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Abstract
Autonomous robots are a hot research subject within the fields of science and technology, which has a big impact on
social-economic development. The ability of the autonomous robot to perceive and understand its working environ-
ment is the basis for solving more complicated issues. In recent years, an increasing number of artificial intelligence-
based methods have been proposed in the field of scene understanding for autonomous robots, and deep learning is
one of the current key areas in this field. Outstanding gains have been attained in the field of scene understanding
for autonomous robots based on deep learning. Thus, this paper presents a review of recent research on the deep
learning-based scene understanding for autonomous robots. This survey provides a detailed overviewof the evolution
of robotic scene understanding and summarizes the applications of deep learning methods in scene understanding
for autonomous robots. In addition, the key issues in autonomous robot scene understanding are analyzed, such
as pose estimation, saliency prediction, semantic segmentation, and object detection. Then, some representative
deep learning-based solutions for these issues are summarized. Finally, future challenges in the field of the scene
understanding for autonomous robots are discussed.
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1. INTRODUCTION
In recent years, science and technology have developed rapidly, and the applications of autonomous robots
become increasingly extensive [1–3]. With the development of the technologies, the tasks for autonomous robots
have become more complicated and challenging. To complete these tasks, one of the main requirements for
autonomous robots is the strong capability of the robot to effectively perceive and understand the complicated
three-dimensional (3D) environment in which it is positioned.

The ability of an autonomous robot to perceive and understand its own environment, akin to human percep-
tion, serves as the foundation for further autonomous interaction with the environment and human users. This
problem is also a prominent topic in the field of computer vision, which has made great progress, and lots of
research findings have been used for practical applications of autonomous robots. Many research findings in
this field are based on two-dimensional (2D) images. However, the real world is a 3D environment, and there
remains ample room for future research on the perception and understanding of 3D environments. The envi-
ronment perception is the basis of scene understanding, which can provide stable and accurate information
for scene understanding. On the other hand, scene understanding can provide richer and higher-level infor-
mation for environment perception. In this paper, we will mainly discuss the scene understanding problems.

There are lots of research results in this field. Nevertheless, a significant portion of current research is focused
onmore idealized situations. However, the real world is a complicated scene with a number of issues that affect
the accuracy of environmental perception and understanding, such as image interference, clutter occlusion,
etc. Consequently, it is crucial to study the essential technologies that enable autonomous robots to perceive
and comprehend their environment within complex 3D space, addressing both theoretical underpinnings and
practical implementation.

This paper provides a survey on the deep learning-based scene understanding for autonomous robots. We
provide a brief overview of the research methodologies used to study the perception and comprehension of
the robotic environment, and then we concentrate on deep learning-based approaches to these issues. Other
relevant surveys in the field of deep learning-based scene understanding can be used as supplements to this
paper (see e.g., [4,5] and [6,7]). Themain differences between this paper and other surveys lie in its function as an
overview of the state-of-the-art approaches in this field, owing to the continuous emergence of new approaches
driven by the rapid development of deep learning-based scene understanding. In addition, this paper provides
a selection of the latest related works from our research group.

Themain contributions of this paper are summarized as follows: (1)The advancement of scene understanding
for autonomous robots is thoroughly analyzed and reviewed; (2) A survey on the applications of deep learn-
ing methods in scene understanding for autonomous robots is given out; and (3) Some representative deep
learning-based methods in the field of autonomous robot scene understanding are analyzed. At last, some
possible future study directions in this field are discussed.

This paper is organized as follows. Section 2 provides a summary of the development of autonomous robots
and their ability to perceive and comprehend their environment. In Section 3, the key issues of the scene
understanding for autonomous robots are analyzed. Additionally, select representative deep learning-based
methods based on deep learning techniques in the field of scene understanding are outlined and analyzed.
The potential study directions of deep learning-based perception and comprehension of the environment for
autonomous robots are given out in Section 4. Finally, conclusions are given out in Section 5.

http://dx.doi.org/10.20517/ir.2023.22


Ni et al. Intell Robot 2023;3(3):374-401 I http://dx.doi.org/10.20517/ir.2023.22 Page 376

2. BACKGROUND AND SIGNIFICANCE OF THE SCENE UNDERSTANDING
The global economy has witnessed rapid growth in recent years, paralleled by swift advancements in science
and technology. The applications of robots are becoming more and more popular [8]. Autonomous robots are
the representative of advanced technologies, which are the integration of the robotics, information technology,
communication technology, and artificial intelligence. These robots have been more integrated into human
society, not only creating huge economic benefits for society but also effectively improving individual living
standards [9].

The autonomous robot industry is an important standard to evaluate the innovation and high-end manufac-
turing level of a country. The development of the autonomous robot has attracted growing attention from
countries all over the world. A number of famous research institutions and companies across the globe have
focused on the realm of autonomous robots.

The representative robotics research institutions include the Robotics and Mechatronics Center (RMC) of
the German Aerospace Center, the Computer Science and Artificial Intelligence Laboratory (CSAIL) of Mas-
sachusetts Institute of Technology, the Humanoid Robotics Institute (HRI) of Waseda University, Shenyang
Institute of Automation Chinese Academy of Sciences, the Robotics Institute of Shanghai Jiaotong University,
and so on. There are lots of representative robotic enterprises, such as ABB (Switzerland), KUKA Robotics
(Germany), Yaskawa Electric Corporation (Japan), iRobot (USA), AB Precision (UK), Saab Seaeye (Sweden),
SIASUN (China), etc [10].

Due to the current technical limitations, the functions of common autonomous robots in daily life are still
relatively simple. For example, the serving robot [see Figure 1A] and the sweeping robot [see Figure 1B]
can only complete some simple tasks, such as moving according to the planned trajectory to the designated
position. The expansion of the robot application range requires that the functions of robots are no longer
limited to mechanized or programmed operations, narrow human-computer interactions, etc. There is an
increasing need for autonomous robots to carry out more difficult tasks. Robots are anticipated to be able
to do complicated tasks, such as picking up and dropping off goods or even operating tools autonomously
by sensing their surroundings. Empowering autonomous robots with ample environmental perception and a
comprehensive understanding of their intricate 3D surroundings stands as an essential prerequisite to satisfy
the requirements for these more difficult jobs. For example, the logistics robot can make mobility control
decisions after it can autonomously perceive and understand the traffic and road environment [see Figure 1C].
To operate effectively and securely in the unknown and complex underwater environment, the underwater
search robot must be aware of its surroundings [see Figure 1D].

When an autonomous robot conducts a task in a complicated environment, it must first determine its current
position and estimate its displacement pose change through a visual Simultaneous Localization and Mapping
(SLAM) system. The robot also needs to assess the shape of the environment and comprehend the range of its
surroundings. In addition, it is of utmost practical importance to research room layout estimation in complex
cluttered environments. Next, the autonomous robot should perform the saliency detection, namely directing
its attention toward the regions of interest, akin to human behavior. This is followed by target detection, a
crucial step in identifying manipulable items and their locations within the environment. Notably, the study
of functional availability detection of objects in 3D space is fundamentally important for robots to further
perform complex operational tasks because autonomous robots need to understand the functional availability
and even the usage of each part of the object to be interacted with. This facet is closely related to the 3D
structure of the object. The main tasks of the scene understanding for the autonomous robot in a complicated
environment are shown in Figure 2.

All of these tasks introduced above are the research topics in the scene understanding of autonomous robots.
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(A) (B)

(C) (D)

Figure 1. Applications of scene understanding for autonomous robots: (A) Service robots; (B) Sweeping robots; (C) Logistics robots; (D)
Underwater search robots.
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Figure 2. The main tasks of the scene understanding for the autonomous robot.

In a word, scene understanding of autonomous robots is to analyze a scene by considering the geometric and
semantic context of its contents and the intrinsic relationships between them. The process mainly involves
matching signal information from sensors observing the scene with a model that humans use to understand
the scene. On this basis, scene understanding is the semantic extraction and addition of sensor data, which is
used to describe the scene for autonomous robots.

In the early research of scene understanding, parts-based representations for object description and scene
understanding were the mainstream methods. In these methods, the basic information and hidden deeper
information of images are reflected by extracting the low-level andmiddle-level visual features. And these early
methods often realize semantic classification through feature modeling. There are many traditional feature
representationmethods that have been usedwidely in scene understanding. Scale-Invariant Feature Transform
(SIFT) [11,12] has rotation, scale, and affine invariant qualities. It has an excellent classification effect even for
images with huge scale changes. GIST [13] is an image global description feature based on fusing contextual
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data and a spatial envelope model, which can extract the spatial structural data of pictures using the energy
spectrum. LSA (Latent Semantic Analysis) [14] is used to address the issue ofmanywords with a singlemeaning
and multiple meanings of a word in text analysis. Other good manually designed features include Speeded Up
Robust Features (SURF) [15], Histogram of Oriented Gradient (HOG) [16,17], and so on. Based on these features,
a number of traditional image scene semantic classification techniques were developed. For example, Vailaya
et al. [18] classified scene images using dual features of color moments and texture and derived global features of
images in a Bayesian framework. Li et al. [19] presented the target library-based image classification technique
by decomposing an image into a number of objects and identifying the semantics of each object to realize the
semantic classification of images.

With the rapid and substantial growth of hardware computing power, deep learningmethods have gained rapid
development [20–22]. Data-driven methods, especially those based on deep neural networks, have been proven
to have outstanding advantages in feature learning and visual data description. The scene understanding of
autonomous robots based on deep learning has been developed rapidly. Compared to traditional scene under-
standing methods, the methods based on deep neural networks can more flexibly use the adaptively extracted
features to perform tasks such as object detection, semantic segmentation, and more. As a result, they achieve
far better performance.

Environment perception and understanding of autonomous robots in complex 3D scenes is a hot topic both in
computer vision and the robotic field. However, there are some differences between normal computer vision
and the scene understanding for autonomous robots. Firstly, normal computer vision usually obtains data from
static images or videos for analysis and pays more attention to the detection, recognition, and positioning of
objects. Scene understanding for autonomous robots usually requires the combination of multiple sensor data
and needs to consider the dynamic changes in the environment and the 3D perception and understanding
of the environment in order to carry out tasks such as path planning and obstacle avoidance. Furthermore,
this process often entails interactions with both the environment and individuals, leading to decision-making
based on the interaction output. In contrast, the normal computer vision does not require such interactivity.

A lot of challenging, realistic issues still need to be resolved, and various methods have been used in this field,
such as traditional image processing methods, traditional artificial intelligence methods, and so on. Among
these methods, deep learning-based methods have achieved great success in this field for their distinct advan-
tages, such as high accuracy, strong robustness, and low cost. This paper will focus on the deep learning-based
methods used in the field of scene understanding for autonomous robots.

3. DEEP LEARNING FOR SCENE UNDERSTANDING
Deep neural networks, which serve as the foundational network for image classification, target recognition,
image segmentation, target tracking, and video analysis, are used in the deep learning-based vision system.
The network parameters are trained through big data, and the feature extraction and classification are realized
end-to-end, avoiding complex feature engineering design. Deep learning-based methods have strong feature
representation capabilities that can be used to transform the original image into low-level spatial features,
middle-level semantic features, and high-level target features. Then, through feature combination, classifica-
tion and prediction tasks can be achieved efficiently. In addition, learning-based methods have strong general-
ity and make it simpler to complete multi-task learning and multi-modal learning tasks that incorporate video,
text, and speech. This helps to advance the development of scene understanding for autonomous robots.

As introduced in Section 2, lots of issues should be solved in the field of scene understanding for autonomous
robots. In this section, the detailed applications grounded in various deep learningmethods will be introduced.
The main applications for scene understanding based on deep learning summarized here stem from the ex-
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Figure 3. Some deep learning-based models in the field of scene understanding in recent years.

tensive awareness of the authors, which can demonstrate the key issues and the latest advances in the field of
scene understanding. The main applications of deep learning in scene understanding include object detection,
semantic segmentation, pose estimation, and so on. These applications will be introduced in detail as follows.
Figure 3 shows these deep learning-based models according to the time they are published. To describe easily
without loss of generality, we do not distinguish the applications between normal computer vision and scene
understanding for autonomous robots in this paper.

As we know, the datasets are very important for the scene understanding based on deep learningmethods. Lots
of works of literature have introduced various datasets in different tasks of scene understanding. So, before
introducing the main applications of deep learning in this field, the most used datasets in the field of scene
understanding are summarized and shown in Table 1.

3.1. 3D object detection
Object detection is an image segmentation based on geometric and statistical features of the object. It com-
bines object segmentation and recognition into one task, with the aim of determining the location and class of
object appearances. Currently, 2D object detection has been relatively mature, especially with the emergence
of Faster Regions with convolutional neural network Features (Faster RCNN), which has brought it to an un-
precedented boom. For example, in the previous work of our research group [31], a deep neural network-based
SSD framework is proposed to improve the feature representation capability of feature extraction networks.
However, in the application scenarios of driverless, robotics, and augmented reality, 2D object detection can
only provide the confidence of the position and corresponding category of the object in a 2D image (see Fig-
ure 4), while the general 2D object detection cannot provide all the information needed for perceiving the
environment.

In the real world, objects have 3D shapes, and most applications require information about the length, width,
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Table 1. The most used datasets of deep learning in the field of scene understanding

KITTI [23] The KITTI dataset contains 7,481 training samples and 7,518 test samples divided
into three categories (i.e., Car, Pedestrian, and Cyclist). In addition, it is divided
into three difficulty levels based on the scale, occlusion, and truncation levels of the
objects in the context of autonomous driving (i.e., Easy, Moderate, and Hard)

nuScenes [24] The nuScenes dataset consists of 1000 challenging driving video sequences, each
about 20 seconds long, with 30𝑘 points per frame. It has 700, 150, and 150 anno-
tated sequences for training, evaluation, and test segmentation, respectively

LINEMOD [25] It is a dataset widely used for 6D object pose estimation. There are 13 objects in
this dataset. For each object, there are about 1100-1300 images with annotations
and only one object with annotation per image

FAST-YCB [26] It consists of six realistic synthetic sequences, each containing the fast motion of
a single object from the YCB model set in the desktop scene. Each sequence is
rendered in bright static lighting conditions and provides 1280 × 720 RGB-D frames
with accurate ground truth of 6D object pose and velocity

PASCAL VOC 2012 [27] It is a benchmark dataset that initially contains 1464 images for training, 1449 for
validation, and 1456 for testing. In the original PASCAL VOC 2012 dataset, there
are a total of 20 foreground object classes and one background class

Cityscapes [28] The dataset has 5,000 images captured from 50 different cities. Each image has
2048 × 10244 pixels, which have high-quality pixel-level labels of 19 semantic classes

DHF1K [29] It contains the most common and diverse scenarios, with 1000 video samples and
no publicly available ground-truth annotations. Only the first 700 annotated maps
and videos are available in the DHF1K dataset, and the remaining 300 annotations
are reserved for benchmarking

VOT-2017 [30] TheVOT-2017 dataset can be used for target tracking of different tasks and contains
60 short sequences labeled with six different attributes

(A) (B)

Figure 4. 2D object detection visualization: (A) in the bedroom; (B) in the kitchen [31].

height, and also the deflection angle of the target object. Therefore, research on methods related to 3D tar-
get detection is needed. In scene understanding for autonomous robots, object detection is a critical task to
understand the position and class of the objects with which they interact. In real 3D complex scenes, the back-
ground information is very rich; therefore, object detection techniques can be used to understand the location
and category of interactable objects by giving a 3D rectangular location candidate box and categorizing them
according to their attribution possibilities.
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Figure 5. The network overview of the BADet, where RPN denotes the region proposal network [32].

3D object detection based on deep learning is a hot research topic in the field of environment perception and
understanding. In the deep learning-based model, during the process of making the proposals in regional
proposal networks in a bottom-up manner, the resulting proposals somehow deviate from the ground truth
and appear densely in local communities. Due to the lack of a corresponding information compensation
mechanism, the proposals generated by the general regional proposal networks give up a large amount of
boundary information. To deal with this problem, Qian et al. [32] proposed BADet, a 3D object detection
model from point clouds, which can efficiently model the local boundary correlations of objects through local
neighborhood graphs and significantly facilitate the complete boundaries of each individual proposal.

BADet consists of three key components, namely, a backbone and region generation network, a region feature
aggregation module, and a boundary-aware graph neural network. Its network overview is shown in Figure 5.

In the backbone and region proposal network (RPN) of BADet, the original point cloud is voxelized into a
volume mesh for multi-scale semantic feature abstraction and 3D proposal generation with the help of the
backbone and a series of 3D sparse convolutions. Specifically, let 𝑝 be a point in a raw point cloud 𝑃 with 3D
coordinates (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) and reflectance intensities 𝑝𝑟 , then

𝑃 =
{
𝑝𝑖 = (𝑝𝑖𝑥 , 𝑝𝑖𝑦 , 𝑝𝑖𝑧, 𝑝𝑖𝑟 ) ∈ ℜ4, 𝑖 = 1, 2, · · · , 𝑁

}
(1)

where 𝑁 indicates the number of points within 𝑃. Let [𝑣𝐿 , 𝑣𝑊 , 𝑣𝐻] ∈ ℜ3 be the quantization step, then the
voxelized coordinates of 𝑝 can be obtained, namely

𝑉𝑝 =

(⌊
𝑝𝑥
𝑣𝐿

⌋
,

⌊
𝑝𝑦

𝑣𝑊

⌋
,

⌊
𝑝𝑧
𝑣𝐻

⌋)
(2)

where ⌊·⌋ is the floor function. Therefore, the point cloud 𝑃 can be positioned into a feature map with a
resolution of 𝐿 ×𝑊 × 𝐻, subject to the quantization step [𝑣𝐿 , 𝑣𝑊 , 𝑣𝐻].

In the region feature aggregation module of BADet, multi-level semantic features are leveraged to obtain more
informative RoI-wise representations. In the boundary-aware graph neural network, neighboring 3D propos-
als are used as inputs for graph construction within a given cutoff distance. Specifically, the local neighborhood
graph 𝐺 (𝑉, 𝐸) can be constructed as

𝐸 =
{
(𝑖, 𝑗)

�� 𝑥𝑖 − 𝑥 𝑗2 < 𝑟
}

(3)

where 𝑉 and 𝐸 are the nodes and edges, respectively; 𝑟 is the threshold; and 𝑥𝑖 denotes the 3D coordinates of
a node of graph 𝐺.

In [32], an overall loss 𝐿 is used, namely

𝐿 = 𝐿𝑟 𝑝𝑛 + 𝐿𝑔𝑛𝑛 + 𝐿𝑜 𝑓 𝑓 𝑠𝑒𝑡 + 𝐿𝑠𝑒𝑔 (4)
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Table 2. The results of BADet on KITTI test server and nuScenes dataset [32]

KITTI test server nuScenes dataset

Easy Moderate Hard

𝐴𝑃3𝐷 (%) 89.28 81.61 76.58 𝑚𝐴𝑃 (%) 47.65

𝐴𝑃𝐵𝐸𝑉 (%) 95.23 91.32 86.48 𝑁𝐷𝑆 (%) 58.84

𝐴𝑃3𝐷 and 𝐴𝑃𝐵𝐸𝑉 mean the Average Precision (𝐴𝑃) with 40 recall positions on both BEV (Bird’s Eye View) and 3D object detection leaderboard;
𝑚𝐴𝑃 and 𝑁𝐷𝑆 denote the mean Average Precision and nuScenes detection score, respectively.

where 𝐿𝑟 𝑝𝑛 and 𝐿𝑔𝑛𝑛 are Focal Loss and Smooth-L1 Loss for the bounding box classification and regression, re-
spectively; 𝐿𝑜 𝑓 𝑓 𝑠𝑒𝑡 is the center offset estimation loss, which is used to obtain better boundary-aware voxelwise
representations, and 𝐿𝑠𝑒𝑔 is the foreground segmentation loss.

To evaluate the performance of BADet, some comparison experiments are conducted on the KITTI and
nuScenes datasets. The results of BADet are listed in Table 2.

The results in [32] show that BADet outperforms all its competitors with remarkable margins on KITTI BEV
detection leaderboard and ranks 1st in ”Car” category of moderate difficulty.

3D object detection methods have developed rapidly with the development of deep learning techniques. In
recent years, many scholars have been exploring new results in this field. For example, Shi et al. [33] proposed
the Part-A2 net to implement the 3D object detection using only LiDAR point cloud data. Li et al. [34] proposed
the TGNet, a new graph convolution structure, that can effectively learn expressive and compositional local
geometric features from point clouds.

According to the type of input data, 3D object detection can be divided into single-modal methods and multi-
modal methods. Single-modal 3D object detection refers to the use of data collected by one kind of sensor as
input. The advantage of single-modal 3D target detection is that the input data are simple and the processing
flow is clear; the disadvantage is that the input data may not be sufficient to describe the target information
in 3D space. Multi-modal 3D object detection refers to the use of multiple data collected by multiple types
of sensors as inputs. The advantage of multi-modal 3D target detection is that the input data are rich, and
the complementarity of different modal data can be utilized to improve the accuracy and robustness of the
detection. The disadvantage is the complexity of the input data and the need to deal with inconsistencies
between different modal data. In the following, a summary of the deep learning-based 3D object detection
models presented in the last five years is illustrated in Table 3, where the type of the input data of each method
is given out.

3.2. Pose estimation
Pose estimation is a crucial component of autonomous robot technology. The pose estimation task deals with
finding the position and orientation of an object with respect to a specific coordinate system. The vision-based
pose estimation approaches employ a number of feature extraction techniques to obtain the spatial positional
information of the target from the image.

There are two classical methods for pose estimation, namely, the feature-based techniques and the template
matchingmethods. The traditional feature-based technique primarily extracts features from images and creates
a relationship between the 2D pixel points and 3D coordinate points in space. The differences in lighting and
background complexity have a significant impact on the feature extraction process. In addition, the feature-
based methods struggle to handle sparse target texture features. The template matching method can effectively
solve the pose estimation problem for the targets with weak texture features in images. However, the accuracy
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Table 3. A summary of the deep learning-based 3D object detection models presented in the last five years

Structure Reference Input data type Performances

SECOND Yan et al. (2018) [35] Single-modal 𝐴𝑃 of 83.13% on KITTI test set

F-pointNet Qi et al. (2018) [36] Multi-modal 𝐴𝑃 of 81.20% on KITTI test set

F-ConvNet Wang et al. (2019) [37] Single-modal 𝐴𝑃 of 85.88% on KITTI test set

Fast Point R-CNN Chen et al. (2019) [38] Single-modal 𝐴𝑃 of 84.28% on KITTI test set

SA-SSD He et al. (2020) [39] Single-modal 𝐴𝑃 of 88.75% on KITTI test set

TANet Liu et al. (2020) [40] Single-modal 3D 𝑚𝐴𝑃 of 62.00% on KITTI test set

TGNet Li et al. (2020) [34] Single-modal 𝑀𝐼𝑜𝑈 of 68.17% on Paris-Lille-3D datasets

CenterPoint Yin et al. (2021) [41] Single-modal 𝑚𝐴𝑃 of 58.0% on nuScenes test set

Part-A2 Shi et al. (2021) [33] Multi-modal 𝐴𝑃 of 85.94% on KITTI test set

RGBNet Wang et al. (2022) [42] Multi-modal 𝑚𝐴𝑃 of 70.2% on ScanNetV2 val set

BADet Qian et al. (2022) [32] Single-modal 𝐴𝑃 of 89.28% on KITTI test set

DCLM Chen et al. (2023) [43] Multi-modal 𝑚𝐴𝑃 of 65.6% on SUN RGB-D dataset

𝐴𝑃 means the average precision. 𝑀𝐼𝑜𝑈: the Mean Intersection over Union.
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Figure 6. Network architecture of the Voting and Attention-based model [44].

of the template matching method is determined by the number of samples in the template library. While
its accuracy improves with the number of the template libraries, it also causes a decrease in problem-solving
efficiency, making it unable to meet real-time requirements.

The development of deep learning has influenced pose estimation, and there are numerous study findings in
this field. For example, Hoang et al. [44] proposed the Voting and Attention-based model, which enhances the
accuracy of object pose estimation by learning higher-level characteristics from the dependencies between the
individual components of the object and object instances. The structure of this Voting and Attention-based
network is shown in Figure 6.

As shown in Figure 6, there are four main parts in the Voting and Attention-based model, namely the feature
extraction module based on PointNet++ architecture, part proposals learning module (Mp), object proposals
learning module (Mo), and the voting module in both Mp and Mo based on VoteNet.

In the Mp module of the Voting and Attention-based model, the higher-order interactions between the pro-
posed features can be explicitly modeled, which is formulated as non-local operations:

𝐻𝑝𝑎𝑟𝑡−𝑝𝑎𝑟𝑡 = 𝑓 (𝜃 (𝐻) 𝜙 (𝐻)) 𝑔 (𝐻) . (5)

http://dx.doi.org/10.20517/ir.2023.22


Ni et al. Intell Robot 2023;3(3):374-401 I http://dx.doi.org/10.20517/ir.2023.22 Page 384

Table 4. The pose estimation results based on the Voting and Attention-based model on nine objects in the Sil�́�ane dataset and two
objects in the Fraunhofer IPA dataset [44]

Objects Siléane dataset Fraunhofer IPA dataset Mean

Brick Bunny C. stick C.cup Gear Pepper Tless 20 Tless 22 Tless 29 Gear shaft Ring screw

𝐴𝑃 0.48 0.61 0.60 0.52 0.64 0.39 0.44 0.37 0.46 0.65 0.67 0.53

where 𝜃 (·), 𝜙(·), 𝑎𝑛𝑑𝑔(·) are the learnable transformation on the input feature map 𝐻, and 𝑓 (·) is the encoding
function of the relationship between any two parts.

In addition, the compact generalized non-local network (CGNL) [45] is used as the self-attentive module inMp.
Specifically, the CGNL-based self-attentive module takes 𝐾 clusters 𝐶 = (𝐶1, 𝐶2, ...𝐶𝐾 ) as input. Then, votes
from each cluster are processed by the Multi-Layer Perceptron (MLP) and passed to CGNL.The self-attention
mechanism allows features from different clusters to interact with each other and find out who they should
pay more attention to.

Similarly, in the Mo module of the Voting and Attention-based model, the instance-to-instance correlation
is modeled. Firstly, 𝐾 clusters from the high-dimensional features and a set of object centers are generated.
Then, CGNL is used to model the rich interdependencies between clusters in feature space. The output is a
new feature mapping:

𝐻𝑜𝑏 𝑗−𝑜𝑏 𝑗 = 𝐶𝐺𝑁𝐿 (𝑚𝑎𝑥 (𝑀𝐿𝑃 (𝑣𝑖))) , 𝑖 = 1, . . . , 𝑛 (6)

where 𝑣𝑖 is the 𝑖-th vote.

Finally, the new feature maps 𝐻𝑝𝑎𝑟𝑡−𝑝𝑎𝑟𝑡 and 𝐻𝑜𝑏 𝑗−𝑜𝑏 𝑗 are aggregated to the global information by an MLP
layer after a max-pooling and concatenation operations.

In the Voting and Attention-based model, a multi-task loss is used for joint learning, namely

𝐿 = 𝜆1𝐿𝑝𝑎𝑟𝑡−𝑣𝑜𝑡𝑒 + 𝜆2𝐿𝑜𝑏 𝑗𝑒𝑐𝑡−𝑣𝑜𝑡𝑒 + 𝜆3𝐿𝑝𝑜𝑠𝑒 (7)

where 𝜆1, 𝜆2, and 𝜆3 are the weights of each task. The losses include voting partial loss 𝐿𝑝𝑎𝑟𝑡−𝑣𝑜𝑡𝑒 , object voting
loss 𝐿𝑜𝑏 𝑗𝑒𝑐𝑡−𝑣𝑜𝑡𝑒 , and pose loss 𝐿𝑝𝑜𝑠𝑒 .

The pose estimation results based on the Voting and Attention-based model on nine objects in the Sil𝑒ane
dataset and two objects in the Fraunhofer IPA dataset are listed in Table 4, and some qualitative results are
shown in Figure 7.

The results in Table 4 and Figure 7 show that the Voting and Attention model is very effective in improving the
accuracy of the pose estimation, which can obtain an average precision of 53%.

In addition to the above voting-basedmodel, there are lots of research results in pose estimation based on deep
learning methods. For example, Chen et al. [46] presented a probabilistic PnP (EPro-PnP) model for general
end-to-end pose estimation, which is based on the method of locating 3D objects from a single RGB image
via Perspective-n-Points (PnP). The EPro-PnP model can realize reliable end-to-end training for a PnP-based
object pose estimation network by back-propagating the probability density of the pose to learn the 2D-3D
association of the object.

Currently, there are fivemain types ofmethods for pose estimation, including feature-basedmethods, regression-
based methods, projection-based methods, representation learning methods, and graph neural network meth-
ods. The feature-basedmethod refers to restoring camera pose by establishing feature correspondence between
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(A)

(B)

(C)

Figure 7. Visualization for pose estimation results based on the Voting andAttention-basedmodel: (a) 3D point cloud input; (b) True values
of the poses; (c) Results obtained by the method in [44]. The different color means the visualization of point-wise distance error, ranging
from 0 (green) to greater than 0.2 times the diameter of the object (red).

Table 5. A summary of the deep learning-based poss estimation models in the last five years

Structure Reference Type of the method Performances

V2V-PoseNet Moon et al. (2018) [47] Regression-based Top1 in the HANDS 2017 frame-based dataset.

CDPN Li et al. (2019) [48] Feature-based ADD of 89.86% on the LINEMOD dataset

NOCS Wang et al. (2019) [49] Projection-based 𝑚𝐴𝑃 of 88.4% for 3D IoU on Occluded LINEMOD dataset

DPVL Yu et al. (2020) [50] Representation learning Mean 𝐴𝐷𝐷 of 91.5% on the LINEMOD dataset

G2L-Net Chen et al. (2020) [51] Graph neural network Mean 𝐴𝐷𝐷 of 98.7% on the LINEMOD dataset

PVN3D He et al. (2020) [52] Projection-based 𝐴𝐷𝐷 of 99.4% on the LineMOD dataset

FFB6D He et al. (2021) [53] Feature-based Mean 𝐴𝐷𝐷 of 99.7% on the LINEMOD dataset

ROFT Piga et al. (2022) [26] Feature-based 𝐴𝐷𝐷 − 𝐴𝑈𝐶 of 76.59% on the FAST-YCB dataset

Voting and Attention Hoang et al. (2022) [44] Feature-based 𝐴𝑃 of 53% on the Siléane dataset and Fraunhofer IPA dataset

EPro-PnP Chen et al. (2022) [46] Projection-based 𝐴𝐷𝐷 of 95.80% on the LineMOD Dataset

𝐴𝐷𝐷 means average distance metric. 𝐴𝐷𝐷 − 𝐴𝑈𝐶 means area under the curve.

images and scenes. A regression-basedmethod uses a regressor to predict the camera pose. A projection-based
method utilizes projection transformation to estimate the pose of a target from an image or video. A represen-
tation learning method utilizes deep neural networks to learn high-resolution representations of objects from
images or videos, which can improve the accuracy and interpretability of pose estimation. Graph neural net-
work methods use graph neural networks to learn structured representations of objects from images or videos,
which can improve robustness of pose estimation. In the following, a summary of the deep learning-based
pose estimation models presented in the last five years is illustrated in Table 5, where the type of each method
is given out.

3.3. Semantic segmentation
Semantic segmentation is a refined version of image classification. For an image, traditional image classification
is to detect and recognize the objects that appear in the image, while semantic segmentation is to classify
every pixel point in the image. In the field of autonomous robot environment perception and understanding,
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Figure 8. The workflow of the FusionLane model [60]. CBEV denotes the camera bird’s eye view data. LBEV denotes the points cloud bird’s
eye view data. C-Region denotes the obtained semantic segmentation result on CBEV.

semantic segmentation is used to label each pixel in an image with its corresponding semantically meaningful
category. Semantic segmentation can help robots recognize and understand surrounding objects and scenes.
It is very useful for the semantic segmentation for the robot to find a specific object in the environment. For
example, in the field of logistics robotics, semantic segmentation can help the autonomous robots perceive and
understand road conditions, traffic signs, pedestrians, and vehicles, which can improve the safety and efficiency
of logistics robotics.

The traditional semantic segmentation algorithms are mainly grayscale segmentation, conditional random
fields, etc. Grayscale segmentation algorithms recursively segment images into sub-regions until labels can
be assigned and then combine adjacent sub-regions with the same labels by merging them. The conditional
random field is a type of statistical modeling method for structured prediction.

With the continuous development of deep learning techniques, deep learning has been widely applied in
semantic segmentation tasks and achieved impressive results. There are a series of classical deep learning-
based models for semantic segmentation, such as Full convolution network (FCN) [54], SegNet [55], DeepLab
series [56,57], RefineNet [58], DenseASPP [59], etc. Recently, some improvements have been proposed based on
those classical models. For example, Yin et al. [60] presented a multi-sensor fusion for lane marking semantic
segmentation (FusionLane) based on the DeepLabV3+ network. The workflow of the FusionLane model is
shown in Figure 8.

As shown in Figure 8, firstly, the DeepLabV3+ network is used to achieve semantic segmentation on camera
BEV (CBEV) data (called as C-Region). Then, the C-Region and LiDAR point cloud BEV (LBEV) data are
input into the FusionLane model to realize the lane marking semantic segmentation. Unlike other methods
that mainly focus on the analysis of camera images, the semantic segmentation data used in FusionLane is a
BEV image converted from the LiDAR point cloud instead of the images captured by the camera to obtain the
accurate location information of the segmentation results.

The network contains two data input branches: the camera data and the point cloud data. The data from the
two branches need to be preprocessed to meet the network input requirements. For the camera data, the front
view is converted into CBEV. In CBEV, one pixel represents an area of 5𝑐𝑚 × 5𝑐𝑚 in real space. Then, the
CBEV image is semantically segmented using the trained DeepLabV3+ network to obtain the C-Region input
data. For the point cloud data, it is projected into the 3D BEV with three channels. The values of the three
channels are calculated as follows:

𝐹 (𝑥, 𝑦) =
∑𝑛

1 𝑖

𝑛
× 255 (8)

𝑆 (𝑥, 𝑦) =
∑𝑛

1 (ℎ + 2)
𝑛

× 255 (9)
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Table 6. Some comparison experiment results of the semantic segmentation on the KITTI dataset [60]

Methods Background Solid line Dotted line Arrow Prohibited area Stop line Other point MIoU PA (%)

DeepLabv3+(LBEV) 0.9419 0.2587 0.2648 0.2793 0.1915 0.3586 0.2770 0.3674 91.31

DeepLabv3+(CBEV) 0.9106 0.6287 0.7012 0.5821 0.6935 0.5294 - 0.6743 85.76

FusionLane 1.0000 0.7477 0.7838 0.7526 0.7979 0.9053 0.9867 0.8535 99.92

𝐼𝑜𝑈: the evaluationmetrics include the Intersection overUnionon each category; 𝑀𝐼𝑜𝑈: theMean Intersection
over Union; 𝑃𝐴: the Pixel Accuracy.

 CBEV data

LBEV data

 Ground-truth

   FusionLane

Figure 9. The segmentation results based on the FusionLane network for some scenarios [60].

𝑇 (𝑥, 𝑦) = 255 × 2
𝜋
× 𝑎𝑟𝑐𝑡𝑎𝑛

√√√∑𝑛
1

(
ℎ −∑𝑛

1
ℎ
𝑛

)2

𝑛
(10)

where 𝐹 (𝑥, 𝑦), 𝑆 (𝑥, 𝑦), and 𝑇 (𝑥, 𝑦) denote the values of the first channel, the second channel, and the third
channel, respectively; 𝑖 ∈ [0, 1] is the reflection intensity value of each point falling within the grid correspond-
ing to the pixel; ℎ ∈ [−2,−1] is the height value of each laser spot falling within the grid, and 𝑎𝑟𝑐𝑡𝑎𝑛 is used
as the normalization function.

In the FusionLane model of [60], an encoder-decoder network model is proposed, and the LSTM structure is
added to the network to assist the semantic segmentation of the lane marking. At last, the KITTI dataset is
used to test the performance of the FusionLane model, which is processed and divided into seven categories.
The experimental results are listed in Table 6, and some segmentation results based on the FusionLane network
are shown in Figure 9.

The results in Table 6 show that DeepLabV3+ has a low 𝐼𝑜𝑈 for all scenarios except ”Background”. However,
it can be seen that the FusionLane model achieves the best results in all metrics compared to the traditional
DeepLabV3+ model. The results in Table 6 and Figure 9 show that relying on a single kind of sensor, whether
camera or LiDAR, cannot give sufficiently accurate semantic segmentation results. Effective fusion of data
from different sensors can be considered a viable approach to solving the problem.
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Table 7. A summary of the deep learning-based models of semantic segmentation in the last five years

Structure Reference Network structure Performances

DenseASPP Yang et al. (2018) [63] Encoder-decoder 𝑀𝐼𝑜𝑈 score of 80.6% on Cityscapes datasets

EncNet Zhang et al. (2018) [64] Attention mechanism 𝑀𝐼𝑜𝑈 score of 85.9% on PASCAL VOC 2012

DANet Fu et al. (2019) [65] Graph neural network 𝑀𝐼𝑜𝑈 score of 81.5% on Cityscapes test set

APCNet He et al. (2019) [66] Attention mechanism A new record 84.2% on PASCAL VOC 2012 test set

CANet Zhang et al. (2019) [67] Attention mechanism 𝑀𝐼𝑜𝑈 score of 57.1% on PASCAL-5i test set

EfficientFCN Liu et al. (2020) [68] GAN 𝑀𝐼𝑜𝑈 score of 55.3% on PASCAL Context test set

FuseSeg Sun et al. (2021) [62] Encoder-decoder 𝑀𝐼𝑜𝑈 score of 54.5% on the dataset released in [69]

MaskFormer Cheng et al. (2021) [70] Transformer learning 𝑀𝐼𝑜𝑈 score of 55.6% on the ADE20K dataset

FANet Hu et al. (2021) [61] Encoder-decoder 𝑀𝐼𝑜𝑈 score of 75.5% on Cityscapes test set

FusionLane Yin et al. (2022) [60] Encoder-decoder 𝑀𝐼𝑜𝑈 score of 85.35% on KITTI test set

BCINet Zhou et al. (2023) [71] Encoder-decoder 𝑀𝐼𝑜𝑈 score of 52.95% on the NYUv2 dataset

In addition to the above DeepLab-based model, there are lots of good semantic segmentation models based
on deep learning methods. For example, Hu et al. [61] presented the FANet model, which is based on an im-
proved self-attention mechanism, to capture the rich spatial context at a small computational cost. Sun et
al. [62] proposed the FuseSeg model, a new RGB and thermal data fusion network, to achieve superior seman-
tic segmentation performance in urban scenes.

More and more scholars have researched many results in this field. According to the type of network structure,
semantic segmentation can be divided into encoder-decoder structure, attention mechanism, graph neural
network, generative adversarial network (GAN), and transfer learning. The semantic segmentation method
based on encoder-decoder utilizes the encoder-decoder structure to learn and predict the semantic category
of each pixel from an image. The method based on GAN uses a generator and a discriminator to conduct con-
frontation learning. Attention mechanism is a technique that simulates the process of human visual attention.
It can calculate the correlation between different positions or channels, give different weights, and highlight
the parts of interest while suppressing irrelevant parts. A graph neural network is a deep neural network that
can process graph-structured data, which can update the features of nodes and edges through graph convolu-
tion operations. Transfer learning is a machine learning technology that can use the knowledge of one domain
(source domain) to help the learning of another domain (target domain), thus reducing the dependence on the
labeled data of the target domain. A summary of the deep learning-based 3D semantic segmentation models
presented in the last five years is illustrated in Table 7, where the type of the network structure of each method
is given out.

3.4. Saliency prediction
The human visual system selectively attends to salient parts of a scene and performs a detailed understanding
of the most salient regions. The detection of salient regions corresponds to important objects and events in
a scene and their mutual relationships. In the field of scene understanding for autonomous robots, the task
of the saliency prediction is to mimic the characteristics of human vision to focus on obvious or interested
targets by acquiring 3D environment information containing color and depth through sensors. In detail, the
saliency prediction needs to identify and segment the most salient objects from the acquired 3D environment
information and pay attention to the focal objects.

The traditional saliency prediction problem is commonly known as the task of capturing rare and unique
elements from images. Traditionally, salient prediction methods can be classified into three types: (1) Block-
based detection models. In this type of method, the linear subspace method is used instead of actual image
segmentation, and the significant regions are selected by measuring the feature pair ratio and geometric prop-
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Figure 10. The schematic overview of the TranSalNet network [72].

erties of the region. (2) Region-based detection models. This type of method divides the image into multiple
regions, and the saliency of each region is regarded as the sum of the product of its contrast and the weight of
all the other regions. (3) Detection model based on external cues of the image. This model utilizes accurate
annotations (ground-truth) obtained from the training set, video sequences, similar images, and other sources
to make the results more accurate. The performance of the saliency prediction based on similar images will be
improved if a large number of data sets are available. In general, the traditional methods use a large amount
of saliency a priori information for saliency detection, mainly relying on hand-crafted features. These hand-
crafted features have some shortcomings; for example, they may not be able to describe complex image scenes
and object structures, cannot adapt to new scenes and objects, and have poor generalization ability. So, the
saliency detection based on traditional methods has hit a bottleneck.

Recently, deep learning-based methods have been used widely in various image tasks (e.g., target detection,
semantic segmentation, edge detection, etc.), which provide new ideas for saliency prediction and show sur-
prising effect enhancement in some studies. For example, Lou et al. [72] proposed the TranSalNet network
model. Its basic workflow is shown in Figure 10.

As shown in Figure 10, the convolutional neural network (CNN)-based encoding is used to extract features for
saliency prediction. The outputs of the CNN encoding are three sets of multi-scale feature maps with 𝑤

8 × ℎ
8 ,

𝑤
16 ×

ℎ
16 , and

𝑤
32 ×

ℎ
32 , respectively. Then, these feature maps are input into the transformer encoders to enhance

the long-range and contextual information. At last, a CNN decoder is used to fuse the enhanced feature maps
from the three transformer encoders. The CNN decoder used in [72] is a full CNN network with seven blocks.
The processes from block1 to block6 are as follows:

𝑋
𝑓
𝑖 =


𝑋𝑐𝑖 , 𝑖 = 1
ReLU(Upsamle(X̂ 𝑓

𝑖−1) ⊙ 𝑋𝑐𝑖 ), 𝑖 = 2, 3
Upsamle(X̂ 𝑓

𝑖−1), 𝑖 = 4, 5, 6
(11)

where 𝑋 𝑓
𝑖 and �̂� 𝑓

𝑖 are the input and output of the 𝑖-th block. The output of the block7 �̂� is the predicted saliency
map, namely

�̂� = Sigmoid(Conv3×3(𝑋 𝑓
6 )) (12)

where Sigmoid(·) is the sigmoid activation function; Conv3×3 denotes the 3×3 convolution operation; and 𝑋 𝑓
6

is the output of the block6.

In the TranSalNet network model, a linear combination of four losses is used as the loss function, namely

𝐿 = 𝜔1𝐿𝑁𝑆𝑆 + 𝜔2𝐿𝐾𝐿𝐷 + 𝜔3𝐿𝐶𝐶 + 𝜔4𝐿𝑆𝐼𝑀 (13)
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Table 8. Some results of the TranSalNet network model on MIT1003 and CAT2000 datasets [72]

Model name

MIT1003 CAT2000

Perception metrics Non-perception metrics Perception metrics Non-perception metrics

CC SIM NSS sAUC AUC KLD CC SIM NSS sAUC AUC KLD

TranSalNet-Res 0.7595 0.6145 2.8501 0.7546 0.9093 0.7779 0.8786 0.7492 2.4154 0.6054 0.8811 0.5036

TranSalNet-Dense 0.7743 0.6279 2.9214 0.7547 0.9116 0.7862 0.8823 0.7512 2.4290 0.6099 0.8820 0.4715

(A)

Images Ground truth TranSalNet_Res TranSalNet_Dense

(B)

(C)

(D)

(E)

(F)

Figure 11. Results of saliency maps generated by TranSalNet_Res and TranSalNet_Dense [72]. The images from (a) to (c) are from the
MIT1003 dataset, and the images from (d) to (f) are from the CAT2000 dataset.

where 𝐿𝑁𝑆𝑆 is the Normalized Scanpath Saliency loss; 𝐿𝐾𝐿𝐷 is the Kullback–Leibler divergence loss; 𝐿𝐶𝐶 is
the Linear Correlation Coefficient loss; and 𝐿𝑆𝐼𝑀 is the Similarity loss. 𝜔1, 𝜔2, 𝜔3, and 𝜔4 are the weights of
each loss.

Some results of the TranSalNet network model are listed in Table 8, where TranSalNet_Res and TranSal-
Net_Dense denote the CNN encoders used in the TranSalNet network, ResNet_50 and DenseNet_161, re-
spectively. Here, two public datasets are as follows: (1) MIT1003 [73]: This dataset contains 300 natural images
and eye movement data from 39 observers and is the most influential and widely used dataset in the field of
image human eye focus detection. (2) CAT2000 [74]: This dataset includes 4000 images, 200 in each of 20 cat-
egories, covering different types of scenes such as cartoon, art, object, low-resolution image, indoor, outdoor,
chaotic, random, and line drawings. Some saliency maps generated by the two models are shown in Figure 11.

The results in Table 8 and Figure 11 prove that the TranSalNet architecture presented in [72] is effective in the
saliency prediction tasks. In addition, the results in Table 8 and Figure 11 show that the performance of the
TranSalNet could be further enhanced by replacing ResNet-50 with DenseNet-161.

In addition to the above TranSalNet model, there are other saliency prediction models based on deep learning,
which also have obtained good results in this field. For example, Zou et al. [75] proposed the STA3D model,
where the S3D network is used as an encoder and the prediction network with spatial dimensional upsam-
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Table 9. A summary of the deep learning-based saliency prediction models in the last five years

Structure Reference Type of methods Performances

ASNet Wang et al. (2018) [76] Gradient-based 𝑀𝐴𝐸 scores of 0.072 on the PASCAL-S dataset

RGB-D-SOD Huang et al. (2019) [77] Perturbation-based 𝐴𝑈𝐶 of 0.874 on the NJU400 dataset

AF-RGB-D et al. (2019) [78] SHAP value-based methods 𝑀𝐴𝐸 scores of 0.0462 on the STEREO dataset

CMP-SOI Zhang et al. (2020) [79] Gradient-based 𝐴𝑈𝐶𝐽 of 0.8839 on the ODI dataset

DevsNet Fang et al. (2020) [80] Gradient-based 𝑀𝐴𝐸 scores of 0.016 on the UVSD dataset

AMDFNet Li et al. (2021) [81] Gradient-based 𝑀𝐴𝐸 scores of 0.019 on the RGBD135 dataset

SSPNet Lee et al. (2021) [82] Gradient-based 𝐸𝐴𝑂 of 0.285 on the VOT-2017 dataset

STA3D Zou et al. (2021) [75] Gradient-based 𝐴𝑈𝐶𝐽 of 0.927 on the Hollywood2-actions dataset

ECANet Xue et al. (2022) [83] Attention mechanism-based 𝐴𝑈𝐶𝐽 of 0.903 on the DHF1K dataset

TranSalNet Lou et al. (2022) [72] Transformer learning-based 𝐴𝑈𝐶 of 0.9116 on the MIT1003 dataset

𝑀𝐴𝐸 means mean absolute error. 𝐴𝑈𝐶𝐽 means the area under the receiver operating characteristic curve. 𝐸𝐴𝑂means expected average overlap.

pling and temporal dimensional compression is used as a decoder, to solve the difficulty of video significance
prediction in the continuous frame with a fixed offset.

At present, there are five types ofmethods for saliency prediction, including gradient-basedmethods, perturbation-
based methods, SHAP value-based methods, attention mechanism-based methods, and transfer learning-
based methods. The gradient-based method utilizes the gradient information of neural networks to calculate
the contribution of each pixel in the input image to the output saliency map. The perturbation-based method
evaluates the importance of each pixel by randomly or regularly perturbing the input image. The method
based on SHAP values utilizes shapely additive explanations to quantify the impact of each pixel on the out-
put saliency map. The saliency prediction, based on attention mechanisms, utilizes an attention mechanism to
simulate the process of human visual attention, thereby improving the accuracy and interpretability of saliency
prediction. Transfer learning is used to solve the problem of data shortage and domain differences in saliency
prediction, which can improve the generalization ability and adaptability of saliency prediction. A summary
of the deep learning-based models in the last five years is illustrated in Table 9, where the type of each method
is given out.

3.5. Other applications
In addition to the applications mentioned above, there are many other applications of deep learning methods
in autonomous robot environment perception and understanding, such as image enhancement [84,85], visual
SLAM [1,86], scene classification [87,88], moving object detection [89,90], and layout estimation [91,92]. In this sec-
tion, some recent jobs of our group related to this review will be introduced in detail as follows.

3.5.1. Visual SLAM
When a robot enters an unknown environment, vision SLAM technology can be used to solve the problem of
the robots about where they are. It estimates the current position, pose, and travel trajectory of the robot in
the 3D scene by the changes in the visual data acquired during the robot’s travel. In order to implement vision
SLAM, there are three main methods: feature-based methods, direct methods, and semi-direct methods.

With feature-based visual SLAM methods, feature points are found and matched. Then, the poses of robots
are calculated, and maps are built from geometric relationships. Scalar Transformation (SIFT) [11], Accelerated
Robust Feature (SURF) [93], and Fast Rotational Abbreviation (ORB) [94] are the most frequently used feature
extraction techniques. The most widely used method for visual SLAM is ORB-SLAM [95,96]. To overcome
the problem of high computational complexity in the traditional ORB-SLAM, Fu et al. [97] proposed the Fast
ORB-SLAM that is light-weight and efficient as it tracks keypoints between adjacent frames without computing
descriptors.
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Figure 12. The framework of the improved LDSO method based on the variable radius side window [102].

Direct methods do not rely on one-to-one matching of points. These types of methods minimize the pho-
tometric error function of the pixels by extracting pixels with significant gradients and optimizing the inter-
frame pose. The classical directmethods include Large ScaleDirectMonocular SLAM (LSD-SLAM) [98], Direct
Sparse Range (DSO) [99], etc. Recently, Wang et al. [100] introduced a new ceiling-view visual odometry method
that introduces plane constraints as additional conditions and achieves better accuracy.

Semi-direct methods, such as SVO [101], employ a similar structure to the feature-based methods, which com-
bine the tracking of the direct method with the motion optimization of feature-based methods. Both feature-
based and semi-direct methods rely on highly repeatable low-level geometric feature extractors. Both of them
are inappropriate for surfaces with little texture or many repetitive features.

Direct methods, on the other hand, can be applied to a wider variety of scenes. However, compared to feature-
based methods, direct methods are less robust. The performance of the direct visual SLAM system under
the influence of various camera imaging perturbations will be reduced obviously. To deal with this problem,
our group proposed an improved Direct Sparse Odometry with Loop Closure (LDSO) method [102], which is
shown in Figure 12.

In the framework of the improved LDSO shown in Figure 12, the region surrounding each pixel is divided into
blocks when a new frame is introduced, using the side window approach. Then, a CNN structure is created by
this multiple-layer superposition of pixel information fusion [22,103]. The middle layer shows the presence of
semi-static items. In the later layers, the radius of the side windows of the pixels belonging to the semi-static
objects is increased. Points with an adequate gradient intensity and corners are chosen using dynamic grid
searches. The robustness of the system is increased by the addition of points in direct SLAM. To accomplish
edge protection, the fusion method is used with a side window mechanism. Finally, to lessen the weight of
semi-static objects, the radius of the adjustment side windows is modified in accordance with the semantic
information based on a pre-trained Yolov5 model [104].

In the experiments to test the performance of the improved LDSO in [102], two public datasets are used: the
KITTI dataset (outdoor datasets) and the TUM RGB-D dataset (indoor datasets). To test the improved LDSO
under different camera sensor noises, Gaussian noise and Salt-and-Pepper noise are added to the two datasets.
Some results of visual SLAMbased on the improved LDSO are shown in Table 10 andTable 11, where RMSEATE
means the root mean squared error of absolute trajectory error. The comparison results on the KITTI dataset
with Salt-and-Pepper noise are not given out because the general LDSO is entirely inoperable on the datasets
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Table 10. RMSEATE on the KITTI dataset with Gaussian noise [102]

Method
Gaussian noise

KITTI_00 KITTI_01 KITTI_02 KITTI_03 KITTI_04 KITTI_05 KITTI_06 KITTI_07 KITTI_08 KITTI_09 KITTI_10 Average

LDSO [105] 22.543 23.052 169.247 – – 44.010 58.729 53.481 130.993 – 16.277 64.792

Improved LDSO 17.772 13.023 120.380 2.133 1.093 5.740 13.491 1.973 102.206 52.664 14.042 31.320

‘–’ means tracking failure. The average value is calculated based on the number of successes.

Table 11. RMSEATE on the TUM RGB-D dataset [102]

Method
Gaussian noise Salt-and-pepper noise

fr1_xyz fr2_xyz fr2_rpy fr1_desk fr1_desk2 fr1_xyz fr2_xyz fr2_rpy fr1_desk fr1_desk2

LDSO [105] – 0.096 – 0.518 – – – – 0.841 –

Improved LDSO 0.156 0.01 0.06 0.801 0.756 0.129 0.011 0.058 0.796 0.871

‘–’ means tracking failure.

Real view Zoom in

Output of LDSO Output of the improved LDSO

(A)

Real view Zoom in

Output of LDSO Output of the improved LDSO

(B)

Figure 13. Sample outputs of the sequence ‘KITTI_07’ in the KITTI dataset [102]: (A) and (B) are the outputs on the sequence with Gaussian
noise and Salt-and-Pepper noise, respectively.

under Salt-and-Pepper noise. The results of the point cloud map constructed on the sequence ‘KITTI_07’ in
the KITTI dataset are shown in Figure 13. The results in Tables 10 and 11 show that the improved LDSO in [102]

canwork efficiently in both the indoor and the outdoor datasets under different noises, while the general LDSO
will fail to track (see Figure 13).

3.5.2. Scene classification
Scene classification is one of the key technologies of scene understanding for autonomous robots, which can
provide the basis for decision-making of the robots. The task of the scene classification for an autonomous
robot refers to the information of its surroundings obtained by the on-board sensors, and then the state of the
current position is recognized.

Lots of researchers have conducted studies on scene classification. For example, Tang et al. [106] proposed an
adaptive discriminative region learning network for remote sensing scene classification, which locates discrim-
inative regions effectively for solving the problems of scene classification, such as scale-variation of objects and
redundant and noisy areas. Song et al. [107] used an ensemble alignment subspace adaptation method for the
cross-scene classification. It can settle the problem of both foreign objects in the same spectrum and different
spectra. Zhu et al. [108] proposed a domain adaptation cross-scene classification approach to simultaneously
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Figure 14. The structure of the proposed deep network for the road scene classification [109].

classify the target common categories and detect the target private categories based on the divergence of dif-
ferent classifiers.

The methods for the scene classification can be divided into two main types. One of them is based on the
underlying visual features. This type of method has some shortcomings. For example, the accuracy of the
scene classification is low when only the low-level visual features are used to represent the contents of the
scene. The other type of the scene classification method is based on the deep learning technologies. To deal
with the problem of the scene classification of the road scene, our group presented an improved deep network-
based model [109]. The structure of the proposed model is shown in Figure 14.

As shown in Figure 14, there are four main parts in the proposed scene classification model, namely, (1) The
improved Faster RCNN-based local feature extraction module; (2) The improved Inception_V1-based global
feature extraction module; (3) The feature fusion module; (4) The classification network.

In the improved Faster RCNN-based local feature extraction module, the VGG16 Net is used to get the fea-
ture map of the whole image first. Then, a residual attention module is used to further deal with redundant
information in images. The operation on the feature map based on the residual attention module is:

𝐹𝑜𝑢𝑡𝑝𝑢𝑡 (𝑖, 𝑗) = 𝐹𝑖𝑛𝑝𝑢𝑡 (𝑖, 𝑗) ⊗ 𝑎𝑖 𝑗 + 𝐹𝑖𝑛𝑝𝑢𝑡 (𝑖, 𝑗) (14)

where 𝐹𝑜𝑢𝑡𝑝𝑢𝑡 and 𝐹𝑖𝑛𝑝𝑢𝑡 are the output and the input feature value of the residual attentionmodule, respectively;
𝑎𝑖 𝑗 is the attention weight; ⊗ is the dot product operation.

The output of the residual attention module is input into the RPN to generate region proposals. The output
Region-of-Interests (ROIs) of the RPN is processed by a ROI pooling network to get a fixed-size proposal
feature map, which is finally input into a fully connected layer for the object classification and generating the
positions of the objects.

In the global feature extraction module, the Inception_V1 is used as the baseline network, which has nine
Inception blocks. One Inception block has four branches. To deal with the shortcomings of the general Incep-
tion_V1 [110], the Inception_V1 is improved in the proposed model in [109], where a mixed activation function
is presented by alternately using the ELU and Leaky ReLU functions for the Inception networks. The Leaky
ReLU function is denoted by:

𝑦𝑖 =

{
𝑥𝑖 , if 𝑥𝑖 ≥ 0
𝛼𝑥𝑖 , if 𝛼𝑥𝑖 < 0

(15)

where 𝛼 is a fixed parameter.
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Table 12. The experimental results of scene classification based on different deep networks [109]

Network Total accuracy Standard deviation On sunny days On rainy days At night

AlexNet [113] 84.20% 5.22% 90.20% 81.70% 80.70%

EfficientNet [114] 87.07% 8.31% 96.30% 80.00% 85.30%

Inception_V1 [110] 90.53% 2.51% 93.40% 88.70% 89.50%

Ours 94.76% 1.62% 96.50% 93.30% 94.50%

The ELU function is denoted by:

𝑦𝑖 =

{
𝑥𝑖 , if 𝑥𝑖 ≥ 0
𝑒𝑥𝑖 − 1, if 𝑥𝑖 < 0

(16)

In the feature fusion module, the local feature vectors and the global feature vectors are appended to get the
fused feature 𝐹, namely

𝐹 = [𝐿, 𝐺] (17)

where 𝐿= [𝑙1, 𝑙2, · · · , 𝑙𝑁 ] and𝐺= [𝑔1, 𝑔2, · · · , 𝑔𝑁 ] denote the local feature vectors and the global feature vectors,
respectively; 𝑁 is the feature dimension.

At last, the fused feature vector is input to the classification network for the scene classification. The loss
function used in this classification network is as follows:

𝐿𝑜𝑠𝑠𝑐𝑙𝑠 =
1
𝑆

∑
𝑖

©«−
𝐶∑
𝑗=1

𝑦𝑖 𝑗 log
(
𝑝𝑖 𝑗

)ª®¬ (18)

where 𝐶 is the number of scene classification; 𝑆 is the number of the samples; 𝑝𝑖 𝑗 is the probability that the
𝑖-th sample belongs to the 𝑗-th category, and 𝑦𝑖 𝑗 is the indicator variable.

To test the performance of the proposed road scene classification model, our group proposed a special dataset
based on two public datasets: KITTI [111] and Place365 [112]. The results of the comparison experiments are
listed in Table 12, and some scene classification results based on different models are shown in Figure 15.

It can be seen that our proposed model can improve the accuracy to 94.76%, which is 4.67% (Relative value)
higher than the general Inception_V1 (the second-best model). In addition, our proposed model has good
scene classification performance under some challenging tasks, such as the task on a rainy day or at night (see
Table 12 and Figure 15 for details).

4. FUTURE DIRECTIONS
With the developments of the artificial intelligence technologies and deep learning methods, great progress
has been made in the research of scene understanding for autonomous robots. However, there are still a lot of
difficulties in using deep learning to perceive and understand the surroundings for autonomous robots. There
are some problems that should be further studied as follows:

(1) Light-weight models: With the continuous improvement of the computing power of hardware devices,
the scene understanding method based on deep learning technology has achieved great success. However,
it is difficult to run large-scale models on autonomous robots with limited processing, memory, and power
resources. How to design a practical light-weight deep learning model while keeping the desired accuracy is a
challenging task. Meanwhile, it also needs to develop efficient compact representation models for 3D data.
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Figure 15. Some scene classification results based on different models [109].

(2)Multi-task learning: A valuable but less explored direction for scene understanding is to jointly trainmodels
on multiple terminal tasks. For example, semantic contour detection technology could jointly detect target
contours and recognize the semantic information of the contours. This multi-task learning method is useful
for model learning without decreasing the performance of any single task.

(3) Transfer learning: Common tasks such as object detection, semantic segmentation, and scene classification
usually have many annotated examples for training. However, there is a lack of large datasets for tasks such as
layout estimation, affordance prediction, and physics-based reasoning. How to optimally fine-tune an existing
model to the desired task so that the knowledge is properly transferred from the source domain to the target
domain is a good research direction in this field.

(4) Multi-modal fusion: Building a cross-modal adaptive fusion network will allow us to more fully fuse the
sparse information in the point cloud space with the dense information in the image space. Based on these
multi-modal fusion methods, the accuracy of the scene understanding can be further improved. In this field,
how to fuse different modal information efficiently is a good research direction.

(5) The specific datasets: To improve the performance of the deep learning-based models, some specific
datasets should be constructed for the applications of the robots in different environments. For example, how
to make the autonomous underwater vehicle (AUV) work efficiently is still a challenging task. The main rea-
son is that the underwater environments are complex; for example, the illumination is low, and the reference
objects are fewer. To build a specific dataset for special robots is arduous, but it is very meaningful.

(6) Application extensions: With the popularization of robot applications and the important role that robots
play in various fields, we need to take a step forward in researching the applications of scene understanding
for autonomous robots. In addition to the applications mentioned above, such as target detection and pose
estimation, we need to focus on more application extensions, such as physics-based reasoning, affordance
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prediction, full 3D reconstruction, etc.

The scene understanding of autonomous robots is the first prerequisite for autonomous robots to complete
complex tasks. On this basis, robots can become smarter to further improve social productivity, produce huge
social benefits, and improve people’s life quality. Therefore, there are many problems that need to be solved
efficiently. The deep learning-based methods for the robotic scene understanding are still on the way.

5. CONCLUSIONS
This study analyzes the most recent advancements in deep learning-based environment perception and under-
standingmethods for autonomous robots. Firstly, this paper provides a summary of recent advances in the abil-
ity of autonomous robots to perceive and understand their environments. The typical application techniques
for perceiving and understanding the surroundings by autonomous robots are discussed. Then, the research
and application of deep learning-based methods in the field of scene understanding for autonomous robots
are further discussed in this study, which also presents exemplary techniques for the use of robot environment
perception and understanding. Lastly, the main issues and difficulties of deep learning-based autonomous
robot scene understanding are examined.

It is obvious that the deep learning method will become one of the most popular research topics in the field
of autonomous robot scene understanding, including theoretical and applied research. Deep learning-based
technologies will further improve the intelligence and autonomy of robots. With a better perception and un-
derstanding of the environment, the robots will be able to solve complex tasks instead of just performing some
simple and single commands. At present, many fundamental problems of robot scene understanding based on
deep learning have been explored with exciting results, which show the potential of deep learning. But there
are still many questions that need to be further studied.
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