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Abstract
Aim: The purpose of this study is to investigate the utility of incorporating magnetic resonance imaging (MRI) into 
an artificial intelligence (AI) model to preoperatively predict pseudarthrosis for patients undergoing adult spinal 
deformity (ASD) surgery.

Methods: A retrospective cohort study was conducted on patients undergoing ASD surgery at Vanderbilt 
University Medical Center with at least 2 years of follow-up. We first collected demographic variables and 
measured traditional radiographic variables with Surgimap software. The primary outcome of interest was 
pseudarthrosis, defined as mechanical pain without evidence of bony union with or without a rod fracture. Next, 
cohort differences between patients diagnosed with and without pseudarthrosis were evaluated with t-tests for 
continuous variables and chi-squared tests for categorical variables using Bonferroni-Holm multiple comparison 
correction. Using a subpopulation of patients with preoperative thoracic MRI available, a three-dimensional 
convolutional neural network (3D-CNN) with five-fold nested cross-validation was developed to predict 
pseudarthrosis - accuracy was evaluated with the Youden index. Finally, class activation mapping (CAM) was 
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conducted to visualize the MRI features utilized by the model for accurate classifications.

Results: Of 191 patients undergoing ASD surgery, the demographic and traditional radiographic variables were 
collected, and only age was observed to be significantly different between the patients diagnosed with 
pseudarthrosis (69.9 ± 10.1 years old) and those without (60.9 ± 19.9), with a t-test P-value of 0.003. The 3D-CNN 
demonstrated an average Youden index of 0.49 ± 0.25 on the withheld data, with a P-value of 5.50e-3 compared 
to an equivocal null model. Finally, CAM consistently revealed posterior adipose tissue to be most important in 
preoperatively predicting pseudarthrosis.

Conclusion: Adipose tissue features in MRI, independent of body mass index (BMI), may be useful for 
preoperatively predicting pseudarthrosis. Overall, this work demonstrates the capabilities of raw imaging AI in 
spine surgery and can serve as the basis for a deeper biological inquiry into the pathogenesis of pseudarthrosis.

Keywords: Adult spinal deformity, artificial intelligence, deep learning, machine learning, magnetic resonance 
imaging, pseudarthrosis

INTRODUCTION
Pseudarthrosis (or nonunion) is defined as the failure of bone to fuse following surgical fixation and is a 
common complication of adult spinal deformity (ASD) surgery, with incidence rates ranging from 5%-
35%[1,2]. Pseudarthrosis is associated with recurrent pain and neurologic symptoms, can be a reason for 
reoperation, and can occur with or without rod fracture[3]. Despite its prevalence and contribution to patient 
morbidity, the risk factors for pseudarthrosis are difficult to characterize. A preoperative risk factor is 
thought to be age, with multiple studies suggesting that patients over the age of 55 experience higher rates of 
pseudarthrosis[4-6]. Additionally, an intraoperative risk factor is thought to be fusion to the sacrum[7]. 
However, there remains debate in the literature about these risk factors, and few validated tools are available 
for the surgeon to preoperatively prognosticate pseudarthrosis occurrence.

Due to the difficulty in prognostication, more advanced artificial intelligence (AI) modeling techniques have 
been developed to augment surgical decision workflows for ASD surgery[8-16]. Specifically, Scheer et al. 
developed a decision tree model from 82 variables that achieved 91% accuracy in predicting pseudarthrosis 
following ASD surgery[17]. This high level of accuracy demonstrates its promise for clinical application. An 
underutilized extension of this framework is to utilize raw imaging data to augment predictive models. Of 
interest, AI models that ingest raw imaging can be directly interpreted to gain insight into nuanced patient 
characteristics impossible to capture in demographic variables. One imaging modality of high interest is 
magnetic resonance imaging (MRI) due to the detailed soft tissue signal captured. Thus, these advanced 
imaging models can aid preoperative decision-making, but more importantly, they can provide insight into 
the biological variables that may drive pseudarthrosis pathogenesis.

With the above considerations, this work aims to characterize the raw preoperative MRI features that may 
predict the occurrence of pseudarthrosis. In a cohort of patients undergoing ASD surgery at the major 
academic medical center, we sought to: (1) develop an AI model that utilizes raw preoperative MRI to 
predict pseudarthrosis following ASD surgery; and (2) interpret the model with class activation mapping 
(CAM) to understand the imaging features used to classify pseudarthrosis.

METHODS
Patient population
The study included a population of 191 patients who underwent ASD surgery at a single institution from 
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Table 1. Demographic and surgical variables by pseudarthrosis

Demographic and surgical variables Total cohort (N = 191) No Pseud. (N = 143) Pseud. (N = 48) P-value

Age at surgery, mean ± SD 63.1 ± 18.4 60.9 ± 19.9 69.9 ± 10.1 0.003

BMI, mean ± SD 28.8 ± 7.0 28.8 ± 7.3 29.0 ± 8.2 0.874

Gender female, n (%) 146 (76.4) 108 (75.5) 38 (79.2) 0.607

Comorbidities, n (%)

Diabetes 26 (13.6) 15 (10.5) 11 (22.9) 0.030

COPD 48 (25.1) 32 (22.4) 16 (33.3) 0.130

Heart failure 24 (12.6) 16 (11.2) 8 (16.7) 0.322

Hypertension 122 (63.9) 86 (60.1) 36 (75.0) 0.064

Osteoporosis 40 (20.9) 32 (22.4) 8 (16.7) 0.400

Surgical variables

Previous fusion, n (%) 56 (29.3) 44 (30.8) 12 (25.0) 0.447

Pelvic fixation, n (%) 150 (78.5) 106 (74.1) 44 (91.7) 0.010

TIL, mean ± SD 10.6 ± 3.0 10.4 ± 3.1 10.2 ± 3.0 0.697

UIV Region, n (%)

Upper thoracic 71 57 14 -

Thoracolumbar 120 86 34 0.185

P-values in bold passed Bonferroni-Holm multiple comparison correction. SD: Standard deviation; BMI: body mass index; COPD: chronic 
obstructive pulmonary disease; TIL: total instrumented levels; UIV: upper instrumented vertebra.

2009-2021 and had at least 2-year follow-up. A subpopulation of 59 patients had presurgical thoracic MRI 
available for raw imaging deep learning analysis. The electronic medical record was mined for demographic 
variables outlined in Table 1. Pseudarthrosis was defined with a combination of clinical semiology and 
radiographic evidence of fusion failure captured on coronal and sagittal computed tomography (CT) scan, 
with or without rod fracture. Every symptomatic rod fracture in our series was given a diagnosis of 
pseudarthrosis as well. Next, each patient’s scoliosis radiographs were de-identified and processed with 
Surgimap v2.3.2.1 (Nemaris Inc, Methuen, Massachusetts, USA) to acquire traditional radiographic 
measurements [Table 2]. To evaluate any correlation between the demographic/radiographic variables and 
pseudarthrosis incidence, two-population t-tests for continuous variables and chi-squared tests for 
categorical variables were conducted with Bonferroni-Holm multiple comparison correction.

MRI deep learning
Next, a three-dimensional convolutional neural network (3D-CNN) was developed to input raw thoracic 
MRIs, demographic variables, and Surgimap measured variables [Figure 1][18]. Only patients with MRI 
available were included in this study. MRI images were resliced to the three dimensions of 256 × 256 × 20 
voxels, histogram equalized, and augmented using random flips, noise, bias field, blur, and affine/elastic 
deformations to a total of 1,080 images. Five-fold nested cross-validation with a train/validate/test split ratio 
of 70%/20%/10% was used to prevent overfitting and evaluate the generalizability of the model[19]. 
Importantly, all splits were conducted at the patient level. A Youden index (sensitivity + specificity - 100%) 
was calculated for all completely withheld test partitions for each fold. The Youden index reflects the true 
positive, true negative, false positive, and false negative rate of the model on completely withheld validation 
data. The mean Youden index of all folds was tested against an equivocal null model with a Youden index 
value of 0 using a single population Student’s t-test[20].

Imaging feature attention mapping
Finally, to interpret the model and elucidate MRI features used for correct classification, the CNN 
architecture was modified to accommodate gradient class activation mapping (Grad-CAM)[21]. This 
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Table 2. Traditional radiographic measurements by pseudarthrosis

Radiographic measurements degrees mean ± SD (unless otherwise noted) Total cohort 
(N = 191)

No pseud. 
(N = 143)

Pseud. 
(N = 48) P-value

Coronal measurements

C7PL, mm 2.2 ± 36.3 2.4 ± 34.9 1.6 ± 40.4 0.898

Major curve apex deviation, mm -2.1 ± 34.5 -1.8 ± 34.6 -3.3 ± 34.4 0.804

Major curve cobb angle -4.0 ± 34.4 -3.8 ± 34.2 -4.6 ± 35.0 0.885

Small curve apex deviation, mm 0.3 ± 18.0 -0.4 ± 17.5 2.6 ± 19.3 0.34

Small curve cobb angle 3.6 ± 24.7 3.4 ± 24.4 4.2 ± 25.8 0.848

T1 tilt 0.8 ± 6.3 1.1 ± 6.4 -0.4 ± 6.1 0.156

Thoracic curve apex deviation, mm -0.3 ± 10.2 -0.0 ± 9.5 -1.2 ± 12.3 0.585

Thoracic curve cobb angle -0.9 ± 16.0 -0.9 ± 16.1 -1.0 ± 15.4 0.979

Sagittal measurements

C2 slope 18.1 ± 13.8 17.9 ± 13.0 18.8 ± 15.9 0.688

CL 9.2 ± 15.8 9.3 ± 16.5 8.6 ± 13.7 0.783

CPA 28.1 ± 14.4 26.9 ± 14.6 31.8 ± 13.2 0.043

CTPA 2.9 ± 1.6 3.0 ± 1.5 2.7 ± 2.0 0.312

L1-L4 angle -7.0 ± 19.0 -8.7 ± 19.1 -2.0 ± 17.9 0.033

L1-S1, mm 175.7 ± 22.0 177.4 ± 20.7 170.5 ± 24.7 0.062

L1PA 12.0 ± 11.5 11.5 ± 11.7 13.9 ± 10.7 0.251

L4-S1 angle -30.7 ± 15.6 -30.7 ± 14.4 -30.7 ± 18.8 0.995

LL 32.4 ± 24.8 34.2 ± 22.9 26.9 ± 29.0 0.076

PI 53.5 ± 16.7 53.4 ± 16.5 53.9 ± 17.0 0.847

PI-LL 20.4 ± 22.8 19.2 ± 23.2 24.0 ± 21.2 0.208

PT 25.5 ± 12.0 24.6 ± 12.4 28.0 ± 10.2 0.093

SS 28.0 ± 14.1 28.7 ± 13.7 25.9 ± 14.8 0.225

C2-C7 cSVA, mm 29.2 ± 14.7 29.2 ± 13.4 29.1 ± 18.1 0.965

C7-S1 SVA, mm 70.6 ± 69.3 65.1 ± 66.7 86.9 ± 74.2 0.061

T1SPI -0.3 ± 6.8 -0.8 ± 6.3 1.1 ± 8.1 0.099

T1 slope 27.7 ± 11.0 27.6 ± 10.9 28.1 ± 11.2 0.771

T1-CL 18.6 ± 13.3 18.3 ± 12.7 19.5 ± 15.1 0.572

T1-L1, mm 306.9 ± 34.5 306.0 ± 35.0 309.6 ± 32.6 0.54

T1-S1, mm 483.1 ± 44.0 483.4 ± 44.9 482.2 ± 41.1 0.871

T2-T5 angle 9.8 ± 10.2 10.5 ± 10.0 7.6 ± 10.4 0.085

T5-T12 angle 26.5 ± 18.4 26.2 ± 18.3 27.6 ± 18.5 0.654

T9SPI 10.0 ± 7.4 10.0 ± 7.2 9.9 ± 8.2 0.925

TK 30.7 ± 19.7 30.1 ± 19.3 32.5 ± 20.8 0.469

TL 11.8 ± 18.1 10.1 ± 18.3 16.9 ± 16.7 0.026

TPA 25.2 ± 14.3 23.8 ± 14.6 29.1 ± 12.7 0.028

SD: Standard deviation; C7PL: C7 plumb line; CL: cervical lordosis; CPA: C2 pelvic angle; CTPA: cervico-thoracic pelvic angle; L1PA: L1 pelvic angle; 
LL: lumbar lordosis; PI: pelvic incidence; PT: pelvic tilt; SS: sacral slope; cSVA: cervical sagittal vertical axis; SPI: spinopelvic inclination; T1-CL: T1 
slope - cervical lordosis; TK: thoracic kyphosis; TL: thoracolumbar alignment; TPA: T1 pelvic angle.

technique highlights regions of the raw image that were important for classification (“hotspots”, Figure 1). 
The MRI hotspots were then qualitatively analyzed across the cohort to infer important tissue types for 
accurate prediction of pseudarthrosis.

RESULTS
Demographic variables poorly correlate with pseudarthrosis
In our cohort of 191 patients who underwent ASD surgery, 48 (25.1%) had pseudarthrosis compared to 143 
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Figure 1. 3D-CNN for pseudarthrosis classification on raw thoracic MRI. 3D-CNN: Three-dimensional convolutional neural network; MRI: 
magnetic resonance imaging.

(74.9%) who did not, and 37 (19.4%) overall developed rod fracture - consistent with previously reported 
cohorts[22]. Specifically, rod fractures were seen in 29 (60.4%) of the pseudarthrosis. All pseudarthrosis 
required reoperation. Upon demographic analysis, we only observed age to be significantly different 
between patients who were diagnosed with pseudarthrosis (69.9 ± 10.1 years old) versus those without (60.9 
± 19.9), with a P-value of 0.003. Furthermore, the radiographic variables captured by Surgimap were not 
observed to be significantly different between the groups after multiple comparison corrections. Please see 
Tables 1 and 2 for the full extent of preoperative variables considered. Thus, in alignment with past 
literature, the occurrence of pseudarthrosis did not exhibit a distinct demographic or traditional 
radiographic signature.

Pseudarthrosis can be predicted with raw preoperative MRI
To explore the potential of AI to non-linearly utilize the millions of data points present in raw MRI, we 
implemented a custom 3D-CNN. Across the five-fold nested cross-validation, the completely withheld 
testing data were classified by the model with a Youden index ranging from 0.30 to 0.80 (mean 0.49, 95% 
confidence interval ± 0.25, Figure 2). A single population t-test against a null hypothesis of a Youden index 
of 0.00, representing an equivocal model, was significant with a P-value of 5.50e-3. These results indicate 
that the 3D-CNN model was accurate in predicting pseudarthrosis following ASD surgery with at least two 
years of follow-up and has the potential to generalize well to a larger population.

Superficial adipose tissue appears to be most important for classification
Of greatest interest to this work were the MRI features used by the 3D-CNN model to gain insight into the 
pathogenesis of pseudarthrosis. Upon model interrogation with GradCAM, the most important MRI 
features for classification of pseudarthrosis following ASD surgery appear to be posterior adipose tissue - 
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Figure 2. Youden index across the five-fold nested cross-validation. The values shown are only for the completely withheld testing 
partition for each fold. **P < 0.01.

i.e., the majority of GradCAM feature maps highlight various aspects of superficial adipose tissue posterior 
to the spinous processes (example subjects in Figure 3). Notably, there is no significant difference in body 
mass index (BMI) between the pseudarthrosis cohort (28.8 ± 7.3) and the non-pseudarthrosis cohort (29.0 ± 
8.2), with a t-test P-value of 0.874. Notably, of the 48 patients who developed pseudarthrosis, 24 (50.0%) also 
had proximal junctional kyphosis (PJK). However, in our past work, we found that posterior musculature 
was most predictive of PJK[18]. Thus, these results indicate that there is an important radiologic signature 
within these adipose regions that enables the 3D-CNN model to accurately classify pseudarthrosis, 
independent of total adipose content estimated by BMI and independent of radiographic features that 
predict PJK.

DISCUSSION
The current study demonstrated the accuracy of using a 3D-CNN on raw thoracic MRI to predict 
pseudarthrosis following ASD surgery. More importantly, the imaging features associated with 
pseudarthrosis were elucidated to be mainly posterior adipose tissue - with a predominance of the upper 
thoracic region. Interestingly, except for age, our cohort did not demonstrate any demographic or 
traditional radiographic measurement difference between those who developed pseudarthrosis and those 
who did not.  Thus, it is noteworthy that the 3D-CNN heavily utilized adipose tissue of the imaging to 
develop the classification despite the pseudarthrosis cohort not being significantly more overweight (P = 
0.874). This observation leads the authors to surmise that there exists a subtle MRI signature in the adipose 
tissue that the model used for classification. Furthermore, the imaging hotspots are not consistently at a 
region of the largest adipose collection; thus, it is likely that the 3D-CNN model is detecting an intra-
adipose or adipose-adjacent signal. Future work could focus on using image segmentation techniques to 
better quantify the exact types of tissue present within GradCAM hotspots. Finally, posterior upper thoracic 
adipose tissue is typically distant from the region of pseudarthrosis, which in our cohort was predominately 
in the low lumbar region. Thus, it can be surmised that the network learned a global signature of 
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Figure 3. Posterior superficial adipose tissue appears to be important for the 3D-CNN model to classify pseudarthrosis. 3D-CNN: 
Three-dimensional convolutional neural network.

pseudarthrosis predilection, not captured by demographic variables, as opposed to a local tissue 
abnormality at the future site of pseudarthrosis.

Overall, this work serves as an augmentation to existing models to preoperatively predict pseudarthrosis[17]. 
Previously identified risk factors to predict pseudarthrosis include alcoholism, smoking, fusion location, 
vertebral bone quality score, diabetes, sarcopenia, advanced age, and potentially graft material[1,23-26]. Not all 
of these factors were readily available in our dataset. However, it is notable that our demographic analysis of 
available metrics did not reveal any significant differences between pseudarthrosis and non-pseudarthrosis 
cohorts except for age. Thus, by incorporating raw MRI, one can leverage high-dimensional data that are 
often readily available in clinical databases with minimal manual extraction required. With the 
incorporation of readily available imaging, this technique does not rely on meticulous database mining and 
is free from the problems of patient bias when reporting metrics such as alcohol use and smoking status. 
Furthermore, this work provides potential insight into the biological underpinnings of pseudarthrosis 
development and could serve as background evidence for future studies exploring the role of global adipose 
tissue characteristics in those who develop pseudarthrosis.

It is well-documented that posterior musculature and sarcopenia appear to be strongly correlated with 
mechanical complications following ASD surgery[27]. Thus, it is notable that the current work, and our past 
work using similar techniques to predict PJK using MRI have both revealed imaging risk factors of soft 
tissue - adipose tissue and posterior musculature, respectively. This contributes to the growing body of 
literature focusing on soft tissue characteristics as driving factors for mechanical complications, as opposed 
to bony anatomy. The authors do not discount the importance of bone integrity for consideration of ASD 
surgery, but rather aim to outline the additional importance of soft tissue health when considering a large 
deformity operation.
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Limitations to this technique include the ever-present potential for overfitting, the computing resources 
required, and the technical expertise required to run the analysis algorithms. An important next step would 
be to test these methods on an external cohort. Another consideration with this methodology is that the 
thoracic MRI did not capture the top of the implanted construct in a few subjects. This can be seen as both a 
potential weakness and potential strength of this study because the results were robust despite this 
consideration - this indicates that there is possibly a global imaging feature that the 3D-CNN detects to aid 
accurate classification. Finally, the proper de-identification of raw data is paramount to model creation to 
ensure patient privacy when deploying trained models.

Overall, the use of machine learning in medical imaging has garnered attention but has still been limited in 
scope compared to tabular data machine learning and large language models. We aimed to demonstrate the 
potential of a simple classification scheme on available 3D MRIs to predict the development of 
pseudarthrosis following ASD surgery. Beyond the cross-validated accuracy of the model, our approach has 
the benefit of providing a level of interpretation by outlining imaging features used by the model to make 
classification decisions. Overall, this work demonstrates the capabilities of raw imaging AI in spine surgery 
and can serve as the basis for a deeper biological inquiry into the pathogenesis of pseudarthrosis.
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