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Abstract
Artificial intelligence (AI) is changing our clinical practice. This is particularly true in cardiology where the clinician 
is often required to handle a large amount of clinical, biological, and imaging data during decision making. In this 
context, AI can address the need for fast and accurate tools while reducing the burden on clinicians and improving 
the efficiency of healthcare systems. With this inevitable shift towards more automated and efficient systems, 
patients may benefit from a more accurate diagnosis and more tailored treatment. A multitude of clinical 
applications have already been made available and implemented in several fields of cardiology. The aim of this 
narrative review is to provide an overall picture of the most recent evidence in the literature about AI 
implementations, highlighting their potential impact on clinical practice.
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INTRODUCTION
The advent of artificial intelligence (AI) has already dramatically changed almost all aspects of our daily 
lives. Medicine and cardiovascular health are also concerned, with significant resources spent in the last 
decades to boost research on the development and implementation of novel AI tools in this field. The goal is 
to assist cardiologists in their practice, reducing the pressure deriving from the large amount of data and 
tasks they are required to handle, overall improving their efficiency. Artificial intelligence will benefit the 
patients first by providing more personalized and effective care. The scenario of the available applications of 
AI and machine learning (ML) tools is constantly changing [Figure 1]. This narrative review provides an 
overall picture of current and potential applications of AI in the cardiovascular (CV) field.

CARDIOVASCULAR RISK ASSESSMENT
Cardiovascular  prevention is based on the recognition and control of several factors associated with a 
disease or clinical condition defined as risk factors, including age, sex, smoking, body mass index (BMI), 
hypertension, and diabetes mellitus (DM)[1].

In addition, CV prevention should integrate non-traditional risk markers, CV imaging data, and in the 
future, genomics, proteomics, lipidomics, and polygenic risk score (PRS). Multiple blood-borne biomarkers, 
such as microRNAs (miRNAs), have emerged as powerful regulators of cellular processes and, due to their 
biological characteristics, can be easily measured by non-invasive testing. Numerous studies have 
established their role as new diagnostic and/or prognostic markers for the prevention and stratification of 
CV risk[2]. Similarly, multi-omics data providing information about molecular pathways involved in several 
diseases by measuring the expression of proteins or genes are promising candidates for predicting CV risk[3].

Artificial intelligence can be used to develop models able to combine and process a large amount of existing 
clinical data with imaging and multi-omics data to make automated predictions of scores in the CV risk 
assessment, leading to the identification of new diagnostic and prognostic markers[4]. For instance, a 
machine learning (ML) model was used to classify endocrine hypertension subtypes using multidimensional 
omics analysis of plasma and urine samples. This MOmics approach, compared to the analysis of mono-
omics data, enables more sensitive and specific discrimination among various  forms of endocrine 
hypertension[5]. Moreover, using an AI model generated a new coronary artery disease (CAD) risk score 
able to identify patients with CAD on the basis of the identification of some sphingolipid species. Due to 
their different biosynthetic pathways, plasma levels of sphingolipids can, in fact, independently predict CV 
risk. This model, based on the combination of AI-derived sphingolipid risk scores and LDL-C values, 
provided a more accurate risk assessment than the singular biomarkers[6].

In another study, ML models implemented the circulating profile of two miRNAs (miR-186-5p and 
miR-632) to further stratify the CV risk profile of patients with end-stage renal disease receiving 
hemodialysis. The authors found that this AI-driven implementation was able to improve the accuracy of 
discriminating patients with higher CV risk compared with models without miRNAs (integrated AUC 
0.71)[7].

ELECTROCARDIOGRAPHY AND ARRHYTHMOLOGY
An electrocardiogram (ECG) is a widely available non-invasive tool used for the diagnosis of several heart 
diseases including arrhythmias, atrioventricular conduction disease, and acute coronary syndrome[8]. It has 
been estimated that a huge amount of information embedded in ECG tracings is not used by the traditional 
interpretation systems, while its widespread adoption in medicine - estimated at over 300 million exams 
every year-globally determines a significant workload for physicians[9]. To improve the workflow, a 
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Figure 1. Implementation of artificial intelligence in clinical practice. Starting from clinical hypothesis and access to large clinical 
datasets, AI-based models can assist in diagnosis and provide prognostic assessment with several clinical applications. This, in turn, has 
an impact on clinical decisions and could modify clinical outcomes with overall improved patient care. AI constantly learns from data, 
with continuous optimization and improvement of analytic models.

computer-aided interpretation of ECG data was introduced 50 years ago. However, commercial algorithms 
for ECG interpretation continue to show important rates of misdiagnosis[10-12]. In the last years, substantial 
improvements have been driven largely by a specific class of AI models known as deep neural networks 
(DNNs). The performance of DNNs tends to improve as the amount of training data increases, making 
widespread digitization of ECG data a great advantage[13].

Artificial intelligence algorithms have also been proved to be able to recognize different types of 
arrhythmias with performances comparable to those of expert cardiologists. In addition, AI models have 
been developed to detect structural heart disease, perform risk stratification, and execute ECG signal 
processing, improving its quality and diagnostic accuracy[14-19]; see Table 1.

Initially, researchers focused on the creation of models able to distinguish normal patterns from abnormal 
ones; in one of the earliest studies in this field, a neural network (NN) with static backpropagation 
algorithms was used to classify ECG signals into normal and abnormal subgroups, with an  accuracy of 
86.7%[20]. Progressively, the performance and output complexity  of these AI models has significantly 
increased, enabling not only the detection of abnormal ECGs  but also further sub-classification of 
arrhythmias in different categories[21-23]. A subject of particular interest in this field was atrial fibrillation 
(AF) detection. Many algorithms have been proposed for this scope; some of  these are based only on RR 
interval detection[24-26], while others need  detection of both RR intervals and P wave[27,28]. Therefore, they rely 
on the accuracy of peak detection, with poor or reduced performance in case of missing or erroneously 
detected peaks. An alternative method[29] converted the one-dimensional ECG signal into two-dimensional 
form by short-time Fourier and stationary wavelet transform, respectively, with no need for peak detection 
and outperforming the majority of the existing algorithms.
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Table 1. Main achievements with AI in the field of ECG

Study Year Sensor Population/dataset Principal findings

Smith et al.[14] 2019 12-Lead 
ECG

500 samples A DNN algorithm improved the interpretation of AF

Liu et al.[15] 2023 12-Lead 
ECG

952 patients An AI model outperformed ECG criteria for detecting LVH

Attia et al.[16]   2019 12-Lead
ECG

97,829 patients An AI-enabled ECG has been proposed as a screening tool in asymptomatic individuals to identify 
ALVD

Attia et al.[17]   2019 12-Lead
ECG

649,931 samples from 180,922 patients An AI-enabled ECG acquired during normal sinus rhythm allows identification of patients with AF

Raghunath et al.[18] 2020 12-Lead 
ECG

1,169,662 samples from 253,397 patients A DL approach provided prognostic information to the interpretation of ECG

Poungponsri et al.[19] 2013 2-Lead 
ECG

MIT-BIH arrhythmia database 
MIT-BIH noise stress test database

An adaptive filtering approach based on discrete wavelet transform and ANN can successfully remove 
various noise and artifacts in ECG signals

Jadhav et al.[20] 2010 12-Lead 
ECG

452 patients An ANN based system performed cardiac arrhythmia classification using ECG signal data

Acharya et al.,[21] 2017 1-Lead 
ECG

109,449 samples A CNN identified and classified the different types of ECG heartbeats

Haseena et al.[22] 2011 2-Lead 
ECG

MIT-BIH arrhythmia database An ANN based system performed cardiac arrhythmia classification using ECG signal data

Sayantan et al.[23] 2018 2-Lead 
ECG

MIT-BIH arrhythmia database 
MIT-BIH supra-ventricular arrhythmia database

A CNN identified and classified the different types of ECG heartbeats

Tateno et al.[24] 2001 2-Lead 
ECG

MIT-BIH AF database 
MIT-BIH arrhythmia database

An AI model allowed automatic detection of AF

Dash et al.[25] 2009 2-Lead 
ECG

MIT-BIH AF database 
MIT-BIH arrhythmia database

An AI model allowed automatic detection of AF

Huang et al.[26] 2011 3-Lead 
ECG   
2-Lead 
ECG

A dataset of 24-h Holter ECG recordings (n = 433) 
MIT-BIH AF database 
MIT-BIH NSR database

An AI model allowed automatic detection of AF

Babaeizadeh et al.[27] 2009 2-Lead 
ECG

A dataset of 24-h Holter ECG recordings (n = 633) 
MIT-BIH AF database

An AI model allowed automatic detection of AF

Jiang et al.[28] 2012 3-Lead 
ECG 
2-Lead 
ECG

ECG Department of the Sir Run Run Shaw Hospital and 
the First Affiliated Hospital, School of Medicine, Zhejiang 
University, Chin database (n = 45 
24-Holter ECG recordings) 
MIT-BIH AF database

An AI model allowed automatic detection of AF

Xia et al.[29] 2018 2-Lead 
ECG

MIT-BIH AF database An AI model allowed automatic detection of AF

2-Lead 
ECG 

MIT-BIH arrhythmia database 
MIT-BIH malignant ventricular arrhythmia database 

Acharya et al.[30] 2018 An AI model identified shockable ECG signals



Page 5 of Strangio et al. Vessel Plus 2024;8:12 https://dx.doi.org/10.20517/2574-1209.2023.123 25

1-Lead 
ECG

Creighton University ventricular tachyarrhythmia database

Sabut et al.[31] 2021 ECG 
sensors

CUDB and VFDB databases of the PhysioNet repository DNN permitted identification VA episodes

Chang et al.[32] 2021 12-Lead 
ECG

60,537 samples from 35,981 patients An AI model allowed detection both rhythm classes and acute STEMI

Zheng et al.[33] 2022 12-Lead 
ECG

18,612 samples from 545 patients An ML model precisely predicted the correct origins of idiopathic ventricular arrhythmia

Raghunath et al.[34] 2021 12-Lead 
ECG

1.6 million samples from 431,000 patients A DL model predicted new-onset AF from the 12-lead ECG in patients with no previous history of AF

Hsu et al.[35] 2022 12-Lead 
ECG

2,206 participants An ML model predicted LAE in young adults using ECG and biological features 

Zhao et al.[36] 2022 12-Lead 
ECG

1,863 patients A CNN model detected LVH by 12-lead ECG with higher sensitivity than current ECG diagnostic criteria

Grogan et al.[37] 2021 12-Lead 
ECG

2,541 patients AI-enabled ECG effectively detected cardiac amyloidosis and may promote early diagnosis

Kwon et al.[38] 2019 12-Lead 
ECG

55,163 samples from 22,765 patients A DL model accurately identified HF using ECG features

Dey et al.[40] 2021 12-Lead 
ECG

PTB database A DL model detected MI 

Jahmunah et al.[41] 2021 1-Lead 
ECG

Fantasia and St. Petersburg databases A CNN model allowed automatic categorization of normal, CAD, MI and CHF classes using ECG signals

Yadav et al.[42] 2021 12-Lead 
ECG

PTB diagnostic database A CNN model detected MI

Hasbullah et al.[43] 2023 12-Lead 
ECG

PTB-XL Database A CNN model differentiated MI from the healthy class and the other CVD class

Xiong et al.[44] 2021 12-Lead 
ECG

PTB database An AI model accurately localized MI

Ibrahim et al.[45] 2020 12-Lead 
ECG

ECG-ViEW II database An AI model predicted AMI from 12-Lead ECG

Gustafsson et al.[46] 2022 12-Lead 
ECG

492,226 samples from 214,250 patients A DL model discriminated between control, STEMI, and NSTEMI on the presenting ECG of a real-world 
sample (all-comers to the emergency department)

Fiorina et al.[47] 2022 3-Lead 
ECG

1,000 samples A DL approach classified a broad range of distinct arrhythmias from ambulatory ECGs with high 
diagnostic performance

AI: Artificial intelligence; AF: atrial fibrillation; ALVD: asymptomatic left ventricular dysfunction; AMI: acute myocardial infarction; ANN: artificial neural network; CAD: coronary artery disease; CHF: congestive heart 
failure; CNN: convolutional neural network; CVD: cardiovascular disease; DL: deep learning; DNN: deep neural network; ECG-ViEW: electrocardiogram vigilance with electronic data warehouse; HF: heart failure; 
LAE: left atrial enlargement; LVH: left ventricular hypertrophy; MI: myocardial infarction; MIT-BIH: massachusetts institute of technology-beth israel hospital; ML: machine learning; PTB: physikalisch-technische 
bundesanstalt; VA: ventricular arrhythmia.
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Even in the case of life-threatening arrhythmias, AI models have shown excellent performance[30]. An 
innovative method based on hybrid time-frequency features and deep learning (DL) has been proposed for 
the detection of VA episodes; compared with the previous systems, it was superior in detecting shockable 
VTAs, with a sensitivity, specificity, and accuracy of 99%[31].

As already pointed out, the accuracy of AI models is, in some areas, comparable, if not superior, to those of 
experienced physicians. For instance, an AI model showed an accuracy for the classification of 12 heart 
rhythms superior to that of internists, emergency physicians, and even cardiologists[32]. In addition to 
classifying arrhythmias, AI models can further characterize them. For instance, a ML algorithm was able to 
precisely predict the origin of idiopathic VA with an accuracy of 98%[33].

A significant advantage of AI models is that they can also automatically extract information that usually sits 
below the level of human detection. In Attia et al.’s study[17], an AI-enabled  ECG acquired during normal 
sinus rhythm allowed the identification of individuals with paroxysmal AF with an accuracy of 83%. In 
another study,  a neural network (NN) was trained on 1.6 million ECGs to predict new-onset AF within 
1 year, achieving  an AUC of 0.83 when using the ECG alone, and 0.85 when age and sex were included as 
additional features[34]. Another promising application of AI algorithms in electrocardiography is structural 
heart disease detection[15,35,36]. Successful outcomes have been achieved in both recognition of left atrial 
enlargement (LAE) and left ventricular hypertrophy (LVH)[36]. In the last case, the AI algorithm also 
outperformed conventional systems like Cornell and Sokolow-Lyon voltage criteria. In a more recent 
study[15], a system detecting LVH with a further improvement in performance was developed, reaching an 
accuracy, precision, and specificity of 96% and sensitivity of 97%. In addition to cardiac structural 
abnormalities that have well-defined electrocardiographic criteria for their diagnosis, AI models can 
recognize cardiac structural disease without clear electrocardiographic features, at least for humans. Among 
these, a 12-lead ECG-based cardiac amyloidosis AI detection system had a positive predictive value for 
detecting transthyretin or light chain-associated amyloidosis of 86%[37].

Deep learning ECG-based algorithms could also have a central role in the early diagnosis of heart failure 
(HF). Researchers have developed and validated a DL algorithm, using data from over 50,000 ECGs, that 
was superior in detecting HF with reduced ejection fraction (HFrEF) compared to logistic regression[38]. 
Moreover, AI algorithms can identify patients with asymptomatic left ventricular dysfunction (ALVD)[16], a 
condition associated with reduced quality of life (QoL) and longevity and present in about 3%-6% of the 
general population[39].

Beyond diagnosis, several prognostic applications have also been described; a DNN was, in fact, capable of 
predicting 1-year all-cause mortality from ECG voltage-time traces[18] .

Furthermore, studies in which AI systems showed the capacity to detect and classify[40-43], localize[44] or even 
predict myocardial infarction[45] have also been published. An AI model has shown excellent results in 
classifying between control, ST elevation myocardial infarction, and non-ST elevation myocardial infarction 
in a real-world sample of all-comers to an emergency department[46].

Artificial intelligence can also be finally used to improve technical aspects. Researchers proposed an 
adaptive filtering technique based on wavelet transform and artificial NN that can successfully remove 
different noise and artifacts in ECG signals[19].
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Holter ECG analysis can also benefit from a broader use of AI models. A DNN model proved to be non-
inferior and faster compared to the conventional Holter ECG analysis performed by electrophysiologists in 
the detection of major rhythm abnormalities[47]. Single-lead ECG wearables and smartwatches are nowadays 
increasingly used[48,49]. These systems perform an automated analysis, potentially relieving physicians from 
heavy workloads. However, the large number of wearable ECG recorders developed for consumer use are 
dreaded by a relevant degree of inconclusive tracings, potentially undermining their usefulness[50].

Artificial intelligence tools have also been applied to data extraction from cardiac implantable electronic 
devices (CIEDs), demonstrating the ability to predict clinically relevant atrial high-rate episodes (AHRE) 
and electrical storms[51,52]. Moving to current clinical applications, an AI tool (AccuRhythm™ AI, Medtronic, 
Dublin, Ireland) has recently received the Food and Drug Administration (FDA) market clearance for use 
with an insertable cardiac monitor (ICM). The two most common sources of ICM false alerts are AF and 
Pause detection. Validation data demonstrate that the sensitivity of AF algorithm to true ICM detections 
was 99% at the alert level. The relative specificity of the AF algorithm was 74% at the alert level. The AI 
retained 99.9% of the total true AF duration detected by the ICM with a positive predictive value of 98,6%. 
For pause algorithm, sensitivity and specificity were 99.7% and 98.3%, respectively; as a result, false alerts 
were reduced by 97.4% while maintaining 100% of true alerts[53,54].

Compared to standard detection algorithms using fixed rules for cardiac electrical signal analyses with 
reduced capacity to adapt to specific patient patterns, AI seems promising in reducing the burden of data 
review, performing efficient and accurate data triage with overall reduced false alert detection. In addition, 
the identification and use of patient-specific rate and rhythm models seem to be an advantage in the 
prediction of future clinical events. Probably, in the next years, a growing amount of data will be needed to 
develop and validate new AI models. This could be a limit for further advancements. In fact, collecting data 
to create new databases is a costly task both economically and temporally. The use of realistic synthetic 
ECGs may overcome this issue by enabling the generation and augmentation of training data. In addition, 
many studies found models to synthetize ECG signals by using mathematical modeling[55-59]; moreover, new 
methods using DL techniques have been recently described[60]. Compared to traditional methods, these 
models can easily generate a particular type of abnormal heartbeat and may also be easier for operators to 
use as they do not have to spend a great deal of time searching for suitable parameters for generation.

CARDIOVASCULAR IMAGING
Similar to what is already described for ECG data, the number of diagnostic images performed has 
constantly increased over the last years[61]. Hence, there is a concomitant growing need for tools capable of 
improving workflow efficiency and accuracy in the imaging diagnostic pathway. Artificial intelligence has 
the potential to address this need, shortening time spent in image analysis and concurrently reducing 
human errors at different levels. Table 2 summarizes the main achievements of AI in cardiovascular 
imaging.

With its inception in the early fifties, AI is now implemented in routine echocardiography practice[62]. Deep 
learning algorithms can classify echocardiographic views with the same accuracy as board-certified 
echocardiographers and are able to detect regional wall motion abnormalities, with better outcomes than 
the analysis performed by residents[63,64]. Quantification of the major echocardiographic parameters is often 
time-consuming for the operator. Researchers demonstrated that NN algorithms can provide a fully 
automated myocardial segmentation with an estimation of volumes, mass, and longitudinal strain[65]. 
Beyond processing and analysis, AI can be helpful in disease classification; a recent study demonstrated that 
AI has an accuracy of nearly 90% in identifying myocardial infarction, by interpreting the analysis of strain 
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Table 2. Main achievements with AI in the field of cardiovascular imaging

Study Year Sensor Population/dataset Principal findings

Kusunose et al.[63] 2020 Echocardiography 300 patients A DNN algorithm detects regional wall motion abnormalities and differentiate among
coronary infarction territories

Madani et al.[64] 2018 Echocardiography 267 samples A CNN algorithm recognizes similarities among related views and classifies relevant image
features

Zhang et al.[65] 2018 Echocardiography 14,035 samples A CNN algorithm accurately identifies views, enables the segmentation of individual
cardiac chambers and detects HCM, CA and PAH

Tabassian et al.[66] 2017 MRI 60 patients A ML-MRI model captures the spatio-temporal LV characteristics and exploits them for MI
diagnosis based on the LV deformation traces

Sengupta et al .[67] 2016 Speckle tracking
echocardiography

94 patients from 103 A ML-STE model distinguish CP from RCM

Heitzingeret al.[68] 2023 Echocardiography and 
laboratory data

3,359 moderate sTR samples 1,509 severe sTR samples A ML model provides risk-stratification in patients with moderate and severe sTR

Lei et al.[69] 2019 Echocardiography 
Clinical data 
ECG

117 from 184 patients A ML model can regularize ECG QRS duration (QRSd) through echocardiography and 
enhance the correlation between QRSd and CRT response

Chen et al.[71] 2017 CNN-cardiac MRI 3,975 samples A neural network (U-Net) trained with Cardiac MRI images from a single scanner has the 
potential to produce competitive segmentation results on multi-scanner data across 
domains

He et al.[72] 2020 Cardiac MRI 100 patients A CNN algorithm performed more rapidly CMR LV segmentation and improves diagnostic 
efficiency 

Bhuva et al.[73] 2019 Cardiac MRI 110 patients A ML model is faster with similar precision to the most precise human techniques to 
detect changes in EF

Augusto et al.[74] 2001 Cardiac MRI 60 patients A ML algorithm is superior to experts in MWT measurement in patients with HCM

Fahmy et al.[76] 2018 Cardiac MRI 1,041 samples from 7,775 DCN automatically quantifies left ventricle mass and scar volume in LGE sequences in 
patients with HCM

Fahmy et al.[77] 2019 Cardiac MRI 149 processing layers with a total of approximately 9 million 
kernels

FCN allows fast and automatic analysis of myocardial native T1 mapping images and 
myocardial segmentation

Neisius et al.[78] 2019 Cardiac MRI 332 patients An AI model discriminates between hypertensive heart disease and HCM patients and 
provides incremental value over global native T1 mapping through the analysis of native T1 
images

Wang et al.[79]  2020 Cardiac MRI 102 patients An AI model discriminates between MYH7- and MYBPC3 genes -associated HCM 
patients through the analysis of native T1 images

Xue et al.[80] 2022 Cardiac MRI 160 patients An AI model measured MAPSE and GL�Sh with strong associations with adverse 
outcomes

Coenen et al.[81] 2018 CCTA 525 vessels 
351 patients

An AI model improves the performance of CCTA-FFR by correctly reclassifying 
hemodynamically nonsignificant stenosis and performs equally well as CFD-based CT-FFR 
in CAD

126 vessels Kang et al.[82] 2015 CCTA An AI model allowed detection of obstructive and nonobstructive lesions from CTA
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42 patients

Liao et al.[83] 2022 CT 
MRI 
PET

142 saples 
6,066 samples 
131 samples

An AI model allows more accurate and high-quality image reconstruction

Motwani et al.[84] 2017 CCTA 10,030 samples from COronary CT angiography evaluatioN 
For clinical outcomes: an inteRnational multicenter registry

An ML model predicts 5-year all-cause mortality better than existing clinical or CCTA 
metrics alone

van Rosendael et al.[85] 2018 CCTA 8,844 patients A ML model improves the integration of CCTA derived plaque information to improve risk 
stratification

Li et al.[86] 2022 PET 22 XCAT phantoms were generated (10 for training, 1 for 
validation and 11 for testing)

A CNN algorithm reduces motion artifacts while utilizing all gated PET data

Nakajima et al.[87] 2017 SPECT 1,001 samples An ANN model is accurate in various clinical settings, including patients with previous 
myocardial infarction and coronary revascularization and helps to diagnose CAD

Arsanjani et al.[88] 2013 SPECT 1,181 samples A ML algorithm improves diagnostic performance of SPECT in CAD patients

Betancur et al.[89] 2018 SPECT 1,638 patients A CNN model improves automatic interpretation of SPECT in CAD patients

Betancur et al.[90] 2018 SPECT 2,619 patients A ML model predicts 3-year risk of MACE

Arsanjani et al.[91] 2015 SPECT 1,085 patients A ML model is comparable or better than experienced readers in prediction of the early 
revascularization after SPECT

Sabatino et al.[98] 2020 Echocardiography 50 patients Non-invasive MW indices identifies the ischaemic risk area during transient acute 
coronary occlusion

Sabatino et al.[99] 2021 Echocardiography 80 patients Non-invasive estimation of MW indices is able to predict critical coronary artery stenosis 
before invasive angiography

Raghavendra et al.[100] 2022 Echocardiography 54 patients A ML algorithm highlighted cardiac structural alteration in hypertensive patients

Vidya et al.[101] 2015 Echocardiography 800 echocardiography image frames An AI model predicted myocardial infarction 

Glessgen et al.[102] 2023 CCTA 281 patients A DL model is able to diagnose significant coronary artery stenosis in patients with acute 
chest pain

Knott et al.[103] 2020 Cardiac MRI 1049 patients An AI model calculates myocardial blood flow and myocardial perfusion reserve provides a 
strong, independent predictor of adverse cardiovascular outcomes

Qiao et al.[111] 2020 CCTA 197 patients ML-based FFR-CT algorithm had superior prognostic value for severe anatomic stenosis

Min et al.[115] 2020 OCT-TCFA 602 coronary lesions from 602 patients A DL algorithm accurately detects an OCT-TCFA with high reproducibility

Cho et al.[116] 2021 IVUS 598 coronary arteries from 598 patients IVUS-based deep learning algorithm performed fast and accurate assessment of the extent 
of calcified and attenuated plaques in whole vessels

Cook et al.[117] 2019 iwFR 1,008 images AI-based iFR pressure-wire pull back data is noninferior to expert human interpretation in 
determining both the hemodynamic appropriateness for PCI and the optimal physiological 
strategy for PCI

Miyoshi et al.[118] 2020 Coronary angioscopy 107 images from 47 patients 
864 images, selected from 142 MEDLINE-indexed articles

A DCNN algorithm is able in both predictive and generative modelling that can help 
develop the diagnostic support system for coronary angioscopy

Shah et al.[137] 2015 Echocardiography 
Clinical data and ECG

397 patients An AI model improves the classification of HFpEF

Echocardiography Hedman et al.[141] 2020 32 echocardiograms from 320 HFpEF patients A ML algorithm identifies distinct HFpEF phenogroups
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Clinical and laboratory 
data 

Schrub et al.[142] 2020 Echocardiography 
Clinical and laboratory 
data

538 patients from the multicentre KaRen study An AI model recognizes subgroups with different physiopathologies in HFpEF

Cikes et al.[149] 2018 Echocardiography 
Clinical data

1,106 HF patients from the MADIT-CRT trial A ML algorithm identifies patients with beneficial response to cardiac resynchronization 
therapy

Diller et al.[157] 2020 Cardiac MRI 303 pediatric patients A PG-GAN model generates accurate synthetic equivalents to MRI frames from patients 
with tetralogy of fallot

Diller et al.[161] 2020 Cardiac MRI 372 patients A ML model estimates prognosis in adults with repaired tetralogy of fallot

Diller et al.[163] 2019 Echocardiography 267 patients A DL algorithm is able of denoising and artefact removal in patients with CHD

Ishikita et al.[166] 2023 Cardiac MRI 
Clinical data

804 patients A ML model predicts 5-year MACE in adults with repaired tetralogy of Fallot

AI: Artificial intelligence; ANN: artificial neural network; CA: cardiac amyloidosis; CAD: coronary artery disease; CCTA: coronary computed tomographic angiography; CFD: computational fluid dynamics; CHD: 
congenital heart disease, CNN: convolutional neural network; CP: constrictive pericarditis; CRT: cardiac resynchronization therapy; CT: computed tomography; DCN: deep convolutional neural networks; DNN: deep 
neural network; FCN: fully convolutional neural network; FFR: fractional flow reserve; GL�Shortening :Global longitudinal shortening; HCM: hypertrophic cardiomyopathy; HFpEF: heart failure with preserved ejection 
fraction;  IVUS : intravascular ultrasound; iwFR instantaneous wave-free ratio; LGE: late gadolinium enhancement; LVEF: left ventricular ejection fraction; MAPSE: mitral annular plane systolic excursion; MACE: major 
adverse cardiac events; MRI: magnetic resonance imaging; ML: machine learning; MW: myocardial work; MWT: maximum wall thickness; OCT-TCFA: optical coherence tomography-derived thin-cap fibroatheroma; 
PAH: pulmonary arterial hypertension; PCI: percutaneous coronary intervention; PG-GAN: progressive generative adversarial networks; PET: positron emission tomography; RCM: restrictive cardiomyopathy; sTR: 
secondary tricuspid regurgitation; SPECT: single-photon emission computed tomography.

rate curves and myocardial deformation[66]. Similar excellent diagnostic accuracy was demonstrated for an associative memory classifier able to distinguish 
between restrictive cardiomyopathy and constrictive pericarditis by analyzing differences in the speckle tracking patterns[67]. These tools can also be applied to 
further stratify patients to obtain meaningful prognostic information. A machine learning derived approach applied was able to reclassify patients with 
moderate and severe tricuspid regurgitation on the basis of identified adverse features yielding important prognostic information[68]. The additional 
information provided can be integrated across different modalities and aid clinical management. For instance, a ML model was able to predict response to 
cardiac resynchronization by combining echocardiographic, clinical, and electrocardiographic features[69]. AI models are, therefore, increasingly used in 
echocardiography, from image acquisition to analysis and development of novel risk stratification tools. Similar evidence is available in the literature about the 
growing role of AI in cardiac magnetic resonance (CMR)[62,70]. The correct planning and acquisition of CMR sequences usually requires highly trained staff, 
having a significant impact on the quality of the images acquired and their diagnostic value. Vendors are constantly working on the implementation of AI-
based automatic acquisition tools to assist in planning and optimizing the quality of the data acquired[70]. In addition, as for other imaging modalities, several 
studies have demonstrated the feasibility and good accuracy of AI-based segmentation models in CMR[71,72]. This significantly reduces the time spent in post-
processing, providing a precise and automated estimation of ejection fraction, mass, and volumes in a few seconds[73]. More importantly, ML models proved to 
be more consistent and reproducible compared to human experts in measuring key parameters such as maximum wall thickness, with potential diagnostic and 
management implications[74]. AI models also perform well in tissue characterization[75]; a deep fully CNN can quantify with good accuracy native T1 mapping 
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values in patients with hypertrophic cardiomyopathy (HCM) and the presence of late gadolinium 
enhancement in patients with myocardial infarction[76,77]. A novel technique called texture analysis based on 
the capability of ML algorithms to analyze spatial heterogeneity of adjacent pixels has been demonstrated to 
be helpful in challenging  clinical contexts such as differentiation between patients with HCM and 
hypertensive heart disease, but also between patients with different genetic mutations[78,79]. Despite these 
models still requiring supervision, they could potentially represent useful screening tools to be used on a 
large scale. The strong clinical interest in AI analysis is also driven by the potential prognostic implication of 
imaging markers that can be automatically measured. In a cohort of 1,572 patients, automated in-line 
assessment of global longitudinal shortening and mitral annular plane systolic excursion (MAPSE) had a 
strong association with adverse outcomes[80].

Excellent diagnostic accuracy has also been demonstrated in cardiac computed tomography (CCT), where 
AI can aid in the segmentation and detection of coronary artery plaques[81,82]. Additionally, in this field, the 
application of AI-derived algorithms is helpful in reducing the overall radiation doses used to acquire 
diagnostic images and therefore patient exposure[83]. Several studies have also demonstrated that ML-
derived CCT algorithms have a superior prognostic value compared to conventional clinical scores[84,85]. 
Obtaining good image quality in the shortest time possible is key to all imaging modalities. Patient 
breathing and movement during positron emission tomography (PET) data acquisition affect image quality. 
A deep neural network has been successfully applied to reduce motion artifacts, outperforming the iterative 
registration-based method[86]. In nuclear imaging, several AI-based algorithms have been demonstrated to 
be able to identify stress-rest defects and increase the overall accuracy of the modality by implementing 
imaging data with clinical features[87-91]. Despite evidence of undeniable usefulness, there are still some 
concerns about the wider use of AI in CV imaging due to the lack of standardized methods and the ethical 
issues related to potential threats to patient privacy and confidentiality. However, the unique advantage of 
AI in providing fast and reliable segmentation and analysis of the major imaging parameters is meant to 
increase its implementation among different imaging modalities soon.

CORONARY ARTERY DISEASE
Coronary artery disease (CAD) is associated with a high risk of morbidity and mortality[92]. In this context, 
AI could be used throughout the diagnostic definition of CAD, from the assessment of pre-test risk to the 
application in imaging techniques used in clinical practice for CAD evaluation[93].

In the emergency department, DNNs have proven their effectiveness in recognizing patterns related to 
myocardial infarction[94-96]. These methods aim to promote medical assistance even in areas with limited 
healthcare resources by lowering operator-dependent variability. A recent ML algorithm through three 
clinical variables (age, sex, and prior percutaneous coronary intervention) in addition to levels of hs-cTnI, 
KIM-1, and adiponectin showed exceptional accuracy in predicting CAD, especially in patients with an 
undetermined value of hs-cTNI[97]. The role of AI in CV imaging has already been discussed. However, 
there is an increasing interest in novel and early imaging biomarkers able to predict the presence of CAD 
and myocardial ischemia[98,99]. In the context of stress echocardiography, ML and DL methods were used to 
identify regional wall motion abnormalities, showing a great level of reliability[100,101]. In this context, 
researchers developed a DNN system to calculate an appropriate score to estimate the likelihood of CAD[89]. 
In addition, a large retrospective study demonstrated that DML has a high negative predictive value in 
evaluating coronary CT images for significant CAD in patients presenting with acute chest pain[102]. All 
patients with ACS and stenoses by invasive coronary angiography were identified by the DLM. A step 
forward in terms of complexity and clinical usefulness came more recently from a study by Knott and 
collaborators: they showed how AI can elaborate complex imaging data in a fully automatic way, providing, 
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at the same time, a synthetic output with clinical and prognostic relevance[103]. More recent studies showed 
how AI can also improve the efficiency of non-invasive functional assessment of CAD. Fractional flow 
reserve (FFR) and a family of pressure-based resting indices allow the functional assessment of the coronary 
circulation[104-106], being more accurate than the sole coronary angiography but is invasive and costly. Non-
invasive methods for CAD detection represent a valid alternative nowadays, with coronary computed 
tomography angiography (CCTA) as the primary approach[107]. However, while CCTA has high sensitivity, 
it can produce false positives and does not assess physiological function. Non-invasive computed 
tomography-derived FFR (CT-FFR) was therefore introduced as a way to assess ischemia without additional 
procedures[108]. In particular, CT-FFR has been proposed as an alternative diagnostic tool in patients with 
stable angina, with equivalent clinical outcomes, QoL, and lower costs compared to usual care, with a 
reduced rate of invasive unnecessary coronary angiography[109]. In this context, artificial intelligence 
algorithms and deep neural networks have been developed, improving diagnostic accuracy and outcome 
prediction through deep learning-CT-FFR[110]. CT-FFR has shown promise with good accuracy, and new 
software and ML algorithms have improved its diagnostic capabilities. Very recently, a supervised learning 
approach was adopted to improve the performance of a multiphysics model based on computational flow 
dynamics, simulating blood flow in vessels[81]. This approach was tested in a perspective study with an 
improved software using DL named Coronary Scope, with excellent results[111]. According to the 
FORECAST trial, the use of CT-FFR with off-site computational fluid dynamics could reduce invasive 
procedures without significant differences in MACE, QoL, and angina symptoms[112]. On the other hand, the 
use of computational flow dynamics could have some limitations, such as the complexity of calculations. 
Therefore, using a deep learning algorithm in this context could reduce transfer times and prevent the need 
to send sensitive clinical data.  In the recent TARGET randomized trial, on-site machine learning-based 
CT-FFR, in comparison to standard care, decreased the rate of invasive coronary angiographies in patients 
with stable coronary artery disease in the absence of coronary obstruction or need for intervention in the 
following 90 days. However, although there was an increase in revascularizations, no improvement in 
symptoms or QoL was documented[113]. Furthermore, fully automated (without human input) deep learning 
models have been proposed to compute FFR from CCTA, achieving 76% accuracy in detecting FFR 
variations[114]. AI-based algorithms also showed an excellent performance for prognostic prediction[90].

In relation to CV imaging, furthermore, researchers[27] have developed a ML algorithm that allowed thin-cap 
fibroatheroma (TCFA) to be recognized with high efficacy using IVUS, while Min et al. deployed a DL 
model to automatically identify TCFA from OCT images[115]. Cho et al. proposed a DL system to 
discriminate IVUS segments as plaque with attenuation or calcification, in order to help with the detection 
of high-risk lesions[116]. Other promising applications of AI algorithms to the broader family of invasive 
coronary diagnostics are the recently explored fully automatic processing and interpretation of pull-back 
measurement of the resting pressure-base index, known as the instantaneous wave-free Ratio (iFR). An 
international collaboration, coordinated by the group led by Justin E. Davies from the Hammersmith 
Hospital, demonstrated that the AI-based interpretation of iFR output was non-inferior to human 
interpretation by expert interventionalists, to discriminate both the clinical indication and the optimal 
physiology-based strategy for percutaneous coronary revascularization[117]. AI applications to CAD are 
designing a growing panorama of different tools to the benefit of cardiologists, involving both simple one-
scope tools and support system capable of elaborating complex decision support resources. At the forefront 
of current research is the development of automated algorithms for the interpretation of coronary 
angiographies[118], promising to provide additional information to the traditionally extracted evidence of 
coronary stenoses and/or additional qualitative information for more focused and reliable measurements of 
multiple parameters, such as the hemodynamic impact of coronary lumen geometry, calcification or 
tortuosity, to the complex integration of multiple layers of information to guide the entire clinical 
process[119,120].
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HEART FAILURE
With a prevalence of 1%-2% in the adult population, HF  represents a significant global issue and one of the 
most common causes of hospitalization[92,121-125]. Although the prognosis of patients with HF has 
considerably improved over decades, it remains poor[126], with overall reduced QOL.

Multiple potential applications of AI were recently proposed to help solve the many challenges in the 
clinical management of HF[127]. Among the most promising areas is the improvement and simplification of 
both the identification of new risk factors for incident HF and its clinical monitoring.  A ML approach was 
used to analyze data from more than 500000 individuals, recognizing the strongest features associated with 
incident HF, which included leg bioimpedance in addition to known risk factors for HF[128].

Beyond the aforementioned ECG-based algorithms able to identify patients with HF (40) and asymptomatic 
LV dysfunction[16], researchers reported several alternative AI strategies based on clinical features[129-131].

An AI model[132] used heart sound characteristics for the detection of HF. In a more recent study, a new AI 
model that combines supervised and unsupervised methods in different levels of learning for enhanced 
performance, called the time-growing neural network (TGNN), has been used for the analysis of the 
phonocardiogram and allows the detection of any obstruction on semilunar heart valve in children, even for 
the mild forms[133]. These findings open the scenario for the use of a smart stethoscope for decentralized 
diagnosis of heart disease. In addition, a ML-based approach was used to develop a novel risk prediction 
tool, WATCH-DM, which predicts the risk of incident HF and hospitalization among diabetic patients[134]. 
A race-specific ML-based model was also able to predict the 10-year risk of incident HF with superior 
performance compared to traditional HF risk calculators and non-race-specific ML models[135]. Another 
study validated a ML model able to provide real-time decision support to adults diagnosed with congestive 
HF, achieving higher exacerbation and triage classification performance than physicians[136].

Heart failure is a heterogeneous syndrome characterized by one or more contributing risk factors that 
ultimately lead to abnormal cardiac structure and function. The contemporary classification based on 
ejection fraction values may have limitations in the future when tailored medicine is expected. In this 
scenario, DL algorithms could help improve the classification of HF. The first detailed clinical, laboratory, 
ECG, and echocardiographic phenotyping of a HF with preserved ejection fraction (HFpEF) population was 
performed using a statistical learning algorithm[137]. The phenomapping analysis classified study participants 
into three distinct groups that differed markedly in clinical characteristics, cardiac structure/function, 
invasive hemodynamics, and outcomes. After this landmark work, an increasing number of studies have 
been published on the application of phenomapping to different cohorts of patients with HFpEF, with some 
focused only on clinical and laboratory parameters[138,139], and others including echocardiographic 
parameters[140-142].

Machine learning  enables clustering of common clinical and/or laboratory characteristics, leading to the 
identification of less obvious or “predictable” HFpEF subgroups.

In a more recent study[143], researchers used a ML approach to separate patients according to different 
comorbidity profiles or phenotypic groups, regardless of LVEF. They described six phenotypes, 
characterized by different comorbidity profiles. This classification, independent of LVEF, resulted in greater 
separation of clusters and better association with clinical outcomes at 6 and 12 months than conventional 
classification of HF, suggesting that classifying HF patients based on clinical characteristics rather than 
LVEF categories provides relevant prognostic information.
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Artificial intelligence can also be applied for prognostication purposes, as demonstrated by several studies 
where ML algorithms were able to predict both the risk of mortality in the acute setting, during 
hospitalization, and long-term outcomes[144-147].

Meeting the need for an increasingly tailored medicine, ML algorithms could allow the customization of 
drug therapy according to the characteristics of the patient. Despite an overall lack of efficacy from β 
blockers in individuals with HFrEF and AF, thanks to an ML approach, Karwath et al. were able to identify 
a subgroup of AF patients where β blockers did reduce death[148]. Finally, ML may also be used to optimize 
patient selection for device therapy in HF. Indeed, a ML-based approach was used to combine both 
standard clinical parameters and advanced echocardiographic data to identify patients most likely to 
respond to cardiac resynchronization therapy (CRT)[149].

CONGENITAL HEART DISEASE
The burgeoning demand for cardiac imaging in Adult Congenital Heart Disease (ACHD), due to the 
advances in therapeutic management and improved survival, is unfortunately not paralleled by a 
corresponding surge in the number of healthcare practitioners specialized in interpreting congenital cardiac 
images. The complexity and high variability of the anatomy, including previous surgical intervention, may, 
in fact, represent a challenge for non-specialized cardiologists. The advent of AI may help in overcoming 
some of these challenges, having a significant impact on patient care. Several studies have already tested the 
applicability and advantages of these tools in this field, using deep learning for image acquisition, post-
processing, and diagnosis. AI-based algorithms have been used for LV detection in CMR images, with the 
latest technique using deep reinforcement learning[150-152].

The latter approach interacts with the environment and includes a sophisticated search method consisting 
of structured, tiered action phases. AI has also been applied to reduce CMR scan time, which is helpful not 
only in increasing patient compliance but also in reducing artifacts and improving overall image quality[153]. 
Deep learning algorithms have been demonstrated to be able to accelerate CMR scan time by reconstructing 
images from under-sampled data[154]. Despite more data certainly needed to standardize its use in clinical 
practice, preliminary data also show the potential usefulness of automated segmentation analysis tools in 
complex CHD patients[155-158]

By eliminating the laborious and time-consuming aspects of quantifying anatomical structures within these 
images, the risk of healthcare provider burnout is mitigated[159]. Consequently, clinicians can redirect their 
focus towards more elevated functions, nurturing the doctor-patient relationship, and delivering healthcare 
services infused with heightened empathy, which is crucial in the special ACHD population. Deep learning 
holds the promise of exceeding the capabilities of expert human image interpretation. Nonetheless, a 
substantial delivery gap persists, primarily attributable to data availability. Data preparation is also 
laborious: for ML, 80% of the time is spent on data preparation and only 20% is spent on algorithm 
development. This is particularly true for medical images portraying congenital heart pathologies, due to 
inconsistencies in DICOM (the standard for medical images) meta-data between different institutions and 
scanner manufacturers. Among the others, Diller et al. have delineated a pioneering DL methodology to 
estimate prognosis and guide therapy in ACHD using data from a single tertiary center including over 
10,000 patients and 44,000 medical reports for congenital heart disease[160]. To this purpose, clinical and 
demographic data, ECG parameters, cardiopulmonary exercise testing, and laboratory values were 
accumulated and included in appropriate recurrent deep learning algorithms. In addition, models were 
developed to estimate the need for discussions within multidisciplinary teams, with an accuracy of 90%.
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Another study[161] used the same methodology for the analysis of cardiac magnetic resonance imaging in 
individuals who have undergone surgical repair for tetralogy of Fallot. The researchers initially trained their 
model using images sourced from a singular medical center. Therefore, this model was applied to an 
independent cohort of patients with documented clinical outcomes, who had been reserved for validation 
purposes. From the derived volumetric data analysis, the authors constructed a prognostic model. This 
model, through its identification of heightened right atrial area and diminished right ventricular 
longitudinal function, was capable of discerning patients at an elevated risk of experiencing adverse 
outcomes. It is imperative to underscore that this research represents a pioneering milestone; however, it is 
critical to acknowledge, as the authors themselves do, that this paper serves as a proof of principle[162]. 
Overall, deep learning enhances the efficiency of image interpretation, aiding clinicians in the timely and 
accurate diagnosis of congenital heart defects, potential complications, and disease progression[163,164].

For instance, the Montreal group[165] proposed a novel recurrent neural networks (RNN) to model 
longitudinal medical data named Deep Heart-failure Trajectory Model, to predict the recurrence of future 
heart failure events in ACHD patients. Using a large dataset from the EHR documented Quebec Congenital 
Heart Disease database (84,498 patients, 28 years of follow-up), composed by demographics and several 
clinical variables, their model enhances the accuracy of recurrent events prediction compared to other AI-
based models. The prognostic value of AI models may be particularly helpful in assessing preoperative risk 
of death. A machine learning prediction model applied in a single-center study, using clinical and CMR 
variables, was demonstrated to perform well in predicting MACE at 5 years in adults with repaired tetralogy 
of Fallot[166].

Leveraging advanced algorithms and analyzing comprehensive patient data such as clinical records, 
cardiovascular MRI, and demographic information, these models provide accurate and personalized 
assessments of mortality risk. This transformative approach empowers clinicians to make informed 
decisions, tailor surgical strategies, and ultimately enhance patient outcomes in ACHD surgery[167].

Despite the great potential of deep learning and imaging technologies in ACHD, its integration into clinical 
practice remains limited. Challenges such as the scarcity of large, standardized datasets and the complex 
nature of ACHD pathologies have hindered the widespread adoption of deep learning models.

PITFALLS, CURRENT BARRIERS AND POTENTIAL SOLUTIONS
AI is already a reality for cardiology and its increasing adoption in the future is inevitable. However, some 
critical issues still need to be addressed. One of the most critical aspects is the generalizability of AI 
algorithms, which is strictly related to the dataset used to train and test them.

A poor dataset, in fact, can easily lead to overfitting and limit the performance of the AI application. In 
other words, if some conditions are under-represented in the dataset, or if the dataset itself is affected by 
some bias, the predicted results will be influenced as well (the “garbage in - garbage out” rule represents 
very well the pitfall in this field)[168]. To overcome this limitation, two strategies, relying on different 
concepts of clinical data management, have been proposed. From a historical point of view, the first idea 
was to share the data among hospitals to create a large, public, heterogeneous, multi-institution, and multi-
device dataset. This would allow more robust and representative training and a fairer testing/comparison of 
the proposed algorithms. However, this approach requires sharing clinical data that contain highly sensitive 
information about patients. As a result, it is mandatory to share data in a secure and privacy-respectful 
manner, while also adhering to the rules of each country. However, even assuming a successfully law-
compliant workflow, this strategy represents a significant burden both for the administrative staff (required 
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to authorize the sharing and define the modalities for this) and for the technical personnel (who have to 
carefully implement and execute the anonymization and the sharing routines). In addition, even if 
potentially able to deal with this aspect, not all Institutions are willing to share their own data.

In the past few years, a new approach, known as federated learning, has been introduced. The rationale 
behind this innovative strategy is to “share the AI model” rather than the dataset[169]. This is accomplished 
by involving each clinical partner in training its own AI model locally, exclusively by using its own data. 
Once the institution-specific AI models are trained, they are merged to generate a single global AI that is 
sent back to each center, guaranteeing a more secure and simple pipeline, since only the mathematical 
models are shared and not the patients’ data, see Figure 2 for schematic representation. In this way, each 
clinic will have information extracted by considering data that do not belong to that institution.

Another issue of AI approaches, still strictly connected to the dataset, is the procedure to fairly test the 
developed algorithms. Ideally, this should be done by benchmarking the model on a large set of unseen data 
collected in a different institution and/or device. Unfortunately, due to the lack of open-source data, several 
authors have to deal with small and private datasets, which forces them to adopt a k-fold validation in their 
studies over external and heterogeneous data. However, even if this strategy is not conceptually wrong, it 
remains a suboptimal validation procedure. Like any newly introduced technology in healthcare, robust 
clinical validation is required to avoid potential mistakes that could have catastrophic consequences. A 
recent literature review[170] highlighted that most AI assessment studies have been assessed  exclusively on 
internal datasets, with no external validation and a lack of recommended design features for accurate 
validation. Randomized clinical trials (RCTs) where AI models are compared to the gold standard are the 
optimal and most reliable way to assess AI performance and safety. On the other hand, RCTs have high 
financial costs and require previous studies and a long period of time.  The European ITFoC consortium 
proposed an alternative method with the potential to accelerate the transfer of AI into clinical settings. They 
described a validation framework for the assessment of AI models based on real-world data, which includes 
seven principles: the intended use of AI, the target population, the timing for AI evaluation, the datasets 
selected for evaluation, the procedures used to ensure data safety, the metrics used to measure performance, 
and the procedures used to ensure that the AI is explainable[171]. The potential advantages of the use of a 
validation platform with external real-world datasets include cost and time reduction; transparency, 
reusability of the platform for further AI evaluations; and integration with new datasets.

Another key aspect to consider before a secure and large-scale usage of AI in medical applications concerns 
the interpretability/explainability of how the model produces its output. In fact, the risk is to have a box that 
generates very accurate predictions or classifications without the possibility of understanding the logic used 
to reach that conclusion. Of course, any clinician will treat a patient on the basis of a “digital greek-oracle” 
statement.

In this regard, AI algorithms can be divided into two classes, commonly named “white box” and “black 
box”[172].

The first group includes the mathematical models (typically the ML strategies) that can be interpreted by 
humans, while the second group includes models that are difficult or impossible to explain (such as the DL 
pipelines). It is important not to confuse the term “explainable” with the concept of “trivial”. In fact, the 
idea of explainability is mainly related to the ability of humans to assign a biological interpretation to the 
complex mathematical operations behind each strategy. Deep learning strategies are less explainable than 
classical ML algorithms just because they use many more parameters (up to some millions) to reach their 
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Figure 2. Schematic representation of federated learning. Federated learning is a decentralized technique for machine learning that 
produces an algorithm trained by utilizing collected data on decentralized devices or servers, without any exchange of the data itself. 
Local systems employ independent machine learning by utilizing an encrypted dataset to generate a local model. A central aggregator 
integrates all the local models and generates a global one. This collaborative system allows different actors to collaborate on a global 
machine-learning model without exchanging or uploading any data to a remote server.

decision, making the logical interpretation complex. However, significant technical efforts are already 
mitigating this issue, providing users with some insight into the decision taken. Gradcam algorithms, for 
example, inform the user about the features identified in the signal that drives the final decision[173].

The rapid widespread use of AI-based tools for clinical applications has induced regulatory agencies to 
establish an approval system requiring proof of safety and efficacy for computer-assisted software intended 
for clinical use before these can reach the market. Multiple steps are envisioned for an AI-based tool to 
comply with regulatory authorities and finally get approved as a computer-assisted device.

The legal and ethical implications are another issue of AI application, with the main points of concern 
represented by privacy and data protection, transparency, bias, discrimination, and responsibility. To reach 
their full potential, AI models need to have access to a wide range of patient information, both medical and 
non-medical. Potentially, these data could be hacked and used for malicious purposes. A key aspect to 
consider is, therefore, the creation of systems and regulations that guarantee patient safety and 
confidentiality. The majority of legal discussions on AI revolve around the issue of algorithmic 
transparency. Indeed, as explained above, obtaining information about the functionality of algorithms is 
often difficult, if not impossible. It is also known that AI models can incorporate human and social biases at 
scale[174]. For instance, data that include human decisions or data that display the secondary impacts of social 
or historical inequalities related to race and sex[175] can be used to train models. There are several cases of 
initially promising AI models with worse performance when applied to diverse populations[176,177]. For these 
reasons, a report of performance among diverse ethnic, racial, age, and sex groups should be ideally 
obtained for all new AI tools to ensure responsible use of this technology in healthcare. We should also 
consider that machines that can work according to unfixed rules and learn new models of behavior are said 
to threaten our ability to trace culpability back to the maker or operator. Nowadays, there is a lack of 
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comprehensive regulations to address the potential legal and ethical consequences of using AI in healthcare 
settings. For these reasons, the European Commission is currently working on a general regulatory 
framework for AI. This will be based on the classification of potential risks associated with the use of AI and 
will define the fields of application. Once the use of AI is regulated, the above issues are solved, and a model 
with better performance than previous technology has been identified, we imagine that there will be a 
reasonable routine application of it in the healthcare setting.  In conclusion, although a lot more work will 
be needed on the scientific, regulatory, and organizational levels, the future appears to be bright for AI in 
CV medicine.
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