhibit 
decreased EV release, and CD9 influences the Wnt (Wingless-related integration site) signaling pathway by 
modulating the EV packaging of β-catenin[118]. This underscores a significant role for tetraspanins in EV 
biogenesis[119]. More information on the role of tetraspanins in packaging EVs with specific cargo has been 
published[65,120,121].

Physiologic role of bacterial EVs
In response to their environment, both pathogenic and commensal bacterial species secrete EVs that are 
similar in size to EVs derived from eukaryotic cells [Figure 1][2,4,23,122-130]. Gram-positive and Gram-negative 
bacteria produce EVs that contain components of the parent cells[2,4,131]. An extensive comparison between 
Gram-negative and Gram-positive BEVs is published[2,4,25].

BEVs from Gram-negative bacteria, as mentioned above, are called OMVs and are released by blebbing the 
bacterial outer membrane. OMVs (~20-250 nm) contain both periplasmic and cytoplasmic components 
[Figure 1]. Gram-negative bacteria also undergo explosive cell lysis to generate outer-inner membrane 
vesicles (O-IMV)[25,132]. Gram-positive bacteria form cytoplasmic membrane vesicles (CMVs, ~20-400 nm) 
by budding and shedding their cytoplasmic membrane, which eventually crosses the hydrolyzed 
peptidoglycan cell wall. CMVs carry cytosolic substances [Figure 1][25,132,133]. Additionally, both 
Gram-negative and Gram-positive bacteria form tube-shaped membranous structures (50-70 nm) that 
connect the periplasms of cells within biofilms[25,124,132,134]. The differences between OMVs, CMVs, and 
eukaryotic (human) EVs are illustrated in Figure 1.
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Figure 1. Comparison of human and bacterial-derived extracellular vesicles. ARF6: ADP ribosylation factor 6; ESCRT proteins (TSG101, 
ALIX); ICAM-1: intercellular adhesion molecule 1; LPS: lipopolysaccharide; Omp: outer membrane protein; MHC-1: major 
histocompatibility complex-1; Nuclei acids (DNA, RNA); Tetraspanins (CD9, CD63, CD81). Density data[130]. Created with 
BioRender.com.

BEVs mediate bacteria-bacteria and bacteria-host interactions, promoting healthy and pathological 
conditions[2,134]. BEVs facilitate quorum sensing, promoting communication and coordinating group 
behavior among the species[135,136]. With the aid of diverse biomolecules transported as cargo, BEVs are also 
involved in bacterial competition and survival, adhesion, invasion of host tissue and infection, biofilm 
formation, resistance to antibiotics and other environmental stressors, host immune response and evasion, 
and determination of cell fate (autophagy)[4,27,34,79,122,128,137-143].

Furthermore, BEVs promote the transfer of microbial genetic material (horizontal gene transfer (HGT) and 
the exchange of toxins and virulence factors[4,122,144,145]. BEVs contain a myriad of biomolecules, including 
microbial genetic components (luminal and surface-associated DNA, sRNA, mRNA, miRNA), metabolites, 
virulence factors (phospholipase C, alkaline phosphatase, esterase lipase, serine protease), and toxins 
(cholera, adenylate cyclase, cytolethal distending, VacA, PagJ, PagK1)[2,122,123,144]. They also contain proteins 
and glycoproteins that aid bacterial adhesion, invasion, survival, and immune evasion (OmpA, 
adhesin/invasin, plasma binding proteins, cytotoxic necrotizing factor 1, hemin-binding protein C), 
antibiotic resistance (β-lactamase, cephalosporinases, BlaZ, enzyme L5, transferring carbapenemase gene 
[OXA-24 gene], colistin, polymyxin B, ampicillin EV entrapment, penicillin-binding proteins, and 
multidrug efflux protein), and biofilm formation (alkaline protease, PrpL, CdrA)[2,4,26,122,125,146,147].

Although with limitations that are being addressed[148], native and bio-engineered EVs derived from 
pathogenic bacteria are also potential sources of vaccines [2,4,42]. For instance, vaccination against tumors and 
intracellular viruses has been demonstrated using EVs derived from hypervesiculating Salmonella 
typhimurium that induce antigen-specific CD8+ T cell responses[149]. Similarly, EVs from S. aureus induce 
specific humoral and cellular immune responses. Mice vaccinated with S. aureus-derived EVs were 
protected from pneumonia and mortality induced by the administration of sublethal and lethal doses of 
S. aureus, respectively[150]. Subsequently, genetically engineered S. aureus-derived EVs that expressed 
detoxified cytolysins elicited cytolysin-neutralizing antibodies in mice that protected the animals in a lethal 
sepsis model[133]. Additionally, EVs from S. aureus coated with indocyanine green-labeled mesoporous silica 
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nanoparticles were protective against drug-resistant S. aureus infection[151]. Because Gram-positive bacteria 
do not contain LPS, they could show better vaccine development prospects than Gram-negative bacteria[152].

Cargo packaging in BEVs
This review will introduce some fundamental concepts of cargo loading in BEVs, and a detailed discussion 
on the mechanisms is not attempted here but can be seen in references[153-161].

Proteins: The biological functions of EVs are determined by their protein cargo[153]. Studies have examined 
how BEV cargo is packaged using several strains of S. aureus to generate ideas for new interventions against 
pathogenic bacteria and develop drug delivery systems[153]. In S. aureus, it was shown that there is a selective 
cargo sorting process in BEVs[153]. The packaging of proteins in EVs was driven by abundance, charge, and 
subcellular localization[153,162-164]. Though more investigation is required, it is believed that EV cargo also 
contains components such as chaperones and protein secretion systems for the selection of proteins into 
EVs[153].

This is reminiscent of a previous report that OMVs strictly sort their protein cargos by the special signal 
sequences (signal peptides) in the amino acid sequences[23,154]. The signal peptides guide proteins to their 
target vesicles which must possess the corresponding receptor on their membranes to recognize the signal 
peptides[23,155,156,158]. BEVs can also internalize foreign proteins via fusion to P49 protein expressed in 
Shewanella vesiculosa HM13 strain[157].

Selective cargo sorting into BEVs also includes outer membrane lipid chaperones. Outer membrane lipid 
chaperones enriched with LPS carrying negatively charged O antigen chains (A-LPS) may play a critical role 
in selective cargo packaging due to their affinity for the overall charge[159,165]. This increased the selective 
packaging of virulence factors such as gingipains into Porphyromonas gingivalis OMVs[159]. Proteins 
associated with charged LPS are packaged in OMVs, while those associated with neutral LPS (O-LPS) are 
localized in the outer membrane[158,159,161]. Similarly, the lipid composition of Streptococcus pyrogens 
membrane was responsible for the selective enrichment of specific proteins and RNA species[160].

Nucleic acids: Although the mechanism by which nucleic acids are packaged by OMVs remains unclear, 
DNA, mRNA, miRNA, and other non-coding RNAs may enter OMVs through a similar recognition of 
corresponding sequences[166,167]. EVs carry DNA both on the membrane surface and in the lumen, with most 
DNA located on the external surface of OMV[145]. Different forms of luminal DNA have been identified in 
OMVs secreted by E. coli, Neisseria gonorrhoeae, Pseudomonas aeruginosa, and Haemophilus influenzae. 
The luminal DNA retains its antigenicity even after treatment of the vesicle with DNase[168].

Lipids: The lipid composition of Gram-negative and Gram-positive BEV are different. The most common 
lipids in Gram-negative BEV are phosphoglycerolipids. Other lipids found in Gram-negative BEV include 
lipoproteins, LPS, glycerolipids, and phospholipids. In Gram-positive bacteria such as S. pyrogens, the BEVs 
are abundant in phosphatidylglycerol and lack cardiolipin[160].

Cargo exchange between human and bacterial EVs
BEVs facilitate bacteria-host and bacteria-bacteria interactions with their cargos[25,131] [Figure 1] that also 
deliver toxins and virulence factors into host cells[131,169].
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Uptake of BEVs by human (host) cells
After adhesion/binding of BEVs to host cells, non-phagocytic host cells internalize BEVs through the 
following mechanisms[129,131,170]:  (1) macropinocytosis; (2) clathrin-mediated endocytosis; (3) 
caveolin-mediated endocytosis; (4) lipid raft-mediated endocytosis; and (5) direct membrane fusion[25] [
Figure 2 and Table 2].

Actin-dependent macropinocytosis: This is similar to phagocytosis but does not require direct contact with 
the internalized material[192]. It involves the rearrangement (polymerization) of actin filaments to form a ring 
under the cell membrane, which eventually envelopes a portion of the extracellular space by closing at the 
top[131,193]. Actin polymerization is driven by the receptor tyrosine kinases (RTKs) activation via Rac and Rho 
GTPases. The largest endocytic vesicles (> 1 μm) are produced by an actin-dependent pathway[194], which 
could be N-WASP-mediated as in Pseudomonas aeruginosa[172] or Rac1-regulated pinocytic pathway 
employed by Porphyromonas gingivalis OMVs that is independent of clathrin, dynamin, and caveolin[173] 
[Figure 2 and Table 2].

Clathrin-dependent endocytosis (CDE): This is the major vesicular trafficking pathway from the cell surface 
to the interior in mammalian cells[195,196]. Clathrin-coated pits that mature into clathrin-coated endocytic 
vesicles are assembled following the binding of a ligand (BEV) to a cell surface receptor[195,197,198]. CDE also 
requires adaptor protein complexes, a variety of endocytic accessory proteins, and phosphatidylinositol 
lipids[195,196] and permits uptake of BEVs with a maximum size of 120 nm diameter. Using inhibitors of 
clathrin pit formation (Chlorpromazine) and dynamin (dynasore), this pathway was reported to be the 
preferred route of entry by OMVs from different strains of E. coli, Helicobacter pylori, and Brucella abortus, 
as well as free cytotoxic virulence factors including cholera and Shiga toxins and VacA of 
H. pylori[131,175,177,178,199-201].

Caveolin-mediated endocytosis: Membrane invaginations (caveolae) are formed and internalized in a 
dynamin-dependent fashion[192]. The formation of caveolae is due to the enrichment of membrane lipid-raft 
domains with caveolin, cholesterol, and sphingolipids. Smaller OMVs (20-100 nm) from E. coli, H. pylori, 
Moraxella catarrhalis, Vibro cholerae, and Haemophilus influenzae are preferentially taken up by host cells 
via caveolin-mediated endocytosis[179,180,186,202,203]. The cholera toxin from V. cholerae and heat-labile 
enterotoxin LT1 contained in E. coli-derived vesicles bind to the glycosphingolipid GM1 that is found on 
membrane lipid rafts enriched with caveolin, facilitating their uptake via caveolin-enriched endocytic 
vesicles[180,203]. This mechanism is preferred by E. coli, P. aeruginosa, Campylobacter jejuni, V. cholerae, S. 
typhimurium, H. influenzae and some viruses[204], as the pathogens avoid trafficking to lysosomes and 
subsequent degradation when they are internalized via caveolae compared to clathrin-coated membrane 
invaginations[170]. Although caveolin-mediated endocytosis is five times slower than the clathrin-mediated 
pathway, it facilitates the efficient delivery of cargo to the cytosol[192,198,205].

Lipid raft-mediated endocytosis: Lipid rafts are highly organized and rigid cholesterol and 
sphingolipids-enriched plasma membrane domains that can internalize signaling molecules up to 90 
nm[154,173,179,184,188,192]. OMVs derived from P. aeruginosa, P. gingivalis, C. jejuni, A. baumannii, V. cholera, and 
Vibrio vulnificus require lipid rafts for entry into host cells[173,182-184,188,206].

Direct membrane fusion: As demonstrated for P. aeruginosa, A. actinomycetemcomitans, and Legionella 
pneumophila, OMVs also enter host cells by direct fusion with the host cell plasma membrane often at lipid 
raft domains[172,189,191] [Figure 2 and Table 2].
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Table 2. Mechanisms of BEV uptake by human (host) cells

Mechanism/receptors Cells Bacterial species

Macropinocytosis/phagocytosis (actin-dependent)

Macrophages P. aeruginosa[171]

N-WASP Respiratory tract epithelial cells P. aeruginosa[172]

Rac-1 and Cdc42 Cervical and gingival epithelial cells P. gingivalis[173]

Clathrin-mediated endocytosis

VacA Gastric epithelial cells H. pylori[174,175]

Dynamin Colorectal epithelial cells EHEC[176]

Dynamin Intestinal epithelial cells E. coli[177]

Cervical epithelial cells and monocytes B. abortus[178]

Caveolin-mediated endocytosis

Caveolin 1 Pharyngeal epithelial cells H. influenza[179]

CT-receptor Intestinal epithelial cells V. cholerae[180]

Caveolin Adrenal and intestinal epithelial cells ETEC[181]

Lipid raft-mediated endocytosis

PaAP  Lung epithelial cells P. aeruginosa[182]

Intestinal epithelial cells C. jejuni[183]

Dynamin-independent Intestinal epithelial cells V. cholerae[184]

Dynamin-dependent Gastric epithelial cells H. pylori[174,185]

TLR2 Alveolar epithelial cells M. catarrhalis[186]

IgD BCR, TLR9 and TLR2 Tonsillar B cells M. catarrhalis[187]

Cervical and gingival epithelial cells P. gingivalis[173]

Cervical epithelial cells A. baumannii[188]

Direct membrane fusion

Respiratory tract epithelial cells P. aeruginosa[172]

Cervical epithelial cells and gingival fibroblasts A. actinomycetemcomitans[189,190]

Macrophages L. pneumophilia[191]

Cdc42: cell division control protein 42; CT-receptor: cholera toxin receptor; EHEC: enterohemorrhagic Escherichia coli; ETEC: enterotoxigenic 
Escherichia coli; IgD BCR: immunoglobulin D B cell receptor (BCR); N-WASP: Neuronal Wiskott-Aldrich Syndrome protein; PaAP: Pseudomonas 
aeruginosa aminopeptidase; Rac1: Ras-related C3 botulinum toxin substrate 1; VacA: vacuolating cytotoxin A.

The mechanism of uptake of BEVs by host cells is dependent on their size, content, biogenesis, bacterial 
growth rate, and the fate of vesicles after uptake, even when derived from the same bacterial species. Specific 
protein or lipid cargos of BEVs could guide them to a specific uptake route[131,192]. This advocates cell-specific 
EV uptake[192]. The route of uptake of BEVs, in turn, determines the delivery and fate of the vesicles and 
their cargo[131].

Uptake of human EVs by bacterial cells
The mucosae of various human body sites harbor trillions of different bacterial strains that form respective 
microbiota, of which the oral, gut, and vaginal microbiotas are quintessential examples[2,20-22,207,208]. Bacteria 
present in these microbiotas produce BEVs involved in bacteria-bacteria and bacteria-host 
interactions[2,134,207] that promote health or propagate infections[209]. For instance, HIV-1 bound to the OMVs 
of P. gingivalis (an oral bacteria) was able to enter nonpermissive human oral keratinocytes (HOK) cells via 
vesicle endocytosis [Figure 2] and cause infection[210]. On the other hand, BEVs from commensal intestinal 
bacteria - Enterobacter cloacae and Bacteroides thetaiotaomicron-reduced replication of norovirus during 
coinfection of RAW 264.7 macrophages by inducing the gene expression of IL-1β, IL-6, TNF-α, and 
IFN-γ[211].
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Figure 2. Mechanisms of uptake of bacterial extracellular vesicles by human (host) cells. BEVs enter human cells by 
macropinocytosis/phagocytosis, clathrin- and caveolin-mediated endocytosis, lipid rafts, and direct fusion with the plasma membrane. 
ER: endoplasmic reticulum; MVB: multivesicular bodies; GL: glycolipid; GPI: GPI-anchored proteins; PL: phospholipid; RTK: receptor 
tyrosine kinases; SL: sphingolipid. Created with BioRender.com.

Although the mechanisms of uptake of BEVs by human host cells have been proposed as described above 
[Figure 2], whether the same mechanisms apply to the uptake of human EVs by bacterial cells remains 
unclear. Even BEV interactions with bacterial cells appear confined to their cargo, with vague data on the 
uptake of BEVs by bacterial cells. Meanwhile, we can speculate that bacterial cells may package human and 
BEVs and/or their cargo during host-bacteria and bacteria-bacteria interactions in various body 
microbiomes or sites distant from the microbiomes, including the feto-maternal interface. BEV-mediated 
bacteria-bacteria interaction is displayed succinctly in quorum sensing, antibiotic resistance, biofilm 
formation, and survival[2]. For example, BEV-mediated antibiotic resistance is exhibited by Bacteroides spp., 
a dominant genus in the gut and vaginal microbiota that is associated with bacterial vaginosis (BV) and 
premature birth[20-22,212]. Bacteroides BEVs contain cephalosporinases that hydrolyze the β-lactam rings in 
antibiotics, thereby protecting both pathogens and commensal bacteria from antibiotics of the β-lactam 
type[213].

Recently, our group isolated and characterized BEVs from human placental tissues[26]. We posited that the 
BEVs probably reached the placenta through hematogenous spread from various maternal body sites 
harboring microbiomes. Furthermore, their presence may trigger a low-grade localized inflammation to 
prime an antigen response in the placenta. However, it is insufficient to cause an overt fetal inflammatory 
response that can lead to adverse pregnancy events[26]. Nevertheless, whether the BEVs contained human EV 
cargo and vice versa was not determined.

It is known that human EVs can take up free or EV-associated bacterial products, and BEVs may exchange 
their cargo with human cells or EVs. As the vagina is the most common route of bacterial colonization of 
the choriodecidual membranes and amniotic cavity[214], it is pertinent for researchers to investigate whether 
part of the mechanisms of infectious and inflammatory adverse reproductive outcomes is mediated by 
human cells/EVs carrying bacterial products from the vagina or bacterial cells/EVs carrying human cargo 
that help them evade immune clearance.
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BEV-induced inflammatory responses
During bacterial colonization of tissues, either as microbiota or infection, BEVs may be shed directly by 
pathogens or EVs by pathogen-infected cells[215]. BEVs carry microbial- or pathogen-associated molecular 
patterns (MAMPs/PAMPs) that can be recognized by pattern recognition receptors (PRRs) on the surface 
and in the cytoplasm of immune and non-immune cells[14,216,217] [Figure 3]. The interaction of these 
MAMPs/PAMPs, which could be located on the external surface (LPS, Omp, lipoteichoic acid) or inside the 
vesicle (peptidoglycan, DNA, RNA, toxins) [Figure 1], and PRRs activate signaling pathways leading to the 
release of pro-inflammatory cytokines that trigger inflammatory responses for host defense[14,209,217,218] 
[Figure 3].

For example, LPS, adhesins, and other virulence factors in the periodontal bacterium Fusobacterium 
nucleatum-derived EVs interact with Toll-like receptor (TLR)-4 and induce the expression of IL-8 and 
TNF-α in patients with inflammatory bowel disease (IBD)[219]. In contrast, M. tuberculosis and M. bovis EVs 
stimulate the release of IL-1β, IL-6, IL-10, IL-12, TNF, CXCL1, and MIP-1α in macrophages through TLR2 
signaling[220,221]. LPS, lipoproteins, flagellin, and DNA carried by OMVs can interact with TLRs on microglia 
and macrophages to induce the release of TNF-α and IL-10[222,223]. DNA, RNA, and peptidoglycan cargo in 
S. aureus EVs enhanced the release of cytokines and chemokines by epithelial cells by activating several 
TLRs and nucleotide-binding oligomerization domain (NOD) 2[224]. Through the MyD88-dependent TLR4 
signaling pathway, LPS carried by P. aeruginosa OMVs stimulates an inflammatory response in lung 
epithelial cells[225]. BEVs from H. pylori, P. aeruginosa, N. gonorrhoeae, and C. jejuni also induced the 
secretion of antimicrobial peptides, including human β-defensins and peptide LL-37, by human gastric 
epithelial cells[183]. LPS delivered into the cytosol by OMVs activate caspase-II mediated lytic cell death 
(pyroptosis)[200]. OMVs can deliver LPS in an array of human cells, including HeLa cells, bone 
marrow-derived macrophages, and THP1 macrophages, as well as mouse peritoneal resident cells through 
endocytosis[200].

BEV-induced inflammatory responses at the feto-maternal interface (placental tissues), resulting in 
adverse pregnancy outcomes
Intra-amniotic injections of Group B Streptococcus (GBS) EVs promoted the upregulation of 
pro-inflammatory cytokines and inflammation similar to the features of chorioamnionitis and induced 
apoptosis in the choriodecidual tissue[226]. This GBS EV-induced inflammation at the feto-maternal interface 
also promoted preterm birth and intrauterine fetal demise in mouse models[226]. Furthermore, treatment of 
decidua and placental cells with low dose E. coli-derived BEVs induced increased IL-6 levels, whereas a high 
dose was cytotoxic after 24 h of treatment[26]. Therefore, we reviewed the potential contributions of BEVs 
during pregnancy, highlighting their origins and mechanisms employed to maintain or disrupt 
feto-maternal immune tolerance.

Microbial vesicles and their potential contributions during pregnancy
The controversy surrounding the presence of a microbiome in the placenta is somewhat mitigated, and the 
consensus has emerged that the intrauterine environment is rather sterile. However, our reporting of BEVs 
in the placenta[26] and a recent report that amniotic fluid also contains BEVs[227,228] suggest that amplification 
of microbial nucleic acid, and identification of microbial antigens and other cellular fragments are more 
likely the confirmation of microbial vesicles than the presence of microbe itself. Amplification of placental 
BEVs and lack of any microbiome beyond noise levels expected from procedural aspects of experiments 
confirm that placental microbiome is a mistaken identity. The world of microbial vesicles in a sterile 
environment of pregnancy opens a plethora of questions and may answer several mysteries of pregnancy 
maintenance, immune homeostasis, microbiome formation in the fetus, and fetal immune privileges to 
commensal bacteria in utero, at birth, and during the early developmental stages.
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Figure 3. Bacterial extracellular vesicle (BEV) pathogen-associated molecular patterns (PAMPs) recognize surface membrane and 
cytoplasmic host cell pattern recognition receptors and activate downstream inflammatory signaling pathways. Omp, LTA, and porin 
only bind to TLRs on the cell membrane surface. At the same time, both surface membrane and cytoplasmic receptors recognize the 
other PAMPs. AIM2: absent in melanoma 2; IRF: interferon regulatory transcription factor; LPS: lipopolysaccharide; LTA: lipoteichoic 
acid; MAPK: mitogen-associated protein kinase; NF-κB: nuclear factor kappa B; NLR: nucleotide-binding oligomerization domain-like 
receptor; NLRP: NOD-like receptor thermal protein domain-associated protein; Omp: outer membrane protein; PGN: peptidoglycan; 
STING: stimulator of interferon genes; TLR: toll-like receptor. Created with BioRender.com.

Maternal gut microbiota-derived EVs can cross the placental barrier
Although the role of EVs in human pregnancy has been reviewed extensively[35,36,229,230], data on microbial 
EVs in healthy pregnancies are still limited. However, maternal gut microbiota-derived EVs can cross the 
placental barrier to reach the fetus[227]. This EV-mediated in utero communication between the fetus and the 
mother was evidenced by the presence of bacterial RNA and proteins in the amniotic fluid of pregnant 
women[227]. The EVs derived from both compartments shared similar bacterial composition and protein 
cargo. This EV-mediated interaction may be required for priming the fetal immune system, which is 
essential for neonatal gut colonization[227]. A mouse model also reproduced these findings[227].

This report is an extension of our previous study that identified BEVs in placental tissues[26] and the findings 
of Nunzi et al., who reported the presence of BEVs in human amniotic fluid via 16S-rRNA gene 
sequencing[228]. Furthermore, our study[26] and that of Kaisanlahti et al. opined that the presence of BEVs in 
placental tissues or fetal compartments, irrespective of the source, is crucial for fetal immune priming, 
perhaps through low-grade immune stimulation[227]. The point at which this ‘beneficial’ immune stimulation 
becomes deleterious and the mechanism(s) that drive such phenotype require further investigation.  Future 
years will generate evidence that BEVs have a significant role in priming human immune system 
development, and immune system development starts in utero and not during the early stages of 
development after birth in response to environmental microbial exposures.



Amabebe et al. Extracell Vesicles Circ Nucleic Acids 2024;5:297-328 https://dx.doi.org/10.20517/evcna.2024.21                                Page 309

EV-DNA and its role in placental inflammatory response
EV-DNA is considered a mediator of cellular homeostasis[231] as well as innate and adaptive immune 
responses[79,232]. Cellular excretion of potentially harmful damaged DNA prevents the induction of apoptosis 
and promotes survival[231]. Active release of EV-DNA, as indicated by increased concentrations of circulating 
DNA, correlates with the proportion of cells preparing for division (G1 phase)[233].

Although whether BEVs and human EVs found at the feto-maternal interface exchange cargos has not been 
established, we hypothesize that human cells in this compartment can take up BEVs. In contrast, BEVs can 
internalize human products such as DNA, RNA, proteins, metabolites, and lipids. For instance, the human 
cells may internalize BEVs, or human EVs may bind to LPS released by BEVs, presenting it to membrane 
PRRs or facilitating its access to the cytosol, where it can trigger an inflammatory response[234] [Figure 4]. 
Uptake of G. vaginalis BEVs by vaginal epithelial cells leads to vaginolysin-mediated cytotoxicity and 
increased release of IL-8[235,236].

There could also be HGT between EVs from both species or between EVs and host cell genomic and 
mtDNA[105]. OMVs can carry DNA into human cells and exchange it with the human DNA via HGT[145]. The 
altered/damaged DNA in EV and cfDNA (from dead cells) that stick to the surface of EVs could 
subsequently be taken up by a recipient cell in an autocrine or paracrine manner. The DNA can trigger 
several cytosolic DNA receptors, including cyclic GMP-AMP synthase (cGAS), leading to the downstream 
release of type 1 IFN through activation of stimulator of interferon genes (STING) and translocation of 
NF-kB and IRF3 to the nucleus[237,238]. The DNA can also trigger AIM2, producing interleukins[106,108,238,239] 
[Figure 4]. Mitochondrial DNA can also stimulate the cGAS/STING pathway[240]. This EV-DNA-induced 
inflammation is part of innate immune responses and interaction with adaptive immunity, as seen in cancer 
and malaria parasite infection[108].

Placenta inflammatory response
It is plausible that the “sterile” inflammation that leads to adverse birth outcomes[241,242] may be a product of 
chronic inflammatory response to damaged/altered EV-DNA or other PAMPs/DAMPS (LPS, Hsp70, 
HMGB1) carried by human/BEVs[13,30,69,77,243-250], and delivered to the placenta. cfDNA can stick to EVs, be 
internalized by cells, and induce several inflammatory responses mediated by TLRs and other nucleic acid 
receptors through the mechanisms described in Figures 3 and 4[106,251].

We postulate that in gestational tissues such as the placenta and amniochorion, EV-DNA from pathogenic 
bacteria (due to maternal infections such as periodontitis, BV, urinary tract infection, sexually transmitted 
diseases during pregnancy) can be delivered to the cytosol and activate the cGAS/STING and AIM2 
signaling pathways to release type I IFN and interleukins [Figures 3 and 4]. Because there may be no clinical 
infection by any pathogen, this may manifest as subclinical sterile inflammation that can induce adverse 
reproductive outcomes.

Placental inflammatory responses that underpin maternal-fetal allograft rejection, preeclampsia, 
intrauterine growth restriction (IUGR), and preterm birth are induced by infectious and sterile stimuli[242]. 
However, sterile intra-amniotic inflammation is more common than microbial-associated intra-amniotic 
inflammation[250,252-254]. Chronic placental inflammatory lesions are mediated by cytotoxic T cells and IFN-γ-
inducible CXCR3 ligands[255]. Upon antigenic stimulation, T cells can secrete EVs carrying both gDNA and 
mtDNA that trigger IFN1 response from DCs via the cGAS/STING pathway. This primes the DCs against 
subsequent viral infections[232]. T cells’ local EV-DNA inflammatory activities can be explored further in the 
context of immune tolerance surveillance at the feto-maternal interface.
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Figure 4. DNA-driven immune response mediated by DNA exchange between human and bacterial extracellular vesicles. 
Human/bacterial genomic/mitochondrial DNA carried by EVs can be delivered to cells as damage- (DAMP) or pathogen-associated 
molecular pattern (PAMP). EV-DNA can activate inflammatory pathways through cytosolic DNA receptors such as cGAS (cyclic GMP-
AMP) and AIM2 (absent in melanoma 2 or interferon-inducible protein). Activation of the cGAS/STING pathway causes downstream 
release of type I interferons (IFN-α, IFN-β, IFN-ε). Activation of AIM2 produces interleukins and tumor necrosis factor (TNF). This may 
manifest as a subclinical sterile inflammatory response in gestational tissues such as the placenta and amniochorion. bDNA: bacterial 
DNA; BEV: bacterial extracellular vesicles; cfDNA: cell-free DNA; DNA: human DNA; HEV: human extracellular vesicles; IRF: interferon 
regulatory factor; mtDNA: mitochondrial DNA; MVB: multivesicular bodies; NF-κB: nuclear factor-kappa B; STING: stimulator of 
interferon genes. Created with BioRender.com.

A considerable proportion of pregnant women with inflammation of gestational tissues, which eventually 
deliver prematurely, do not have an infection[254,256,257]. There can be innumerable reasons for a sterile 
inflammatory condition associated with premature delivery; however, recent findings on BEVs support the 
concept that maternal morbid or behavioral factors that may be linked to adverse events, may also be 
compounded by pathogenic microbial EVs, or subclinical infection in mothers may deliver BEVs to 
facilitate a sterile inflammatory condition. This sterile inflammation often mimics infectious inflammation 
seen during adverse pregnancies. In these instances, microbial culture or other molecular diagnostic 
approaches may render negative reports and mismanagement of a patient with a subclinical infection that 
sheds BEVs loaded with immunogenic factors. Therefore, the possible role of EV-DNA, as well as other 
alarmins carried by EVs, in chronic inflammation of gestational tissues that lead to adverse outcomes 
requires more investigation. Moreover, the threshold at which BEVs' proposed immune priming role in 
gestational tissues such as the placenta and fetal membranes changes to an overt labor-inducing 
inflammatory response needs to be determined along with the underpinning mechanisms. EV-DNA could 
be used for priming the immune system to defend against subsequent infection[108]. However, this is yet to be 
demonstrated in the fetus in utero.

Benefits and disadvantages of EV-mediated responses at the feto-maternal interface (placental 
tissues)
Priming of the fetal immune system
Commensal bacteria such as lactobacilli can produce BEVs that stimulate innate immune responses to 
control infection by pathogens. This immunostimulation may prime the host cells to mount an adequate 
immune response against foreign invaders upon subsequent exposure[209]. However, in uncomplicated 
pregnancies, the most prevalent BEVs resident in the placenta and fetal membranes and their origins 
[Figure 5] are yet to be established. Nevertheless, the presence of BEVs from health-promoting lactobacilli 
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Figure 5. Extracellular vesicle-mediated feto-maternal immune tolerance. The feto-maternal immune tolerance that maintains normal 
pregnancy is partly mediated by BEVs from various microbiotas.  Maternal BEVs can also carry DAMPs/PAMPs to the feto-maternal 
interface (placenta tissues) and trigger adverse immune responses that may manifest as feto-maternal allograft rejection in the form of 
graft-versus-host disease (GVHD). However, the threshold at which such a switch occurs, and the mechanisms involved are yet to be 
determined. Conversely, pathogenic bacteria can shed BEVs that can cause inflammatory responses often associated with adverse 
pregnancy conditions. BEV: bacterial extracellular vesicle; DAMPs/PAMPs: damage- and pathogen-associated molecular patterns; FM: 
feto-maternal; HEV: human extracellular vesicle. Created with BioRender.com.

at the feto-maternal interface may be recognized as “self-antigens” or, depending on their abundance/load, 
could prime the fetal immune system against infection and prevent infection-associated pro-inflammatory 
responses that precede labor and preterm birth. Because ascension from the lower genital tract is the 
primary pathway for intra-amniotic bacterial colonization[258], we suspect that the proposed immune 
priming effect[26,227] may be partly mediated by lactobacilli BEVs. This concept is supported by the report 
that BEVs from common vaginal lactobacilli carrying numerous proteins and metabolites protected human 
tissues from HIV-1 infection[2]. Therefore, the genome, proteome, and metabolome of Lactobacillus-derived 
EVs can be analyzed to determine if the antimicrobial and anti-inflammatory properties of Lactobacillus 
spp. such as L. crispatus, which are mainly linked to healthy vaginal microbiota and term delivery[22,259-261], 
are exhibited by their EVs independently, and whether such BEVs are bona fide residents of the placenta 
and fetal membranes. This can be compared to the EV cargo of BV/preterm birth-associated bacterial 
species such as Gardnerella vaginalis, GBS, and Ureaplasma spp. commonly isolated from the intrauterine/
intra-amniotic cavity[236,258,262-267].

Furthermore, the Ureaplasma DNA load seen in amniotic fluid[268-278] may have been transported by EVs, 
and this may not necessarily indicate pathogenesis. However, molecular diagnostic strategies such as 
polymerase chain reaction and 16S gene sequencing employed in those studies may have omitted bacterial 
DNA packaged in EVs with pathogenic or immune priming potentials. If Ureaplasma spp., G. vaginalis, and 
GBS can find their way to the amniotic fluid, they may continue to shed EVs to enhance inflammatory 
pathologies. So, even if the bacterial load is less, thousands of BEVs shed can cause damage and may be 
resistant to antimicrobial treatment. Therefore, controlling inflammation becomes of utmost importance in 
reducing adverse incidences compared to mere antibiotic treatment. Additionally, because the most 
prevalent BEVs in gestational tissues at a given time point may not be of vaginal origin, the investigation 
needs to be expanded to BEVs from other niches in the body and external environment.
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Suppose the immune priming action of placental BEVs is confirmed. In that case, such BEVs can be 
explored for vaccine development and therapeutic purposes[279,280] [Table 3] to either stimulate or suppress 
feto-maternal immune responses against intrauterine infection or microbial invasion of the amniotic cavity 
that cause preterm premature rupture of membranes (PPROM) and preterm labor[258,265-267,285]. This is 
because, rather than aiding pathogenesis, exosomes and OMVs are potent immune modulators[286], as 
demonstrated in pertussis (whooping cough) caused by Bordetella pertussis[287]. Furthermore, S. aureus EVs 
engineered to serve as vaccine candidates elicited adaptive immune response and conferred protection 
against lethal sepsis caused by S. aureus in mice[133]. Additionally, S. pneumoniae-derived EVs incubated with 
murine DCs were rapidly internalized and promoted the release of TNF-α, which constitutes the 
inflammatory response[288].

Stimulation of preeclampsia, preterm labor and birth
The proposed priming action of BEVs in the feto-maternal interface is adjudged to be mediated by a low-
grade inflammatory stimulation insufficient to induce labor[26]. Pregnancy is characterized by low-grade 
systemic inflammation and immune tolerance that allow implantation and placentation[255,289]. Disruption of 
this physiologic inflammatory state could lead to a breakdown in fetal-maternal tolerance and uncontrolled 
pro-inflammatory responses that trigger labor prematurely or other undesired reproductive outcomes such 
as preeclampsia and IUGR[255,290]. For instance, intraperitoneal injection of fetal DNA or CpG, which 
eukaryotic/BEVs can transport to uterine tissues or feto-maternal interface [Figures 3-5], induced TLR-9, 
STING, and NF-κB-mediated inflammatory release of IL-6, leading to fetal resorption, preeclampsia, 
preterm labor, and preterm birth in mice with additional immune impairment[291-294]. The BEV-associated 
immune stimulation must remain optimal throughout gestation, or an overt EV-mediated inflammatory 
response with deleterious effects may ensue without any identified pathogen [Figures 4 and 5].

What is yet unknown is the threshold at which preeclampsia- or labor-associated pro-inflammatory 
responses can be triggered by BEVs in placental tissues. We speculate that, like an increase in bacterial load 
or altered microbiota, an increase in placental BEVs and their virulence factors carried as cargos beyond the 
tolerable/immune priming threshold may induce an overt inflammatory response that could lead to 
premature expulsion of the fetus or pregnancy complications such as preeclampsia and IUGR or neonatal 
complications[230]. Such immune response could manifest as acute placental inflammation (i.e., maternal and 
fetal inflammatory responses)[242,295-298] or chronic placental inflammation[255,299]. If determined, this will 
improve our understanding of the concept of "sterile inflammation", which could be induced by 
human/BEV that may have exchanged immunogenic cargo, perhaps at a site distant from the placenta or 
fetal membranes, compared to infectious inflammation. It could also shed more light on the poor 
performance of antibiotics in reducing the incidence of preterm birth[300,301]. The mechanisms that propagate 
subclinical inflammation even after clearance of the infectious stimuli may be associated with BEVs and 
their virulence factors transported by human cells/EVs that help them evade immune clearance. For 
example, BEVs from S. aureus strains that cause severe inflammatory diseases in humans and animals 
contain a core proteome enriched with virulence factors. The BEV core proteome predicted the S. aureus 
strain and severity of infection, ironically in the absence of the pathogen[153].

Novel preeclampsia or preterm birth-associated inflammatory biomarker targets and preventive/therapeutic 
interventions
EV-DNA has been speculated to be more beneficial than plasma cfDNA in cancer diagnosis using certain 
liquid biopsies[302-304]. Elevated serum BEV IgG antibody-based asthma and chronic obstructive pulmonary 
disease diagnosis have also been tested[137]. Additionally, metagenomic and metabolomic profiling of stool 
BEVs revealed significantly altered Firmicutes and Proteobacteria as well as amino acids, carboxylic acids, 



Amabebe et al. Extracell Vesicles Circ Nucleic Acids 2024;5:297-328 https://dx.doi.org/10.20517/evcna.2024.21                                Page 313

Table 3. Summary of usage and applications of bacterial and human extracellular vesicles and future aspects for exploration

Use/application Extracellular 
vesicle Feature/summary of use References

Immune priming BEV ● Antigen-presenting and immune stimulation 
● Recognized as self-antigen 

[26,227,228]

HEV ● EVs from APCs carry p-MHC-II and costimulatory signals, and directly 
present the peptide antigen to specific T cells to induce their activation 
● Placental EVs mediate immune tolerance during gestation

[230,281]

Vaccine and adjuvant 
development

BEV ● Present multiple antigens simultaneously in a native state to elicit effective 
immune responses 
● Stimulate immune responses against bacterial and viral infections 
● Examples: BEVs from N. meningitidis, V. cholerae, B. pertussis, S. aureus, 
S. pneumoniae, C. perfringes, B. anthracis, etc. 
● Engineered OMVs as adjuvant-free vaccine platform for important 
pathogens

[2,4,25,209,282,
279,280,151] 

HEV ● EVs from macrophages and DCs against M. tuberculosis and T. gondii 
infections 
● EVs are also used to modulate immune response against tumor 
development

[44]

Therapeutics and drug 
delivery

BEV ● Carry and deliver several bioactive molecules 
● Enter distant organs from the circulation 
● Non-replicating and great biostability 
● Easy to modify by electroporation 
● Treatment of gut, brain, bone diseases and cancers

[209,216,283]

HEV ● EVs can be packed with small molecule drugs to evade immune 
surveillance and delivered intact and directly to the target tissue 
● MSC-derived EVs promote wound healing via Wnt-β catenin pathways 
and used in the treatment of cardiovascular, lung, renal, and liver diseases, 
GVHD, etc.

[44,281,284]

Biomarkers BEV ● Readily found in body fluids 
● Diagnosis of bacterial infections, lung disease, bone disease, colorectal 
cancer, and pancreatic adenocarcinoma

[25,283]

HEV ● Widely distributed and more readily available through liquid biopsies using 
blood, saliva, urine, breast milk, sperm, CSF, and vaginal fluid 
● Contain DNA, miRNA, and protein biomarkers 
● Applied in the diagnosis of cancer, asthma, COPD, GVHD, COVID-19 
infection, etc.

[44,105,106,108,
281]

Future aspects for 
exploration

BEV ● Address which receptors determine the uptake of BEVs by host cells 
● Mechanism of cargo packaging 
● Address the challenge of LPS-associated biosafety when Gram-negative 
BEVs are used as vaccines or drug delivery vehicles 
● Gram-positive BEVs may be a better choice for drug delivery 
● Identify a faster, cost-effective and efficient (high yield) isolation method 
from a wide range of biological specimens 
● Identify unique (surface) markers present on BEVs from different sources

[2,283]

Placenta and fetal membranes: 
● Identify the most prevalent BEVs  
● Targeting BEVs specifically to these tissues  
● Do BEVs in these tissues differ between term vs. preterm deliveries or PE 
vs. normotensive pregnancies? 
● Do BEVs from placenta elicit similar immune responses in other 
gestational tissues 
● Do BEVs from BV/PTB-associated bacteria elicit inflammation in 
gestational tissues?

HEV ● Identify mechanisms responsible for the uptake of EVs containing DNA 
● Identify mechanisms for DNA packaging in EVs 
● Standardization of EV-DNA isolation and analysis techniques 
● Resolution of differences in EV-DNA distribution, localization, and 
structure for diagnostic and functional studies

Placenta and fetal membranes: 
● Are there human cells/EVs containing bacterial EVs or products in 
gestational tissues? 
● Do bacterial cells contain human EVs in gestational tissues? 

APCs: antigen-presenting cells; BEV: bacterial extracellular vesicles; BV: bacterial vaginosis; COPD: chronic obstructive pulmonary disease; 
COVID-19: coronavirus disease 2019; CSF: cerebrospinal fluid; DCs: dendritic cells; EV: extracellular vesicles; GVHD: graft-versus-host disease; 
HEV: human extracellular vesicles; LPS: lipopolysaccharide; MSC: mesenchymal stem cell; PE: preeclampsia; p-MHC-I: major histocompatibility 
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complex II with antigenic peptide (p); PTB: premature birth; Wnt-β: wingless-related integration site-beta.

and short-chain to long-chain fatty acids metabolism in colorectal cancer patients[305]. Similarly, human EVs 
and BEVs found in placental tissues can facilitate the identification of new preeclampsia or preterm 
birth-associated inflammatory biomarker targets. Our group is currently exploring immune proteins 
packaged in EVs in the genital tract of preeclamptic women. As a follow-up from our recent study[26], we can 
explore whether placental BEV composition varies between preeclamptic and normotensive, as well as 
preterm-delivered and term women using metagenomics, proteomics, and metabolomics profiles of such 
pregnant women. We could also explore whether bacterial cells (not BEVs) package human EVs and the 
effect of BEVs on placental tissues in vitro or ex vivo.

Meanwhile, human EV-derived inflammatory proteins, miRNAs, and lipids that are associated with 
placental dysfunction, preterm labor, and birth have also been identified in maternal plasma across different 
gestational time points[35,306,307]. Moreover, after vaginal infection with E. coli, intravenous IL-10 encapsulated 
in exosomes delayed preterm birth by reducing feto-maternal uterine immune cell inflammation[308]. These 
reports indicate great promise for the utility of EVs as early predictors for preterm birth and candidates for 
safe and efficient drug delivery to the placenta and fetal membranes [Table 3]. However, these reports are 
primarily on human EVs, whereas data on BEVs are still minimal.

It is plausible that the drivers of placental inflammatory responses could be culpable for the disruptive 
phenotypes. This is because, even in the absence of clinical infection, PAMPs/DAMPs carried by and 
exchanged between human and BEVs can be transferred to placental tissues, gain access to the amniotic 
cavity, and trigger fetal inflammatory response, leading to maternal anti-fetal rejection[242,255]. For example, B. 
fragilis OMVs (without the bacteria) activated a broader range of host innate immune receptors (TLR2, 
TLR4, LR7, and NOD) compared to their parent bacteria (TLR2 alone) due to their enrichment with RNA 
and peptidoglycan cargo and their ability to transport this cargo directly into host epithelial cells[309]. Though 
this was demonstrated in intestinal epithelial cells, B. fragilis is a bona fide member of the vaginal microbiota 
as well[21,22]. Therefore, it is possible for OMVs released by this species to transport their cargo to the 
placenta, either hematogenous or through the vagina, and stimulate what may seem like a sterile 
inflammatory response.

The EVs and their inflammatory cargo could also emanate from the fetal cells and be delivered to maternal 
gestational tissues[310]. So, there could be bidirectional trafficking of inflammatory human EVs (and possibly 
BEVs) between the mother and fetus[29,30,230]. This is a precursor for inflammation-associated placental 
dysfunction, preeclampsia, fetal growth restriction, spontaneous preterm labor and postnatal developmental 
impairments[35,230,311-314].

S. aureus-derived BEVs that contain proteins involved in metal ion acquisition may compete with bacterial 
and host cells, depriving them of such nutrients and thereby inhibiting their growth and survival[153]. This 
may be particularly beneficial in preventing the colonization of gestational tissues by BV and preterm 
birth-associated G. vaginalis that acquire iron from host cells for survival[315-317]. Moreover, Gram-positive 
bacteria are projected to be better candidates for vaccine development than Gram-negative bacteria because 
they lack LPS[152] [Table 3].

Consequently, the health-promoting low-grade inflammation induced by lactobacilli in the lower genital 
tract can be replicated in the feto-maternal interface using Lactobacillus-derived BEVs as vaccines targeting 
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the placenta. It has been shown that L. crispatus and L. gasseri EVs protect human cells and tissues from 
HIV-1 infection by reducing the availability of gp120 to HIV-1 target cells. As expected, the lactobacilli-
derived EVs contain numerous anti-HIV-1 bacterial metabolites and proteins[318]. BEV protein cargos from 
other vaginal commensals such as S. aureus, G. vaginalis, Enterococcus faecium, and Enterococcus faecalis 
have produced similar anti-HIV effects by steric hindrance or modification of gp120[319]. These data support 
our proposition of further proteomic and metabolomic analysis of lactobacilli BEVs vs. BV/preterm 
birth-associated BEVs for better comparative understanding.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES
As discussed in this review, host-bacteria interaction is facilitated by BEVs and not only through direct 
contact between human and bacterial cells. The EVs are released by both bacterial and human cells and 
transfer bioactive molecules that influence the activity of the recipient cells, which may be distant from the 
producing cells. BEVs package multiple PAMPs that mimic and sometimes surpass the immunogenic 
properties of the secreting bacteria[42,320]. That is, direct colonization of tissues by bacterial cells is not 
required for immunogenic stimulation. This phenomenon is important in the feto-maternal interface, 
where optimum tolerance between the mother and fetus is required until delivery at term (37-40 weeks). 
Though the sterility of the placenta is still debatable, BEVs from diverse sources have been identified in this 
tissue[26] and the amniotic cavity[227]. These BEVs can be internalized by human cells, which may help them 
evade host immune clearance. Though it appears logical, whether bacterial cells internalize human EVs is 
yet to be determined. However, the presence of BEVs in placental tissues or the amniotic cavity is believed 
to trigger a low-grade immune response that primes the fetal immune system for ex-utero survival but is 
insufficient to disrupt the progression of pregnancy. This appears to be another mechanism that propagates 
feto-maternal immune tolerance, as observed in BEV-mediated maintenance of intestinal immune 
homeostasis[216,321]. However, because some pregnant women still experience inflammation-associated 
diseases such as preeclampsia and preterm birth without clinical infection, the point or dose at which the 
BEV-mediated low-grade inflammation develops into a suboptimal immunological response capable of 
disrupting the typical sequence of pregnancy needs to be elucidated. Furthermore, the mechanisms that 
drive such feto-maternal intolerance should enhance our understanding of EV-associated pregnancy 
complications.

On the beneficial side, BEV vaccines exhibit immunostimulatory efficiency akin to that of the inactivated 
whole-cell vaccine, stimulating both cell-mediated and humoral immune responses in animals[150,322,323]. BEV 
vaccines have also been applied to tackle meningococcal group B disease in humans[324]. OMV vaccines or 
adjuvants could be targeted at the placenta to prime the fetus against future exposure to harmful 
human/BEVs carrying PAMPs/DAMPs [Table 3].

Moreover, as demonstrated in the administration of Ligilactobacillus animalis, Akkermancia muciniphila, 
Lactobacillus plantarum, and Proteus mirabilis BEVs to treat bone disease, glucose intolerance, obesity, IBD, 
and stress-induced depression-like behaviors[325-329], native/natural BEVs from commensal or probiotic 
Gram-positive bacteria such as lactobacilli (to avoid LPS action) could serve as potential therapeutic 
candidates to promote a eubiotic and anti-inflammatory state in the feto-maternal interface while keeping 
the intrauterine environment “sterile”. This requires a comprehensive omic analysis of lactobacilli-derived 
EVs in comparison with EVs from common vaginal pathogens. We could also determine whether placental 
BEVs differ between women who deliver at term without labor and those who deliver preterm.

In summary, the exchange of cargo between human and BEVs and the isolation of BEVs in placental tissues 
and amniotic cavity have revealed new perspectives on the pathologic mechanisms of inflammatory 
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pregnancy complications. The presence of BEVs in the placenta primes the fetal immune system. BEVs in 
gestational tissues appear to be good candidates for predicting adverse reproductive outcomes, as well as for 
vaccine development and drug delivery during gestation. Future studies should determine whether bacterial 
cells take up human EVs, the diagnostic potential of placental BEVs, and the mechanistic link between 
placental BEVs and pregnancy complications such as preeclampsia and preterm labor and birth.
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