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Abstract
Cholangiocarcinoma (CCA) grows within a highly desmoplastic microenvironment, exhibiting a continuous 
interconnection with the immune infiltrate, which is characterized by an abundance of immune cells, including 
natural killer cells, T lymphocytes, and macrophages. The presence of inflammatory cells within the tumor 
microenvironment plays a crucial role in determining the aggressiveness and growth of CCA. The immune cell 
population engages in diverse and dynamic interactions with cancer cells. The balance of different subpopulations 
within CCA can generate varying responses, either inhibiting or promoting tumoral progression. The purpose of this 
review is to offer a comprehensive overview of the role of various immune infiltrate subpopulations within the 
tumor microenvironment, with a particular focus on the actions of tumor-associated macrophages (TAMs) and 
their critical regulation in the development and progression of CCA. TAMs play vital roles in maintaining 
homeostasis, facilitating tissue repair, and contributing to immune responses due to their significant functional 
diversity. Macrophages are present in numerous types of cancer, and their emerging role has also been observed in 
CCA. Recognizing and attaining a deeper comprehension of the intricate interplay between infiltrating immune 
cells and CCA cells is essential to identify new opportunities to advance treatment strategies.
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INTRODUCTION
CCA represents the second most prevalent form of primary liver cancer, comprising approximately 10%-
15% of all cases of primary liver malignancies. It arises from different sections of the biliary tree and 
expresses epithelial markers of cholangiocyte differentiation[1,2].

Worldwide, CCA affects more men than women, and there is a substantial increase in the mortality rate 
with age[3,4].

The incidence and mortality rates of CCA exhibit significant geographical variation worldwide. The 
incidence ranges from 85 per 100,000 in Eastern countries (such as northeastern Thailand) to 0.4 per 
100,000 in Northern countries (like Canada). Similarly, Eastern countries exhibit the highest mortality rates 
for cholangiocarcinoma, with a rate of 2.5 per 100,000, whereas the lowest mortality rates, ranging from 0.2 
to 0.5 per 100,000, are observed in South America[3,5,6].

Geographical variations in incidence and mortality likely reflect a multifactorial etiology based on regional 
risk factors and genetic predispositions[6].

Classification and histology of cholangiocarcinoma
The classification of CCA is based on the anatomical site of the biliary ducts and distinguishes among 
intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) subtypes[7,8].

Intrahepatic CCA
Intrahepatic CCA (iCCA) represents approximately 10% of all Cholangiocarcinoma cases and is associated 
with a rising global incidence and poor outcomes. It develops within the liver parenchyma, originating from 
the secondary bile ducts. Following hepatocellular carcinoma, cholangiocarcinoma is the second most 
common primary intrahepatic liver cancer[9,10].

According to the most recent tumor classification by the World Health Organization (WHO)[11], iCCA can 
be classified into two distinct types: perihilar large duct type (iCCAphl) and peripheral small duct type 
(iCCApps).This new classification was introduced following the recognition of distinct tumor cell types and 
anatomical locations associated with iCCA.

ICCApps arises from intrahepatic bile ductules or Canals of Hering. It has a mass-forming growth pattern 
within the liver tissue and displays histological features characteristic of a tubular or acinar 
adenocarcinoma.

Additionally, iCCApps is associated with poor or absent mucin production[12,13]. On the contrary, iCCAphl 
originates from large intrahepatic bile ducts or their peribiliary glands and is characterized by extended 
mucin production. Histologically, iCCAphl demonstrates a growth pattern with large tubular or papillary 
architecture[12,14]

ICCApps typically exhibits larger tumor size, less frequent lymph node metastasis, lower expression of Ki67, 
CA19-9, and CEA, and a better prognosis compared to iCCAphl[13,15]. ICCA can be further macroscopically 
divided into different subtypes, including mass-forming (60%-80%), periductal-infiltrating (15%-35%), 
intraductal (8%-29%), and undefined and mixed subtypes[14]. This classification is based on distinct growth 
patterns observed in CCA. These classes differ in terms of prognosis and their association with specific CCA 
types.
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The most common growth pattern observed in iCCA is the mass-forming type. On the other hand, 
intraductal iCCA is a papillary tumor with a slow growth rate, which is associated with a more favorable 
prognosis. Conversely, periductal infiltrating CCA exhibits a growth pattern along the bile duct without 
forming a distinct mass. Instead, it manifests as diffuse bile duct thickening or small lesions. This rare 
condition is often found concurrently with mass-forming CCA[16,17].

Perihilar CCA and Distal CCA
Perihilar CCA (pCCA) arises in the common bile duct, specifically below the secondary biliary branches 
and above the cystic duct. It represents the most prevalent subtype of cholangiocarcinoma, accounting for 
an incidence of 50%-60%.

Distal CCA (dCCA) is localized to the region between the origin of the cystic duct and Vater's ampulla. It 
represents approximately 20%-30% of all cholangiocarcinoma cases[18].

Both pCCA and dCCA often present with similar characteristics, appearing as flat or poorly defined nodular 
sclerosing tumors or, less commonly, as intraductal papillary masses. Histologically, the majority of both 
pCCA and dCCA cases are conventional mucin-producing adenocarcinomas or papillary tumors[19].

PCCA and dCCA are often regarded as single entity due to their similarities and are collectively referred to 
as extrahepatic cholangiocarcinoma (eCCA).

PCCA, dCCA, and large bile duct iCCA share a common origin from columnar mucous cholangiocytes, as 
well as some typical mutations, including frequent mutations of KRAS and/or P53[12,14,20,21].

Moreover, they share a typical presentation characterized by periductal infiltration or an intraductal growth 
pattern[18,19].

On the other hand, iCCA pps is characterized by a mass-forming pattern and the presence of fibroblast 
growth receptor 2 (FGFR2) fusions and isocitrate dehydrogenase (IDH 1-2)[22,23].

Risk factors
Currently, cholangiocarcinoma is predominantly observed to have a sporadic origin, however, Multiple risk 
factors have been associated with the development of CCA[18].

Some risk factors for CCA, such as autoimmune disease (type I diabetes), inflammatory bowel disease 
(IBD), and peptic ulcers can be considered common to all the subtypes, while others specifically influence 
certain CCA subtypes or are region-specific[6,24].

Likewise, alcohol consumption, non-alcoholic fatty liver diseases (NAFLD), lupus, obesity, alcohol-related 
disorders, HBV and HCV infections, and hemochromatosis were more strongly associated with iCCA. On 
the other hand, cholangitis, chronic pancreatitis, choledochal cysts, cholelithiasis, choledocholithiasis, and 
tobacco smoking tended to be more strongly related to eCCA[24-26].

Caroli disease (CD) demonstrates the most significant associations with CCA compared to any other 
medical condition, resulting in a 38-fold higher risk of iCCA and a 97-fold higher risk of eCCA[24].
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Figure 1. The image represents the anatomical classification of CCA into iCCA and eCCA, further divided into pCCA and dCCA 
subtypes[7]. Additionally, the image illustrates the different gross patterns observed in intrahepatic CCA, including mass-forming, 
intraductal, and periductal patterns[14]. The surrounding circle highlights the main risk factors associated with cholangiocarcinoma, 
which are common to all CCA types but may have a more typical cause for each subtype. These risk factors are categorized into three 
groups: light blue indicates the primary risk factors for extrahepatic CCA, light green signifies the main risk factors for intrahepatic CCA, 
and yellow represents the shared risk factors between the two types of CCA[6,29]. IBD: inflammatory bowel disease; PSC: primary 
sclerosing cholangitis; NAFLD: non-alcoholic fatty liver diseases; eCCA: extrahepatic cholangiocarcinoma; iCCA: intrahepatic 
cholangiocarcinoma; pCCA: perihilar cholangiocarcinoma; dCCA: distal cholangiocarcinoma.

Caroli disease is an extremely rare liver disease, with an incidence of 1 in 1,000,000. It is characterized by 
non-obstructive cystic dilatations of the embryonic bile ducts, leading to an anomalous expansion[27].

Furthermore, Primary sclerosing cholangitis (PSC) is a rare condition strongly related to CCA, particularly 
eCCA in northern Europe and the United States. Approximately 10% of all the patients with PSC develop 
CCA, resulting in an overall average risk of cholangiocarcinoma that is approximately 400 times higher than 
the non-affected population. Cholangiocarcinoma affects approximately 10% of all patients with PSC[28].

The distinct relationship between CCA subtypes and specific risk factors has provided insight into regional 
incidence trends.

Liver flukes, such as Opisthorchis viverrini and Clonorchis sinensis, are prevalent in eastern countries, 
influencing the rates of CCA in those regions. However, in Western countries, liver fluke infection is an 
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unlikely factor. Infections caused by liver flukes induce biliary epithelial hyperplasia, potentially facilitating 
changes in cholangiocarcinogenesis and exerting a promoting effect[29].

Underlining the importance of regional risk factors, different studies have demonstrated that the rates of 
iCCA in different countries correspond to the trends in alcohol consumption. For example, in countries 
such as Italy and France, where a decrease in alcohol-associated liver disease has been observed, there has 
also been a reduction in the incidence of iCCA. Conversely, countries that have experienced an increase in 
HCV infections, obesity, or NAFLD, have a higher incidence of iCCA[24,30,31] [Figure 1].

Genetics alterations in cholangiocarcinoma
Cholangiocarcinoma (CCA) exhibits considerable genetic heterogeneity attributed to chromosomal 
aberrations, as well as genetic and epigenetic mutations.

The mutations are likely to arise as a result of chronic inflammation, which directly damages the DNA 
molecules and impairs DNA repair mechanisms. These DNA lesions give rise to molecular abnormalities, 
leading to the accumulation of additional mutations and the subsequent development of the tumor[32].

Despite the diverse phenotypic presentations and activated molecular pathways in CCA, several common 
chromosomal alterations have been identified. These include losses at 1p, 4q, 8p, 9p, 17p, and 18p, as well as 
gains at 1q, 5p, 7p, 8q, 17q, 19p, and 20q[33].

Some of these common chromosomal alterations involved important genes, such as ERBB2 and MAP2K2/
MEK, underlying the significance of constitutive activation of the growth factors pathway in cancer 
development[34,35].

The major oncogenic networks that are deregulated in CCA, involve key molecules including transforming 
growth factor (TGF-β), mitogen-activated protein kinase-1/2 (MAPK 1/2), and in genes enriched in key 
networks controlled by VEGF/ERRB, CTNNB1/MYC, and tumor necrosis factor (TNF)[36].

Genetic studies have identified a direct relationship between gene expression and patient prognosis. 
Mutations in KRAS, TP53, and ARID2 were found to be significantly associated with poorer patient 
outcomes[37].

Furthermore, distinct distributions of mutations can be observed among the different subtypes of CCA. 
This highlights the importance of categorizing CCA based on subtype to understand the specific mutation 
profiles and their implications.

Genetic alterations such as FGFR2 (fibroblast growth factor receptor 2) fusion genes, hotspot IDH 
mutations in IDH1 and IDH2, BAP1, and RNF43 genes are much more present in iCCA[38].

Additionally, the JAK-STAT signaling pathway, which is important for the activation of 
immunosuppressive effects, is specifically expressed in iCCA due to a mutation of STAT3[39].

On the other hand, mutations in ARID1B and ELF3 are more frequently observed in eCCA compared to 
iCCA. Additionally, specific gene fusions such as ATP1B-PRKACA and ATP1B-PRKACB have been 
detected exclusively in eCCA cases.
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Furthermore, when considering dCCA and pCCA subtypes, a significant differentiation is observed 
primarily in the expression of TP53, which is more frequently mutated in distal cases[37].

It is important to emphasize how these mutations can result in alterations not only within the tumor cells 
but also in the surrounding tumor microenvironment. Mutations in genes such as FGFR2, and the 
 
JAK-STAT pathway can disrupt the immune infiltrate and influence the tumor microenvironment (TME). 
The differential expression of mutations in various subtypes of cholangiocarcinoma has the potential to play 
a pivotal role in elucidating the distinct characteristics of the tumor microenvironment associated with each 
subtype.

IMMUNE INFILTRATE
The progression of the tumor is maintained by the interplay between inflammatory cells and tumor cells, 
where inflammatory cells play a crucial role at different stages of tumor growth, including initiation, 
promotion, malignant transformation, invasion, and metastasis[40]. Within the tissue, there exists a complex 
and ever-changing network of cytokines, chemokines, growth factors, inflammatory mediators, and 
enzymes involved in modifying the extracellular matrix. This network facilitates intercellular 
communication amidst notable alterations in the physical and chemical properties of the tissue. This leads 
to the reprogramming of the surrounding cells, enabling them to assume a vital role in the survival and 
advancement of the tumor[41].

In TME, various types of cellular components are present: cancer-associated fibroblasts (CAFs), vascular 
endothelial cells, lymphatic endothelial cells, and immune cells. The immune cell composition includes 
various types such as tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAM), tumor-
associated neutrophils (TAN), dendritic cells (DC), natural killer cells (NK), and myeloid-derived 
suppressor cells (MDSC), has been observed[2].

CCA grows in a pro-inflammatory microenvironment in which CAFs, ECM, and the immune cells, play a 
pivotal role in keeping these conditions that promote tumor progression and diffusion[42].

CAFs play a central role in shaping the TME in CCA by promoting increased production of extracellular 
matrix proteins and collagen. This leads to the development of a desmoplastic TME and a hypovascularized 
stroma, characterized by the formation of adhesions and fibrous connective tissue within the tumor[43,44].

The desmoplastic and hypo vascularized microenvironment poses a barrier to the infiltration of immune 
cells, leading to a higher concentration of immune cells in the peritumor area surrounding the tumor rather 
than within the tumor itself.

However, as evidenced in multiple studies outlined below, immune cells capable of infiltrating the tumor 
site play a pivotal role in the tumor's development and progression. Modulating the immune response in 
CCA is a primary target for future therapeutic interventions, aiming to activate the immune response and 
reduce genetic instability and tumor development.

Tumor-infiltrating lymphocytes
Of the various inflammatory cells that infiltrate the tumor, tumor-infiltrating lymphocytes (TILs) are 
recognized as the primary contributors to the host immune response against tumor cells[45].
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TILS is composed of two main populations: T cells and B cells[46].

T cells can be classified based on their T cell receptor (TCR) subunits, which are responsible for recognizing 
membrane-bound peptides presented on the Major Histocompatibility Complex (MHC). The two major 
populations of T cells are distinguished by the expression of cell surface molecules CD4 and CD8, 
respectively.

CD8+ T cells are capable of recognizing peptides presented by MHC class I molecules, whereas CD4+ T cells 
rely on MHC class II molecules for peptide recognition[47].

Both CD4+ and CD8+ T cells are present in the tumor microenvironment of cholangiocarcinoma, but their 
distribution differs. Studies revealed that CD4+ cells are predominantly located in the interface area 
surrounding the tumor, while CD8+ cells infiltrate the tumor tissue[48].

CD4+ is an antigenic peptide expressed in approximately 60% of mature T cells. CD4+ cells differentiate into 
T helper lymphocytes, which can activate and stimulate B cells, CD8+ cells, and TAMs. T-helper 
lymphocytes involvement in the immune response against cancer has been associated with better overall 
survival in patients[49].

Moreover, the immunosuppressive effects are mediated by a subgroup of T cells expressing CD4+CD25+

Foxp3+, known as regulatory T cells (Tregs). Tregs represent approximately 5%-10% of the total number of 
CD4+.

Tregs suppress T cells’ activity by inhibiting the costimulatory molecule CD28. This is achieved through the 
overexpression of Foxp3+, a transcription factor associated with the up-regulation of CTLA-4 on the cell 
surface[50].

Single-cell RNA-sequencing analysis of T cells comparing the tumoral and peritumoral areas of iCCA has 
shown an altered network of transcription factors. This altered network leads to increased infiltration of 
hyperactivated CD4+ Tregs and a reduction in the effector functions ofCD8+ T cells. This dysregulated 
immune response is likely the cause of the negative impact of Tregs in CCA[51].

Tregs have been implicated in cancer progression and a TME that is rich in Treg cells and has low levels of 
CD8+ T cells is associated with poor overall survival. This suggests that the presence of Tregs in the TME 
contributes to tumor progression and is indicative of a worse prognosis in CCA[52].

On the other hand, cytotoxic CD8+ T lymphocytes (CTL) can selectively detect and induce tumor cell death 
through the release of cytotoxic granules.

Among the antigens expressed by tumor cells, tumor-specific neoantigens play a significant role. Upon 
encountering antigens in an acute inflammatory environment, naïve antigen-specific CD8+ T cells undergo 
clonal expansion and differentiate into cytolytic effector T cells. Despite the presence of cytolytic effector T 
cells in a neoantigen-enriched tumor microenvironment, cancer can develop evasive strategies that enable 
its progression[53,54].
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Based on immunohistochemical staining, CD8+ T cells are found to be the most abundant tumor-infiltrating 
lymphocytes (TILs) within the tumor regions.

In contrast to regulatory T cells (Tregs), CD8+ cytotoxic T lymphocytes exhibit anti-cancer activities, and a 
higher density of CTLs is associated with longer overall survival or disease-free survival[49].

Lymphocyte B cells play a significant role in inhibiting tumor development through various mechanisms. 
They are involved in the production of tumor-reactive antibodies, priming CD4+ and CD8+ T cells, and 
releasing cytokines that influence the activities of other immune cells such as NK cells, DCs, and TAMs[55,56]. 
Although B cells are less represented among TILs, a high infiltration of B cells in CCA has been associated 
with better overall survival[57].

Natural killer cells
NK cells, a type of innate lymphoid cells, possess the capacity to identify and eradicate tumor cells without 
requiring prior antigenic exposure. In humans, NK cells are characterized as CD3-CD56+ lymphocytes.

NK cell recognition is mediated by multiple receptor families, such as CD94-NKG2 and KIRs, which 
specifically bind to MHC class I molecules. These receptors exhibit either inhibitory or activating actions. 
Inhibitory receptors function to inhibit the killing of healthy cells, whereas activating receptors interact with 
ligands expressed on rapidly proliferating cells, infected cells, transformed cells, and tumor cells.

NK cell binding between activating receptors and their ligands leads to the formation of an immunological 
synapse, triggering the release of granules containing perforin and granzymes. Additionally, NK cell 
activation results in the expression of death-inducing ligands like FAS ligand and TNF-related apoptosis-
inducing ligand (TRAIL), which initiate the apoptosis cascade[58].

The liver, due to its exposure to a large number of antigens, is rich in NK cells, accounting for nearly 50% of 
all liver lymphocytes[59,60].

Currently, only a limited number of studies have been conducted to fully characterize the role of NK cells in 
CCA. However, the current study has demonstrated the cytolytic activity of NK cells against CCA cells 
through in vitro and in vivo experiments[61,62].

Despite the demonstrated cytotoxic activity of NK cells, cancer cells have been reported to employ evasive 
strategies. Carnevale et al. have shown that iCCA cells can induce apoptosis in NK cells and T cells (CD4+ 
and CD8+) through the Fas/FasL pathway[63].

Tumor-associated neutrophils
Neutrophils are the most abundant leukocyte in human blood, constituting approximately 50%-70% of the 
total leukocyte population. Neutrophils are the initial responders to cellular damage, and their infiltration 
contributes to persistent inflammation.

Under various cytokine stimulations, neutrophils can differentiate into two distinct phenotypes: 
antitumoral (N1) or protumor (N2). N1 neutrophils exert their antitumoral activity through direct 
cytotoxicity, antibody-dependent recognition, and immune cell activation via cytokine release. Conversely, 
N2 neutrophils activation leads to a persistent release of enzymes, resulting in inflammatory angiogenesis 
and the production of reactive oxygen species. These conditions collectively facilitate cancer growth[64-66].



Page 9 of Lodetti Zangrandi et al. Hepatoma Res 2023;9:32 https://dx.doi.org/10.20517/2394-5079.2023.32 21

Another crucial aspect of neutrophil action is their interaction with and production of chemokines. Zhou et 
al. have demonstrated that CXCL5, a member of the CXC-type chemokine family, is overexpressed in 
cholangiocarcinoma cells. This chemokine plays a role in promoting the growth and metastasis of iCCA by 
recruiting infiltrating neutrophils within the tumor microenvironment[67].

Numerous studies have extensively highlighted the significance of neutrophil infiltration, with the 
Neutrophil-to-Lymphocyte Ratio (NLR) emerging as a valuable prognostic marker for long-term outcomes. 
Independent associations have been observed between NLR and worse Overall Survival and Disease-Free 
Survival following curative resection of both pCCA and iCCA. A high NLR is thought to reflect an aberrant 
inflammatory response with a pro-tumor activity, contributing to an unfavorable prognosis[68,69].

Dendritic cells
Within healthy liver tissue, Dendritic cells DCs are typically found in limited quantities, yet they retain their 
specialized role as antigen-presenting cells (APCs) capable of initiating adaptive immune responses. Like 
other APCs, when activated, DCs capture antigens and migrate to the lymph nodes. There, they present the 
antigens on their cell membrane, leading to the activation of specific B and T cells. Additionally, DCs play a 
crucial role in facilitating the selection of T cell receptors (TCRs) and B cell receptors (BCRs)[70].

DCs can be categorized into two primary subgroups: conventional DCs (cDCs) and plasmacytoid DCs 
(pDCs). Among cDCs, there are two distinct subclusters: cDC1s, which play a role in sustaining T cell 
restimulation within the TME, and cDC2s, which are responsible for presenting antigens to naive CD4+ T 
cells and inducing their differentiation[70,71].

On the other hand, the activity of pDCs remains unclear, but they are believed to have primarily tolerogenic 
functions. This is partially supported by evidence of poor prognosis in various types of cancer[72].

Currently, limited research has been conducted to thoroughly characterize DCs in CCA. However, recent 
studies have revealed intriguing findings regarding their functionality. Observations have indicated that 
blocking IL-10 and TGF-β receptors on DCs can result in elevated IFN-γ levels and heightened cytolytic 
activity of effector T cells in CCA. This suggests a potential role for DCs in promoting an immune response 
against CCA.

Furthermore, DCs have been found to stimulate the proliferation of NK cells through a combination of 
cytokine signaling and direct cell-to-cell contact. This highlights the significance of DCs in facilitating NK 
cell activation and their potential impact on the immune response in CCA[73,74].

Myeloid-derived suppressor cells
Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of cells that undergo expansion 
in inflammatory conditions, including the TME. MDSCs can be classified into two main groups based on 
their origins: granulocytic or polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs (M-
MDSCs). The primary characteristic of MDSCs is their capacity to suppress immune responses, thereby 
directly impacting crucial immune cells[75].

The two populations, PMN-MDSCs, and M-MDSCs employ different pathways of action. PMN-MDSCs 
release reactive oxygen species (ROS), peroxynitrite, arginase 1, and prostaglandin E2 (PGE2) into the 
environment to mediate immune suppression. On the other hand, M-MDSCs secrete nitric oxide (NO), and 
immunosuppressive cytokines such as IL-10 and TGFβ, and upregulate the expression of programmed 
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death-ligand 1 (PDL1)[76].

An increase in circulating MDSCs has been reported in patients with cholangiocarcinoma[77].

Furthermore, the potential clinical importance of MDSCs is underlined by Ma et al. in their study, which 
demonstrated, using an in vivo model of cholangiocarcinoma, that concurrent depletion of PMN-MDSCs 
and macrophages sensitized the tumor to anti-PD-L1 therapy[75] [Figure 2].

Lymphocyte T CD8+, T CD4+, and CCA have a mutual inhibiting action, high-density CD4+ and CD8+ 
determine a longer OS and CCA cells can induce apoptosis in NK cells and T-cells (CD4+, CD8+), via the 
Fas/FasL pathway[49,63]. Lymphocyte Treg overexpression of CTLA 4 promotes CCA proliferation through 
the inhibition of lymphocyte T; An environment rich in Treg has poor overall survival[50,52]. High 
Lymphocyte B infiltration in CCA was related to better overall survival[57]. NLR and neutrophil infiltration 
combined with intratumor IL-17 cells are related to worse overall survival, demonstrating the importance of 
TANs infiltration as a promoter of CCA cell proliferation[68,69,78]. On the other hand, CCA cells overexpress 
CXCL5, which promotes iCCA growth and metastasis by recruiting infiltrative intertumoral neutrophils[67]. 
Has been demonstrated an in vitro and in vivo cytolytic activity of NK cells against CCA[61,62]. Dendritic cells 
interact with lymphocyte T and Natural Killer cells to promote their activities against CCA cells[73,74]. 
MDSCs act on the activity of the fibroblasts and of the macrophages causing an inhibition of CCA cells[75].

MACROPHAGES
Macrophages, known for their remarkable plasticity, represent the most versatile cells within the 
hematopoietic system. They are present in all tissues[79] and demonstrate significant functional diversity, 
playing vital roles in processes such as development, tissue homeostasis, repair, and immune responses[80]. 
They regulate immune responses by pathogen phagocytosis and antigen presentation and additionally, they 
contribute to tissue formation and reorganization, wound healing, coagulation, and inflammation[81,82].

Macrophages originate from hematopoietic stem cells (HSCs) located in the bone marrow and undergo a 
series of sequential differentiation stages. These stages include the common myeloid progenitor (CMP), the 
granulocyte-macrophage progenitor (GMP)[83], the common macrophage and DC precursor (MDP)[84], and 
finally, the committed monocyte progenitor (cMoP)[85]. The homeostatic regulation of macrophage 
development is influenced by macrophage colony-stimulating factor (M-CSF), also referred to as colony-
stimulating factor-1 (CSF-1)[86]. During the inflammatory state, granulocyte-macrophage colony-stimulating 
factor (GM-CSF) involves in the development of macrophages[87]. Macrophages are referred to by various 
names depending on which tissue they are found in, such as osteoclasts in bone, alveolar macrophages in 
the lung, microglial cells in the central nervous system, histiocytes in connective tissue, and Kupffer cells in 
the liver. These tissue-resident macrophage populations have such diverse transcriptional characteristics 
that they could potentially be classified as distinct classes of macrophages[88].

As previously stated, macrophages are plastic[79] and “ exist in a continuum of functional states ”[89]. The 
mononuclear phagocyte system is widely recognized for its functional versatility, and the M1 and M2 
polarization paradigm represents the two extremes of the entire spectrum of macrophage functional 
activity[90,91]. As a result, macrophages present in distinct portions of TME display properties of both M1 and 
M2, depending on the tumor type[92]. The diverse signals within the TME can influence the diversity and 
function of TAMs, leading to their dual role in tumor progression, which can either promote or suppress 
tumor growth[93]. TAMs can be classified into classically activated (M1) and alternatively activated (M2) 
phenotypes[94,95] analogous to T helper type-1 (Th1) and T helper type-2 (Th2) of T cells[91].
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Figure 2. Representation of the immune infiltrate interaction with CCA and its microenvironment. TANs: tumor-associated neutrophils; 
NK: natural killer; DCs: dendritic cells; MDSCs: myeloid-derived suppressor cells; CCA: cholangiocarcinoma.

M1 macrophages, also called classically activated M1 macrophages, are activated under the condition of Th1 
cytokines, such as interferon-gamma (INF-γ)[96], tumor necrosis factor (TNF-α), GM-CSF[97,98] and toll-like 
receptor (TLR) ligands[99] alone or together with lipopolysaccharide (LPS)[100] [Figure 3]. Their activation is 
characterized by high antigen presenting[101] and high phagocytic capacity[102], expressing high levels of pro-
inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-12, IL-23, C-X-C motif chemokine (CXCL)9, 
and CXCL10, and major histocompatibility complex (MHC) molecules[103]. The expression of surface 
proteins CD68, CD80, CD86[104], and intracellular protein suppressor cytokine signaling 3 (SOCS3)[105] are 
upregulated. M1 macrophages are involved in the Th1 response to infection[106].

M2s are activated by M-CSF[107], prostaglandin F (PGF), prostaglandin E2 (PGE2)[79], and vitamin D3[108], and 
they produce transforming growth factor beta (TGF-β), vascular endothelial growth factor A (VEGF-A), 
and matrix metalloproteinase-2 (MMP-2)[109]. M2 macrophages exhibit elevated IL-10, scavenger receptor A 
(CD163, CD204)[99], arginase-1[40], mannose receptor-1 (CD206), and c-type lectin (CD301) expression[110]. 
M2 macrophages downregulate the expression of MHC class II and IL-12 expression[40]. M2 macrophage 
induction can be enhanced by IL-25 and IL-33 indirectly through Th2 cells[111,112].

TAMs appear in the majority of human and experimental murine cancer models[113]. The release of 
macrophage components into the tumor stroma, such as epidermal growth factor (EGF), fibroblast growth 
factor (FGF) family proteins, TGF-β, VEGF, distinct chemokines and cytokines, enhances tumor 
progression and promotes cell migration and metastasis[91]. The phenotype of TAMs is defined by their gene 
expression profile rather than deterministic differentiation pathways and lineage choices, as seen in Th1 and 
Th2 cells[40]. TAMs undergo M1-like or M2-like activation in response to the effects of tumor-derived 
growth factors, especially M-CSF[91], after being derived from peripheral blood monocytes and recruited to 
TME[103]. TAMs are associated with elevated levels of anti-inflammatory cytokine expression, which can 
alter the immunosuppressive capacity of TME and promote tumor development via TAM-derived 
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Figure 3. Classically activated M1 macrophages are activated by interferon-gamma (INF- γ)[96], tumor necrosis factor (TNF-α), GM-
CSF[97,98] and lipopolysaccharide (LPS)[100], whereas alternatively activated macrophages are activated by M- CSF[107], prostaglandin F 
(PGF), prostaglandin E2 (PGE)[79], and vitamin D3. M1 phenotype is characterized by IL-1β, IL-6, IL-12, IL-23, CXCL9, CXCL10, and major 
MHC molecules[103] expression and M2 phenotype is characterized by IL-10, TGF-β, VEGF-A, MMP-2 and arginase-1[40] expression. M1 
macrophages also express surface proteins CD68, CD80 and CD86[104], whereas M2 macrophages express CD163, CD204[99], CD206, 
and CD301.

angiogenesis factors and proteases[106]. TAM-related subpopulations, such as, TEK tyrosine kinase receptor 
TIE-2 expressing monocyte subgroup (TEM)[114], myeloid-derived suppressor cells (MDSCs), and myeloid 
dendritic cells (mDCs) have been associated with a pro-tumorigenic inflammatory microenvironment[115].

Recent evidence shows that TAMs are obligated for tumor cell motility, invasion, and metastasis[116]. Data 
show that extracellular matrix (ECM) fragments produced by tumors or exosomes establish pre-metastatic 
niches, which is an appropriate environment for tumor cell survival and expansion induced at distant sites 
by the tumor[117], to be responsive to the circulating tumor cells by recruiting CD11b and VEGFR1 positive 
myeloid cells[118,119]. Metastatic cells must resist detachment-induced cell death, also known as anoikis, as 
they infiltrate into circulation. TAMs can be physically linked to cancer cells via the secretion of cytokines 
and assist them to travel through circulation[116].

Transcriptional profiling on oligonucleotide arrays enriched TAMs shows overexpression of angiogenic 
molecules[120]. Angiogenic TAMs, which are characterized by the expression of angiopoietin receptor 
TIE2[121,122], have an essential role in angiogenesis, regulating the angiogenic switch[123].

TAMs accumulate in tumor necrotic zones, which are characterized by low oxygen levels[124]. It is proposed 
that TAMs are attracted to hypoxic regions of tumors due to the release of hypoxia-induced chemo-
attractants such as VEGF, endothelins, endothelial-monocyte-activating polypeptide II (EMAP2, also 
known as AIMP1)[125], and hypoxia-inducible factor (HIF-1) dependent factors modulating TAM migration 
in avascular areas[126].

Tumor-associated macrophages in cholangiocarcinoma
TAMs are immensely staged in various cancers, and CCA is one of them[18,127-129]. CCA cells and various 
constituents of the TME can attract TAMs by releasing factors such as monocyte chemo-attractant 
protein-1 (MCP-1, also known as chemokine ligand-2 or CCL2), macrophage colony-stimulating factor (M-
CSF), and vascular endothelial growth factor-A (VEGF-A)[53,130-132]. Recent evidence shows that CCA 
upregulates TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14), 
resulting in the induce of MCP-1, CX3CL1, IL-6, IL-8, M-CSF, and GM-CSF secretion through NF-
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kB[132,133]. MCP-1 regulates TAM recruitment and is associated with an increase in TAM marker CD206+ and 
tumor aggressiveness after invading the tumor sites, straying to a pro-tumorigenic phenotype despite the 
initial role of macrophages[132].

Research reveals that macrophages are likely to display polarization changes during the specific stages of 
infection. C. sinensis (Clonorchis sinensis infection which is closely associated with CCA formation)[134] 
infection models in mice showed M1 phenotype polarization at the early stage of infection, followed by an 
increase in CD47 secretion of CCA cells which indicates blockage of phagocytosis[135], and M2 phenotype 
polarization at the late stages of cholangiocarcinogenesis, contributing to fibrosis and remodeling of the bile 
duct[136].

Pre-clinical and clinical data suggest that rich TAM content in TME is linked with poor prognosis[137]. Many 
studies have found a linkage between the presence of TAMs and their clinical outcomes in CCA[52,138-142]. In a 
study of 39 patients with intrahepatic cholangiocarcinoma (iCCA), TAM infiltration has shown an 
association with angiogenesis, regulatory T cell (Treg) infiltration, and poor prognosis, with CCA cells 
inducing M2-like phenotype via signal transducer and activator of transcription 3 (STAT3) activation[138,139]. 
In an immunohistochemistry (IHC) analysis of 114 patients with CCA, it has shown that there is a positive 
interaction between TAMs, Tregs, and tumor-infiltrating neutrophils[52]. An investigation of the mechanism 
of TAM-derived progression of CCA demonstrated that chronic liver injury results in the inducement of 
mitochondrial dysfunction, oxidative stress, and recruitment of Kupffer cells[140]. Macrophage deficiency in 
pre-clinical models showed inhibition of Wnt signaling and limitation in tumor progression with the 
promotion of apoptosis[141].

As TAM infiltration has been linked to poor patient prognosis, it has been proposed that CCA cells may 
alter the surrounding stroma to create a tumor-promoting immune niche. Cellular spheroids derived from 
CCA cells modified macrophages into TAM phenotype which express great invasive capability[142]. TAMs 
obtained from resected human CCA tissues recited the characteristics of CCA-educated macrophages 
in vitro[142].

An insight into immunotherapeutic strategies in Cholangiocarcinoma
Immune checkpoint inhibitors in Cholangiocarcinoma
Immune checkpoints are receptors expressed by immune cells that are crucial for maintaining immune 
balance and regulating the activity of T cells. In the TME, immune checkpoints can become overexpressed 
leading to a state of T cell exhaustion, characterized by impaired effector function reducing cytotoxicity and 
cytokine production[143].

Immune checkpoint inhibitors (ICIs) are designed to disrupt the signaling pathways mediated by immune 
checkpoints, thereby facilitating enhanced activation of the immune system within the tumor 
microenvironment[144]. Currently, the role of immunotherapy in the management of CCA is delineated 
based on two separate situations[145]. The first scenario evolves around the identification of specific 
molecular alterations in the tumor, allowing for the selection of patients who would benefit from targeted 
treatment. In this context, pembrolizumab, an immune ICI, has demonstrated efficacy in patients with 
dMMR, MSI-H, and a high TMB, leading to its approval for these specific subsets of CCA patients[146-148].

The second involves the application of immunotherapy in unselected populations of patients with 
advanced-stage CCA. Initially, clinical trials focused on utilizing monotherapy with ICIs. However, this 
approach yielded limited effectiveness in patients[149].
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Consequently, alternative strategies have been pursued, primarily involving the combination of ICIs with 
cytotoxic chemotherapy. The positive outcomes observed from combining ICIs with cytotoxic 
chemotherapy have led to the approval of a specific regimen by the U.S. Food and Drug Administration 
(FDA) in 2022[150].

Moreover, the latest version of the National Comprehensive Cancer Network (NCCN) guidelines for 
hepatobiliary cancer endorses this combination as the preferred first-line treatment option for advanced-
stage CCA[151]. These regulatory approvals and guidelines reflect the growing evidence supporting the 
efficacy of combining ICIs with cytotoxic chemotherapy in advanced-stage CCA. The gemcitabine, 
cisplatin, and durvalumab regimen represents a significant advancement in the treatment landscape, 
providing a potential treatment option that has demonstrated favorable outcomes in this patient population.

Chimeric antigen receptor in cholangiocarcinoma
Genetically engineered T cells represent a promising and potent therapeutic approach with the potential for 
curative responses in cancer patients. Chimeric antigen receptor (CAR)-T cell therapies have shown 
significant success in the treatment of hematological malignancies. However, their efficacy against solid 
tumors, such as solid cancers, has been comparatively limited[152]. Various strategies are being explored to 
target frequently expressed antigens in CCA. One approach involves the use of EGFR-specific CAR-
engineered autologous CAR-T cells, which have been tested in a study involving 19 CCA patients[153]. 
Additionally, CAR-T cells targeting antigens such as MUC1 and CD133 have been developed and have 
shown promising efficacy in early in vitro studies for potential therapeutic use in CCA patients[154,155]. 
Further research and development are required to improve the efficacy of these immune cells against solid 
tumors and broaden their application to a broader spectrum of malignancies.

Novel approach to immunotherapy
Recent advances in the field of CCA treatment have emphasized the significant role of TAMs and 
granulocytic MDSCs[156].

TAMs are considered the primary source of programmed death-ligand 1 (PD-L1) expression in CCA. 
However, blocking PD-L1+ TAMs alone did not result in a reduction in tumor progression. This lack of 
response was attributed to the compensatory emergence of granulocytic MDSCs. These cells play a role in 
suppressing the immune response and promoting tumor growth. A dual approach targeting both TAMs 
and granulocytic MDSCs has shown promise in enhancing the response to immune checkpoint inhibitors 
in mice[157]. Another study has introduced a novel approach using different mouse models of CCA, which 
demonstrated that activating macrophages and dendritic cells through CD40 signaling significantly 
improves the response to anti-PD1 therapy in iCCA.

To further enhance the therapeutic response, a combination treatment involving anti-PD1, anti-CD40, 
gemcitabine, and cisplatin was employed. Remarkably, this combination led to a significant increase in 
mouse survival[158].

The recent studies highlighted the crucial significance of gaining a deeper understanding of TAMs within 
the TME to enhance the effectiveness of immunotherapies.

CONCLUSION
The ongoing investigation into distinct immune subpopulations and their potential role in future therapies 
is progressively advancing, although many aspects still lack clarity. This can be attributed to the intricate 
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interplay among different subpopulations within the TME. In order to advance the development of 
innovative therapies, it is essential to gain a comprehensive understanding of the specific characteristics and 
functions of immune cells in CCA. We will direct our attention towards future research and investigations 
that explore the interaction between macrophages and dendritic cells, as these cells play a crucial role in 
suppressing the immune response and promoting tumor growth. This interaction suggests that targeting 
these cells could hold promise as a viable approach for treatment[158].

Considering the substantial impact of immune cells in shaping the characteristics of the TME, the 
regulation of immune cell effects in CCA presents a promising strategy for suppressing tumor 
progression[159].
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