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Abstract
The use of discrete rational approximation functions to represent foundation dynamic impedance plays a crucial 
role in the time-domain analysis of soil-structure interaction regarding artificial boundary. In modeling, the rational 
approximation functions need to be transformed into time-domain recursive models for incorporation into time-
history analysis. However, this method also suffers from uncertainties in parameter identification and instability in 
time-domain analysis when the time-domain recursive models of soil are coupled with upper structure. The 
stability issue in artificial boundary coupled time-domain computation has not been effectively addressed. This 
paper establishes the closed-loop transfer function of the coupled system and analyzes the causes of instability in 
the coupled system based on gain margin analysis. Different numerical simulations demonstrate that the major 
cause of artificial boundary system instability is the description errors of discrete rational approximation functions 
beyond the fitting frequency range.
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INTRODUCTION
Soil-structure interaction (SSI) has an obvious effect on the seismic response of many structures, such as 
high-rise buildings[1], nuclear power plants[2], ocean structures[3], and long-span bridges[4]. Currently, when 
dealing with SSI problems, it is a common practice to divide the soil into a near-field finite domain and a 
far-field infinite domain. In addressing the far-field infinite domain, an artificial convex-shaped boundary is 
introduced to simulate the actual boundary conditions of the far-field soil. And frequency response 
functions are often used to represent the influence of the semi-infinite far-field soil on the near-field finite 
domain. Various time-domain methods are used to convert the frequency response functions into time-
domain mechanical models, which are coupled with the superstructure for time-domain analysis. Currently, 
commonly used time-domain methods include continued fraction expansion[5-7], operator split methods[8], 
rational approximation function[9-13], etc. Among them, according to the computation time, the rational 
approximation method, compared to other current time-domain methods, is characterized by its simplicity 
and high applicability. It is not restricted by variations in the research subject, and it can also describe the 
frequency response function effectively, even at lower orders. In addition, this method demonstrates a 
combination of high precision and straightforward computational procedures. As a result, it has gained 
widespread attention and extensive research by scholars.

Rational approximation functions can be divided into discrete-time rational approximation functions[14] and 
continuous-time rational approximation functions[15]. The stability and accuracy of rational approximation 
functions and their corresponding time-domain mechanical models[16-20] are consistent within the fitting 
frequency range. Therefore, the accurate and stable identification results of discrete-time rational 
approximation functions are the key to ensuring the effectiveness of time-domain calculations of the 
recursive models. Wolf and Motosaka[21] used curve fitting techniques based on least squares methods to 
convert frequency-domain discrete rational approximation functions into time-domain recursive equations 
and pointed out that the stability condition of the function is that the poles are within the unit circle in the 
complex plane. Paronesso and Wolf[22] started from the unit impulse response matrix of the semi-infinite 
medium and derived the time-domain recursive equation by using balanced approximation methods to 
calculate the interaction forces of discrete-time rational approximation functions. When fitting discrete 
rational approximation functions, Wang et al. eliminated unstable solutions by imposing penalty terms on 
the objective function and retained stable solutions[23,24]; in addition, they converted them into rational 
approximation functions with the same stability by using bilinear transformation. However, stable discrete-
time mechanical models cannot guarantee the stability of the overall system after coupling with the 
structure. Laudon et al. proposed a method to evaluate the stability of the coupled system, which is 
combined with a numerical integration method and a recursive parameter model[25]. He used the method to 
represent the dynamic characteristic of the base system and validated that stable time-domain calculations 
of the Safak model[19] can still lead to instability after being coupled with structures. Gash et al. pointed out 
that even if the filter and the employed time integration method are stable, we cannot guarantee that their 
combination is also stable[26]. He derived the stability expression for the filter-integrator combination 
process by combining discrete-time rational approximation functions with numerical integration 
algorithms. After comparing the stability of rational approximation models with the stability of coupled 
systems, Lesgidis et al. found that the constraints only for the rational approximation model could not 
guarantee that the globally coupled dynamic system is absolutely stable[27]. Saitoh effectively implemented 
the interaction of system motion and guaranteed the stability of the coupled system by introducing lumped 
parameter models to represent impedance functions[28,29]. Zhao et al. combined the standard dynamic finite 
element method for the complex near field and the high-order accurate artificial boundary conditions for 
the simple far field to obtain symmetric second-order coupled dynamical equations with diagonal mass 
matrix and non-diagonal damping matrix[30], gave the multi-degree-of-freedom (MDOF) continuous-time 
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lumped parameter model, resolved the instability issue after coupling by introducing a Rayleigh damping 
proportional to the stiffness matrix, and put it into the finite element model of the finite domain.

When scholars deal with the instability issue in calculating artificial boundary problems using discrete-time 
rational approximation functions, most studies only considered the stability of the rational approximation 
functions themselves. Some scholars have pointed out that time-domain models transformed from stable 
rational approximation functions can still become unstable when coupled with structures and integrated 
into the time domain. For this issue, they only provided judgment methods for the stability of coupled 
systems. This paper targets the instability problem occurring in discrete-time rational approximation 
functions and numerical computation of coupled structures. The closed-loop transfer function of the 
coupled system is established to analyze the instability mechanism of artificial boundary systems based on 
the concept of gain margin.

SYSTEM STABILITY OF ARTIFICIAL BOUNDARY COUPLED WITH STRUCTURE
Stability of discrete-time rational approximation functions
In SSI analysis, the artificial boundary conditions are used to replace the far-field infinite domain and 
simulate its wave radiation effect. Furthermore, using frequency response functions to describe the 
interaction relationship of infinite domain medium-structure systems is a common method for solving 
artificial boundary problems. The frequency response functions of the infinite domain include the dynamic 
stiffness coefficient S(ω) of the far-field infinite domain and its reciprocal flexible coefficient F(ω). The 
interaction relationship between infinite medium and structure can be expressed as:

In the equation, the vector f(ω) is the generalized force; u(ω) is the generalized displacement; the dynamic 
stiffness function S(ω) can be expressed as the following frequency-dependent function:

In the equation, ω is the frequency of external load; S0 is the static stiffness;  is the imaginary unit; 
K(ω) and C(ω) are the frequency-dependent dynamic stiffness coefficient and damping coefficient, 
respectively.

The artificial boundary system is a linear time-invariant discrete (LTID) system but not a differential 
system, thus being difficult to solve in the time domain. In order to obtain a differential description of the 
artificial boundary system, using the bilinear transformation method in Ref.[14] to convert the discrete-time 
filter in Ref.[19] into the following discrete-time rational approximation:

where S0 is the static stiffness; bk (k = 0, …, N) and ak (k = 1, …, M) are the undetermined coefficients of the 
numerator and denominator of the function, respectively; z = eiωΔt is the Z-transform frequency domain 
symbol; i is the imaginary unit; ω is the frequency of external load; Δt is the discrete-time step.
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Since the time-domain mechanical models and the frequency domain rational approximation functions 
have the same stability and accuracy, high-precision rational approximation functions that meet the stability 
requirements need to be obtained in the parameter identification phase. According to linear control theory, 
the stability condition of Equation (1) is that the modulus of all poles of the denominator is less than 1. Let 
zj denote all the poles of S(z), then its stability condition can be expressed as:

After obtaining a stable rational approximation function, in order to introduce it into the artificial boundary 
system for time-domain analysis, it needs to be converted into an equivalent time-domain recursive filter 
through inverse Fourier transform[15]. The discrete-time recursive filter is a simple finite difference equation; 
it converts a given time sequence (i.e., input) into another time sequence (i.e., output). The discrete-time 
recursive filter is defined by the following equation:

where u(t) represents the input of the filter as displacement; after filtering, the output is fl(t), M, N are the 
orders of the filter, bi and ai represent the coefficients of the filter, and t is time.

Instability phenomenon of the coupled system
Under the premise of ensuring the stability of the soil model, it was found that instability phenomenon 
would occur after the coupling between the soil model and the structure. A simple single-degree-of-freedom 
(SDOF) structure shown in Figure 1 is used here to illustrate the instability phenomenon of the coupled 
system. The horizontal motion frequency response function of the circular foundation is shown in Figure 2; 
it is identified using discrete-time rational functions, with parameters taken from Ref.[15]. Some foundation 
parameters are: foundation radius r = 30 m, soil shear modulus G = 0.3 × 109 Pa, soil Poisson’s ratio v = 1/3, 
and density ρ = 1,600 kg/m3. The discrete-time rational approximation is 5th order. The structural mass is 
m = 7.3 × 107 kg, stiffness is k = 4.6 × 1010 N/m, damping ratio = 0.05, and time step is Δt = 0.01 s. The El 
Centro earthquake serves as the external load excitation. The structural displacement is calculated by a 
numerical integration algorithm, as shown in Figure 3. From Table 1, it is observed that as the order of the 
rational function increases, the fitting time gradually increases. Simultaneously, the fitting accuracy 
improves, yet the overall time remains below ten seconds, and the error can be reduced to 7%. Therefore, we 
choose 7 as the highest power of z.

As shown in Table 2, by constraining the coefficient within the stable interval, the identified poles all have 
magnitudes less than 1. The data satisfies the stability theorem. However, it can be seen from Figure 3 that 
the time history of the coupled artificial boundary system is diverging, resulting in instability.

COUPLED SYSTEM INSTABILITY ANALYSIS METHOD
Coupled system transfer function
After obtaining the time-domain mechanical model shown in Equation (5), We can establish the artificial 
boundary system shown in Figure 4. The dynamic equation of the system is shown in Equation (6):
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Table 1. Identification of accuracy and efficiency of circular foundation

Order 3 5 7 9 11

Error (%) 16.82 12.29 7.49 6.74 6.62

Time of calculation (s) 4.46 4.19 5.79 7.12 8.66

Table 2. Identification of parameters and poles of denominator in rational approximation function

Parameter identification results Magnitude of poles

b0 11.3337

b1 -15.8584

b2 4.6624

b3 -3.7880

b4 6.4099

b5 -2.2653

a1 0.8847 0.6857

a2 -0.9304 0.6816

a3 -0.8300 0.8595

a4 0.2164 0.7109

a5 0.1947 0.6816

Figure 1. Horizontal motion of structure-circular foundation.

In the equation, M, C, and K represent the mass, damping, and stiffness matrices, respectively; the 
subscripts s and b represent the structure and foundation, respectively;  is the acceleration vector;  is the 
velocity vector; u is the displacement vector; f(t) is the interaction force between the infinite soil and the 

foundation, as shown in the equation;  is the external loading on the system.

As mentioned in Section "Instability phenomenon of the coupled system", a stable time-domain recursive 
model cannot guarantee the stability of the coupled system. In order to facilitate the analysis of the 
instability mechanism of the coupled system, a transfer function between the structural displacement and 
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Figure 2. Structure-circular foundation parameter identification results.

Figure 3. Structure-circular foundation time history analysis results.

the seismic displacement is derived based on Z-transform for a SDOF rational approximation system. The 
structural displacement mainly consists of two parts, namely, the sum of the displacement generated by the 
foundation under seismic action and the displacement generated by the time-domain recursive force of the 
infinite domain medium interacting on the foundation. Letting the transfer function between the 
foundation displacement u and the time-domain recursive force F of the medium act on the foundation be 
G1, the transfer function between the structural displacement Xne and the seismic displacement xg be G2, and 
the transfer function between the structural displacement Xf and the external force be G3, then the 
displacement generated by the structure is:
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Moving the second term on the right side of Equation (7) to the left side of the equation and rearranging, 
the transfer function between the structural displacement and the seismic displacement is obtained as:

The system flowchart is shown in Figure 5:

In order to achieve an exact solution for function (8), we solve for G1, G2, and G3 separately. The transfer 
function G1 between the time-domain recursive force and the foundation displacement is the discrete-time 
rational approximate function obtained using the genetic-sequential quadratic programming algorithm.

The transfer function G2 between the structural relative displacement and the seismic displacement can be 
calculated by structural dynamic equation:

Performing the Z-transform on the obtained dynamic equation allows us to derive the following formula:

Where m, c, and k represent the mass, damping, and stiffness of the structure, respectively. The transfer 
function G3 between the structural relative displacement and the external force can be obtained by the same 
method as for G2:

When using the dynamic equilibrium equation to solve the relative displacement of the foundation, since 
the displacement for each step has not been determined when calculating the time-domain recursive force 
for that step, the displacement from the previous step needs to be used to calculate the recursive force for 
the current step. Therefore, G1 will produce a one-step time lag error. To eliminate the error caused by the 
one-step time lag in the frequency domain, when constructing the overall transfer function H, G1 will take 
the following form:
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Equation (8) can be expressed as:

A 3 × 3 pile group foundation shown in Figure 6 is used as an example; we investigate a SDOF structure to 
validate the accuracy of the constructed transfer function. The pile diameter d = 1 m, pile spacing s = 5 m, 
pile length L = 6 m, soil Poisson’s ratio ν = 0.35, and soil damping ratio β = 0.05. The SDOF structure has 
mass m = 7.3 × 107 kg, stiffness k = 4.6 × 1010 N/m, and damping ratio of 0.05. Under seismic action, 
calculate the transfer function and numerical integration results. Use the genetic-sequential quadratic 
programming algorithm to fit the dynamic stiffness curve of pile groups. It is then converted into the time-
domain recursive force between the semi-infinite medium and the foundation using the time-domain 
recursion algorithm[17]. The fitting results are shown in Figure 7 and Table 3.

Using the ground motion of the El Centro earthquake as input, the displacement of the artificial boundary 
system structure is calculated by the Newmark-β method. The output of the coupled system transfer 
function system constructed is calculated in MATLAB. The calculation results are compared, as shown in 
Figure 8. The peak error is 2.9673 × 10-13. Therefore, the correctness of the established frequency domain 
transfer function can be verified.

Gain margin analysis
According to the control theory principle, the stability of a closed-loop system is determined by the open-
loop characteristic equation[31,32]. The closed-loop characteristic equation (13) determining the stability of 
the control-based coupled system is:

In order to comprehensively judge the instability mechanism of a SDOF system, gain margin[33] analysis of 
the magnitude-frequency and phase-frequency characteristics can be adopted for the SDOF system. As 
shown in Figure 9, the gain margin is defined as the reciprocal of the magnitude at the crossover frequency 
where the phase angle is -180°. The critical stability condition of the system is when the gain margin equals 
1 at the crossover frequency. When the gain margin is less than 1, the system is stable, and when the gain 
margin is greater than 1, the system is unstable, with the degree of instability increasing as the gain margin 
increases.

Based on this, the crossover frequency ωGM and gain margin GM of the system can be calculated according 
to the following equation:
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Table 3. Identification impedance parameters of 3 × 3 pile group foundation

Numerator coefficients Data Denominator coefficients Data

b0 3.9129 a1 1.0209

b1 -4.8201 a2 0.9188

b2 9.3310 a3 0.7100

b3 -7.5729 a4 0.6541

b4 3.7882 a5 0.3912

b5 -1.6806

Figure 4. Artificial boundary system computational model.

Figure 5. Closed-loop block diagram of the coupled system.

INSTABILITY MECHANISM OF COUPLED SYSTEM
Sampling theorem
According to the sampling theorem[34], the sampling frequency of a discrete-time system must be greater 
than twice the highest frequency of the signal.

The equation has been shown in Equation (17). In this case, the discrete points obtained through sampling 
can restore the sampled signal relatively accurately. If the sampling frequency is less than or equal to twice 
the highest frequency of the signal, it will lead to aliasing in the sampled signal. Aliasing should be avoided 
when sampling the system.

Taking the sine wave signal shown in Figure 10 as an example, this illustrates the necessity of Equation (17). 
If four sample points are taken within half a cycle, and the sampling rate is eight times the signal frequency, 
the signal characteristic can be restored basically. If the sampling rate is reduced to the critical point, Fs = 2F, 
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Figure 6. 3 × 3 pile group foundation model.

Figure 7. 5th order rational function approximation identification results of pile group foundation. (A) Real part of impedance; (B) 
imaginary part of impedance.

Figure 8. Displacement time histories of foundation calculated by transfer function algorithm and time-domain recursive algorithm 
under seismic excitation.
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Figure 9. Principle of gain margin. (A) Phase; (B) magnitude.

Figure 10. Sampling results with different sampling frequencies. (A) Fs = 8F; (B) Fs = 2F; (C) Fs < 2F.

the signal will be distorted. If the sample points happen to fall around the zero-crossing points, the signal 
strength will be weakened. If the sample points fall exactly on the zero points, only a straight line through 
the zero points can be restored. If Fs < 2F, it can be observed that the signal is completely aliased.

Distortion of fitting
When using discrete-time rational approximation functions to fit the frequency response function, due to 
the limitation of fitting accuracy, usually only functions within a limited frequency band (0~ωf) are fitted, as 
shown in Figure 11. Therefore, the obtained rational approximation function can accurately reproduce the 
base impedance within the fitting frequency band, while the out-of-band components (ω > ωf) still exist in 
numerical calculation. And the magnitude of the fitted function will generate a large peak at the Nyquist 
frequency[35] ωN, leading to notable discrepancies between the magnitude of the fitted function and the 
original function. This phenomenon will cause distortion of the recovered signal.

Numerical example
Numerical example 1. analysis of a cylinder in water
Taking a cylinder with a diameter R = 8 m and depth h = 80 m in water shown in Figure 12 as an example to 
analyze the relationship between the sampling frequency band length and system stability. The sound speed 
in water is taken as c = 1,438 m/s, and the water density ρ = 1,000 kg/m3. The El Centro earthquake is the 
external load excitation.

In order to verify the influence of different fitting frequency bands on the calculation accuracy of the 
system, we use the rational approximation function to fit the dynamic stiffness of the cylindrical in water. 
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Figure 11. Contrast of magnitude of rational approximation function and the original function.

Figure 12. Cylinder in infinite domain water.

The original magnitude and phase of the coupled system are then compared with the magnitude and phase 
of the fitted function. The maximum values of the fitting frequency band are taken as 10, 15, and 20 Hz. 
And it is used respectively for parameter fitting, frequency domain, and time-domain calculations. The 
calculation results are shown in Figure 13 and Table 4.

It can be seen from Figure 13 that when the maximum fitting frequency band is 10, 15, and 20 Hz, the 
parameter identification results have high accuracy. The rational approximation function magnitude-
frequency dynamic characteristic shows a large error outside the fitting frequency band. According to 
Table 4, at the frequency where the gain margin is maximum, the magnitude of the rational approximation 
function is greater than the original frequency response function. When the maximum fitting frequency is 
10 Hz, the system becomes unstable.
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Table 4. Frequency domain analysis results of systems with different fitting frequency bands of infinite domain water

Maximum value of the fitting 
frequency band (Hz)

Frequency at maximum 
margin ωf (Hz)

Maximum magnitude of 
rational function

Original frequency 
response function

Gain 
margin

10 26.33 9.0436 × 1010 5.6435 × 109 1.8613

15 29.14 2.9032 × 1010 6.4825 × 109 0.1364

20 63.24 1.2857 × 1011 1.4843 × 1010 0.3055

Figure 13. Analysis results of frequency domain and time domain under different fitting frequency bands of infinite domain water. (A) 
0~10 Hz: (A-a) Parameter fitting result of cylinder in water; (A-b) Time history result of cylinder in water; (A-c) Infinite water domain 
frequency domain characteristic; (A-d) Water-structure interaction system frequency domain characteristic; (B) 0~15 Hz: (B-a) 
Parameter fitting result of cylinder in water; (B-b) Time history result of cylinder in water; (B-c) Infinite water domain frequency domain 
characteristic; (B-d) Water-structure interaction system frequency domain characteristic; (C) 0~20 Hz: (C-a) Parameter fitting result of 
cylinder in water; (C-b) Time history result of cylinder in water; (C-c) Infinite fluid domain frequency domain characteristic; (C-d) Fluid-
structure interaction system frequency domain characteristic.

In order to analyze the fitting error between the obtained rational function and the original frequency 
response function, the dynamic characteristic of the rational approximation function identification results 
and the original frequency response function in the frequency range of 0~100 Hz are compared when the 
maximum fitting frequency band is 10~20 Hz. The comparison results are shown in Figure 14.

It can be seen from Figure 14 that within the fitting frequency band, the dynamic characteristic of the 
obtained rational approximation function fits well with the original frequency response function, while 
outside the fitting frequency band, large errors in the magnitude values are observed. For the unstable 
condition of 0~10 Hz, the magnitude at the unstable frequency is 9.0436 × 1010, while the magnitude of the 
original frequency response function at this frequency is 5.6435 × 109. The magnitude differs by 16 times, 
indicating severe distortion in the frequency domain characteristic. As a result, the gain margin of the 
system is much greater than 1, and the system becomes unstable. Thus, the reason for instability is that the 
rational approximation function exhibits significant distortion compared to the original frequency response 
function outside the fitting frequency range.
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Figure 14. Comparison of dynamic characteristic of frequency response function and rational approximation function of infinite domain 
water.

Numerical example 2. analysis of a circular foundation
In order to further analyze the influence of fitting errors on system stability, gain margin is used to analyze 
the system stability shown in Figure 1. We perform gain margin analysis on the SDOF artificial boundary 
system within the frequency range of 0~100 Hz, as shown in Table 5. The maximum gain margin value for 
this system is 2.15, as marked in the figure, and the corresponding unstable frequency is 56.96 Hz.

It can be seen from Figure 15A that the base impedance obtained through parameter identification has a 
peak magnitude near the Nyquist frequency (50 Hz). At the Nyquist frequency, the phase of the discrete 
rational approximation function is 0, while the phase angle of the dynamic characteristic of the base 
structure shown in Figure 15B at this frequency is about -180°. Due to the one-step delay error, the phase 
angle of the rational approximation function changes. However, the phase at this frequency point is near 0, 
thus causing the crossover frequency at which the system becomes unstable to be near the Nyquist 
frequency. From Table 5, at the unstable frequency 56.96 Hz, the magnitude of the rational approximation 
function is 5.88 × 1012, and the magnitude of the frequency domain characteristic of the structure is 
3.65 × 10-13. Therefore, the base frequency response function affects the magnitude and phase of the gain 
margin analysis to the system which is shown in Figure 15C. The existence of a peak causes the gain margin 
of the system near the Nyquist frequency to be greater than 1, resulting in system instability.

Due to the need of structural dynamic analysis, when fitting the rational approximation function, the 
frequency range of the fitted frequency response function is limited to a narrow frequency band. In the 
above example, the frequency response function within 0~18.37 Hz was fitted quite accurately. However, 
the rational function obtained from parameter identification produces a large magnitude error at the 
Nyquist frequency outside the fitting frequency band, as shown in Figure 15D. According to modern 
control theory, if the maximum sampling frequency of the system is less than the Nyquist frequency of the 
system, large errors caused by signal aliasing can be avoided. And the original signal can be restored more 
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Table 5. Frequency domain analysis of SDOF coupled system

Unstable frequency of the system (Hz) Base impedance magnitude Structure magnitude Coupled system magnitude

56.96 5.88 × 1012 3.65 × 10-13 2.15

Figure 15. Frequency domain analysis of horizontal motion coupled system of circular foundation. (A) SDOF coupled system frequency 
domain characteristic of base impedance; (B) SDOF coupled system frequency domain characteristic of structure; (C) SDOF coupled 
system gain margin analysis of coupled system; (D) Comparison of frequency domain characteristics between rational function and 
original data.

accurately. Therefore, the peak appearing at the Nyquist frequency outside the fitting frequency band of the 
discrete rational approximation function greatly affects the stability of the system.

PARAMETER ANALYSIS TO THE COUPLED SYSTEM STABILITY
Effect of soil shear modulus on coupled system stability
It can be seen from the above content that the magnitude characteristic of the base impedance function has 
a great influence on system stability. The magnitude of the impedance function is related to the shear 
modulus of the soil. In order to analyze the influence of shear modulus on system stability, the horizontal 
motion frequency response function of the circular foundation in Section "Instability phenomenon of the 
coupled system" is used as the dynamic characteristic of the foundation. The foundation radius r = 30 m, 
shear modulus G takes 1.5 × 108 Pa, 2.0 × 108 Pa and 2.5 × 108 Pa, soil Poisson’s ratio v = 1/3, and density 
ρ = 1,600 kg/m3. The structural stiffness k = 4.6 × 1010 N/m, the mass of the foundation structure 
m= 7.3 × 107 kg, and damping ratio ξ = 0.05. The order of discrete-time rational approximation function is 5, 
the discrete-time step Δt = 0.01 s, and the fitting results are shown in Figure 2 and Table 6. The frequency 
domain analysis of the system is shown in Figures 16 and 17,Table 7.
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Table 6. Coefficients of rational approximate functions for horizontal motion of circular foundations

j 0 1 2 3 4 5

aj 1 0.7064 -1.0032 -0.7087 0.2515 0.1777

bj 13.1450 -19.9613 6.0497 -2.0115 5.3438 -2.1744

Table 7. Frequency domain analysis of systems with different soil shear moduli

Shear modulus (N/m) 1.5 × 108 2.0 × 108 2.5 × 108

Maximum of gain margin (Hz) 64.23 58.05 56.91

Magnitude at the maximum of gain margin 7.6708 × 1011 3.1157 × 1012 5.6447 × 1012

Gain margin 0.3295 1.1577 2.0612

Figure 16. Dynamic characteristic of soils with different soil shear moduli.

According to Figures 16 and 17, Table 7, when the shear modulus of the soil takes different values, the 
instability frequency of the system is around 60 Hz, indicating that the shear modulus of the soil has little 
influence on the instability frequency of the system. As the shear modulus increases, the magnitude of the 
dynamic characteristic of the soil increases significantly. This is because the larger the shear modulus, the 
greater the static stiffness of the rational approximation function, corresponding to the larger magnitude of 
the dynamic characteristic of the soil. The gain margin of the system also increases accordingly.

Effect of structural parameters on coupled system stability
In order to analyze the effect of structural parameters on system stability, the fitting results of the horizontal 
motion frequency response function of the circular foundation in Section "Instability phenomenon of the 
coupled system" are adopted. Different artificial boundary systems are established by changing the 
structural parameters to carry out stability analysis.
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Figure 17. Dynamic characteristic of coupled system with different soil shear moduli.

Effect of structural frequency on system stability
In order to study the effect of structural frequencies on the stability of the coupled system, the structural 
stiffness k = 4.6 × 1010 N/m, and the damping ratio = 0.05. By altering the mass of the upper structure, the 
frequency of the structure can be modified to fall within the range of 2~8 Hz. By studying the changes in 
gain margin at different structural frequencies, we can assess its impact on the instability of coupled 
systems. The dynamic characteristics of the structure under different frequencies are shown in Figure 18. 
The frequency domain analysis under different working conditions is shown in Figure 19 and Table 8.

From Figure 18, it can be seen that the phase change of the structure at the instability frequency is very 
small. The instability frequencies of the system under different working conditions are all around 59.5 Hz, 
indicating that the frequency of the structure basically does not affect the instability frequency. From 
Table 8, it can be seen that as the structural frequency increases, the magnitude in the frequency domain 
dynamic characteristic of the structure increases, and the gain margin of the artificial boundary system also 
increases correspondingly. When the structural frequency is within 4 Hz, the system is stable, and when it is 
6 Hz or above, the system becomes unstable. This shows that high-frequency structures are more likely to 
cause artificial boundary system instability.

Effect of structural damping ratio on system stability
The structural stiffness k = 4.6 × 1010 N/m, and the structural mass m = 5.754 × 107 kg. To study the influence 
of structural damping ratio on the stability of the coupled system, the structural damping ratio is designed 
to be 0.01~0.07. Using the same method as studying structural frequencies, investigate the impact of 
structural damping ratios on the stability of coupled systems. The dynamic characteristics of the structure at 
different frequencies are shown in Figure 20. The frequency domain analysis under different working 
conditions is shown in Figure 21 and Table 9.

Based on Figures 20 and 21, Table 9, when the structure takes different damping ratios, the magnitude and 
phase of the structure change very small at the instability frequency. The instability frequencies of the 
system under different working conditions are around 59.5 Hz, and the gain margin is around 0.97, 
indicating that the damping ratio of the structure has little effect on the stability of the artificial boundary 
system.
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Table 8. Frequency domain analysis of systems with different structural frequencies

Structural frequency (Hz) 2 4 6 8

Maximum of gain margin (Hz) 59.59 59.57 59.55 59.52

Magnitude at the maximum of gain margin 9.45 × 10-14 3.83 × 10-13 8.81 × 10-13 1.62 × 10-12

Gain margin 0.1876 0.7642 1.7673 3.2690

Table 9. Frequency domain analysis of system with different structural damping ratios

structural damping ratio 0.01 0.03 0.05 0.07

Maximum of gain margin (Hz) 59.60 59.58 59.56 59.54

Magnitude at the maximum of gain margin 4.87 × 10-13 4.8701 × 10-13 4.8681 × 10-13 4.8661 × 10-13

Gain margin 0.9643 0.9693 0.9743 0.9793

Figure 18. Dynamic characteristic of structure with different structural frequencies.

Effect of discrete-time step on coupled system stability
In order to analyze the effect of s discrete-time step Δt on system stability, the fitting results of the 
horizontal motion frequency response function of the circular foundation in Section "Instability 
phenomenon of the coupled system" are adopted. Taking time steps of Δt = 0.005, 0.01, and 0.02 s, using the 
rational approximation function to fit the original frequency response function. The El Centro earthquake is 
the external excitation, and we perform time history and gain margin analysis.
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Figure 19. Dynamic characteristic of coupled system with different frequencies.

Figure 20. Dynamic characteristic of structure with different structural damping ratios.

From Figure 22, it can be observed that the fitting results for all three discrete-time steps meet the 
requirement, so there is no significant error due to fitting inaccuracies. Analyzing the displacement time 
history from Figure 22, it is evident that as the discrete-time step increases, the coupled system transitions 
from stability to instability, and the instability point occurs earlier. Through Table 10, it can be seen that 
with the increase in the discrete-time step, the frequency at which the maximum gain margin occurs shifts 
to lower values. In addition, the gain margin of the system increases from 0.5288 to 4.9717. This 
phenomenon indicates that higher discrete-time steps are more likely to lead to instability in the coupled 
system.
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Table 10. Frequency domain analysis of system with different discrete-time steps

Discrete-time step (s) 0.005 0.01 0.02

Maximum of gain margin (Hz) 86.06 56.96 28.47

Magnitude at the maximum of gain margin 5.86 × 1012 5.881 × 1012 5.922 × 1012

Gain margin 0.5288 2.1489 9.1123

Figure 21. Dynamic characteristic of coupled system with different structural damping ratios.

CONCLUSION
In order to understand the instability issue of the coupled system of discrete rational approximation 
artificial boundary and superstructure, this paper proposes a method to explain the instability mechanism of 
the artificial boundary coupled system based on the concept of gain margin. Through different numerical 
examples, the effect of soil characteristics, structural characteristics, and discrete-time steps on system 
stability is analyzed. The main conclusions are as follows:

(1) The closed-loop transfer function of the SDOF artificial boundary system is established. Based on the 
concept of gain margin and the closed-loop transfer function, an instability mechanism analysis method of 
the coupled system of discrete rational approximation artificial boundary and upper structure is proposed in 
frequency domain.

(2) Theoretical analysis and numerical simulation demonstrated that the instability frequency of the coupled 
system is out of the fitting frequency range for discrete rational approximation function and near the 
Nyquist frequency. Therefore, it can be shown that the main reason causing the instability of the coupled 
system is that the magnitude of the discrete rational approximation function appears to be a large peak 
outside the fitting frequency range, which seriously distorts the dynamic characteristic of the converted 
time-domain model in the high frequency range. Thus, the description of discrete rational approximation 
functions obviously causes errors for the artificial boundary system beyond the fitting frequency range.
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Figure 22. Analysis results of frequency domain and time domain under different discrete-time steps of structure-circular foundation. 
(A) Δt = 0.005 s: (A-a) Parameter fitting result of circular foundation; (A-b) Time history result of circular foundation; (A-c) Infinite soil 
domain frequency domain characteristic; (A-d) Soil-structure interaction system frequency domain characteristic; (B) Δt = 0.01 s: (B-a) 
Parameter fitting result of circular foundation; (B-b) Time history result of circular foundation; (B-c) Infinite soil domain frequency 
domain characteristic; (B-d) Soil-structure interaction system frequency domain characteristic; (C) Δt = 0.02 s: (C-a) Parameter fitting 
result of circular foundation; (C-b) Time history result of circular foundation; (C-c) Infinite soil domain frequency domain characteristic; 
(C-d) Soil-structure interaction system frequency domain characteristic.

(3) The effect of shear moduli of soil, frequency and damping ratios of different structures, and discrete-
time steps on the stability of the coupled system is analyzed. Numerical simulation results show that the 
increase of soil shear modulus leads to the increase of static stiffness of soil, and the magnitude of discrete 
rational approximation function increases accordingly. The stability of the coupled system decreases with 
the increase of structural frequency, while the structural damping ratio has little effect on the system 
stability. As the discrete-time step increases, the gain margin of the coupled system also increases 
significantly; the coupled system becomes more prone to instability, which is detrimental to the stability of 
the artificial boundary system.

(4) Meanwhile, this paper has the following limitations: The rational approximation function can only 
address linear problems within the frequency domain and is unable to account for the nonlinearity of the 
soil. In addition, this passage only focuses on the instability issues of the medium under single deformation 
such as horizontal and sway, without considering its behavior under coupled deformations. We will address 
this issue in future work.
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