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Abstract
This paper presents elastodynamic modeling and analysis for a five-axis lightweight robotic arm. Natural frequencies
are derived and visualized within the dexterous workspace to show the overall performances and compare them to
the frequencies when the robotics is with payload. The comparison shows that the payload has a relatively small
influence to the first- and second-order frequencies. Sensitivity analysis is conducted, and the system’s frequency is
more sensitive to the second joint stiffness than the others. Moreover, observations from the displacement response
analysis reveal that the robotics produces linear elastic displacements of the same level between the loaded and
unloaded workingmodes but larger rotational deflections under the loaded working condition. Themain contribution
of this work lies in that a systematic approach of elastodynamic analysis for serial robotic manipulators is formulated,
where the arm gravity and external load are taken into account to investigate the dynamic behaviors of the robotic
arms, i.e., frequencies, sensitivity analysis, and displacement responses, under the loaded mode.

Keywords: Lightweight robotic arm, elastodynamics, natural frequency, displacement response

1. INTRODUCTION
Lightweight robotic arms and anthropomorphic assistive robots with high payload capacity are desired for
applications of industry and welfare, among other fields, such as assisted daily living [1–3], pick-and-place op-
erations [4], etc. Pick-and-place robots are well suited for a static environment where the task is repeated and
precise tolerances are demanded [5]. As a mechanical system, the dynamic characteristics of the robotic arm
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is of importance to account for the requirements of application, such as high precision, speed, and payload.
Henceforth, higher natural frequencies and low elastic displacements of a roboticmanipulator will allow higher
operational speeds and working cycles for efficient productivity [6]. Natural frequencies indicate the condition
in which a mechanism tends to vibrate [7,8]. Differing from a structure or element, the dynamic behavior of
a mechanism usually heavily depends on its architecture and configurations [9]; thus, it is not a trivial task to
characterize the robot dynamics throughout the workspace, which calls for the kineto-elastodynamic analysis
to provide the fundamentals of the modeling, design and control.

The elastodynamic modeling and analysis of a robotic manipulator have been reported previously [10,11], and
they are roughly grouped into two categories: lumped modeling [12–15] and distributed-flexibilities model-
ing [9,16–19]. In general, with lumped modeling it is simpler to model the elastodynamic equation with accept-
able computational accuracy, while the latter provides a more accurate model but with the high-dimensional
generalized coordinate space and more complex procedure [20]. The commonly used method to study the
elasticity of the robotic manipulators is the virtual joint method (VJM) as it can provide acceptable compu-
tation accuracy that is close to that of finite element analysis (FEA) [21]. Besides, VJM can be time efficient.
VJM is based on pseudo-rigid body models with “virtual joints” [22–25]. Generally, the link flexibilities and
linear/torsional springs take into account the bending contributions to the mechanism [26–29]. The stiffness
formulated in the above approaches is limited to a subspace defined by the degrees of freedom (dofs) of the
manipulator end-effector. Pashkevich et al. [30] overcame this issue by introducing a full-mobility lumped-
parameter model by localizing 6-dof virtual springs to the links’ ends and/or joints. In these models, the
stiffness matrix is calculated in an unloaded equilibrium configuration of a robotic manipulator. On the other
hand, the external loads directly influence the manipulator equilibrium configuration and, consequently, may
modify the static properties. The lightweight design of the robotics accordingly decreases the link structural
stiffness; thus, the robot geometry change due to external loads should be considered [31–33]. Consequently,
elastodynamics of the robotic manipulators is an important concern in their design and applications. Based
on the matrix structural analysis, Cammarata et al. [9,34] proposed an algorithm to assemble the stiffness matrix
to investigate the manipulators with lower kinematic pairs. In this manner, the overall robotic manipulator in-
parallel architecture can be split into substructures for modeling the elastodynamics [35]. Wu et al. [36] analyzed
and compared the stiffness and natural frequencies of a 3-dof parallel manipulator with/without a redundant
leg, where the joint deformations are ignored in the stiffness modeling. The small-amplitude deformations
of the active joints can be considered as parameter uncertainties in terms of small variations to be integrated
into the dynamic model [37]. Briot and Khalil [14] used the Newton–Euler recursive approach to develop a gen-
eral symbolic elastodynamic calculation model for flexible parallel robots. Taghvaeipour et al. [15] derived the
posture-dependent stiffness matrix in the elastodynamic modeling by resorting to the generalized spring con-
cept. The previous models were established in the nominal configurations; hence, the geometry changes of the
manipulator in this work are considered in the elastodynamic modeling and analysis.

In this paper, the elastodynamic characteristics of a lightweight robotic arm are investigated. The arm grav-
ity and external load are taken into account to derive the stiffness matrix. Isocontours of natural frequencies
over the dexterous workspace are formulated and sensitivity analysis is conducted. The frequencies and dis-
placement responses of the robotics with payload are analyzed and compared with the dynamic behaviors of
the unloaded mode. The main contribution of this work lies in that a systematic approach of elastodynamic
analysis for serial robotic manipulators is formulated, where the arm gravity and external load are taken into
account to investigate the dynamic behaviors of the robotic arms, i.e., frequencies, sensitivity analysis, and
displacement responses, under the loaded mode.
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Figure 1. The 5-dof lightweight robotic arm and its coordinate systems [38].

Table 1. D–H parameters of the 5-dof robotic arm

Joint 𝑖 𝛼𝑖 𝑎𝑖 [mm] 𝑑𝑖 [mm] 𝜃𝑖

1 𝜋/2 0 250 𝜃1

2 0 600 0 𝜃2

3 𝜋/2 0 0 𝜃3

4 −𝜋/2 0 600 𝜃4

5 𝜋/2 0 150 𝜃5

2. KINEMATICS OF THE LIGHTWEIGHT ROBOTIC ARM
The lightweight robotic arm under study has five degrees of freedom (dof) [38], which adopts a modular design
approach, as shown in Figure 1. The revolute joints are composed of CPU series gearboxes of Harmonic Drive
and Maxon motor with gearhead to enhance the torque capabilities, except Joint 4 with geared motor. The
actuators of joints are controlled by Maxon EPOS controllers. The Controller Area Network (CANopen) bus
is adopted to build the communications between motors and controllers, and A CAN–USB interface is used
to establish the communications between CANopen bus and the PC [38]. In accordance with the Denavit–
Hartenberg (D–H) convention [39], the Cartesian coordinate systems are established accordingly.

2.1. Kinematics of robotic arm
Throughout this work, i, j, and k stand for the unit vectors of the 𝑥-axis, 𝑦-axis, and 𝑧-axis, respectively. The
transformation matrix in forward kinematics of the end-effector in reference frame is expressed as

0A5 =

[
R q
0 1

]
=

5∏
𝑖=1

𝑖−1A𝑖; 𝑖−1A𝑖 =

[
𝑖−1R𝑖

𝑖−1q𝑖
0 1

]
(1)

with

𝑖−1R𝑖 = R(𝑧𝑖−1, 𝜃𝑖)R(𝑥𝑖 , 𝛼𝑖) (2a)
𝑖−1q𝑖 =

[
𝑎𝑖 cos𝛼𝑖 𝑎𝑖 sin𝛼𝑖 𝑑𝑖

]𝑇 (2b)

where D–H parameters are given in Table 1, and the inverse geometry problem for this robotics is well docu-
mented in the literature [8].

2.2. Kinematic jacobian matrix
The velocities between the joints and end-effector are mapped with the Kinematic Jacobian matrix

¤𝜽 = J−1v𝑒 𝑓 (3)

http://dx.doi.org/10.20517/ir.2021.11


Page 102 Wu. Intell Robot 2021;1(2):99-115 I http://dx.doi.org/10.20517/ir.2021.11

Figure 2. The quarter of the reachable and dexterous workspace (red volume) for the robotic arm.

where ¤𝜽 =
[ ¤𝜃1 ¤𝜃2 ¤𝜃3 ¤𝜃4 ¤𝜃5

]𝑇 denotes the joint angular velocities and v𝑒 𝑓 =
[
𝝎𝑇 ¤q𝑇

]𝑇 is the velocity of
the end-effector. Moreover, J is the kinematic Jacobian matrix of the robotic arm [40], namely,

J =
[
j1 j2 j3 j4 j5

]
where j𝑖 =

[
z𝑖−1

p𝑖−1 × z𝑖−1

]
(4)

with
z𝑖−1 = R𝑖−1k; p𝑖−1 = q𝑖−1 − q (5)

where R𝑖−1 and q𝑖−1 denote the rotation matrix and position vector of the transformation matrix from the
reference coordinate system to the (𝑖 − 1)th coordinate system, respectively, which can be extracted from∏𝑖−1
𝑖=0

𝑖−1A𝑖 in Equation (1).

2.3. Dexterous workspace
The reachable workspace of the robotic arm can be visualized by considering the limitation of the joint dis-
placements and link dimensions. To effectively perform the kinematic performance, a dexterous workspace
is defined, throughout which the inverse of the condition number of the Jacobian matrix is greater than 0.2,
namely 𝜅−1(J) ≥ 0.2. Since the Jacobianmatrix of Equation (4) is not homogeneous, a characteristic length [41]

is introduced to normalize the Jacobian matrix as follows:

j′𝑖 =
[

z𝑖−1
p𝑖−1 × z𝑖−1/𝐿

]
; 𝐿2 =

1
5

5∑
𝑖=1

‖p𝑖−1 × z𝑖−1‖2 (6)

By constraining the condition number of the kinematic Jacobian matrix, a regular dexterous workspace is
quarterly visualized in Figure 2.

3. ELASTODYNAMIC MODEL OF ROBOT
The elastodynamic modeling procedure pertains to the calculation of the stiffness and mass matrices of the
manipulator, which is described in the following sections. Prior to the derivation of the elastodynamic model,
the following assumptions are made:

• The actuator stiffness is considered as an 1-dof torsional spring, while the link is considered as cantilever
with a 6-dof spatial spring located at the end but treated as rigid.

http://dx.doi.org/10.20517/ir.2021.11
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Figure 3. Virtual spring model of the 5-dof robotic arm with auxiliary loads, where 𝐴𝑐 stands for the actuator and EE for end-effector.

• The centers of mass of the regular components are coincident with their geometric centers.
• The sum of moments of inertia of the actuators and Harmonic drivers are considered as lumped.

3.1. Stiffness matrix
To derive the elastodynamic equation of the robotic arm, the stiffness matrix is calculated with the virtual
spring approach [42], based on the screw coordinates [43]. Hence, the component masses and external loads are
taken into account to compute the Cartesian stiffness matrix. Figure 3 shows the VJM model of the robotic
arm, where G 𝑗 , 𝑗 = 1, 2, ..., 7, stands for the gravity and F for the external loads.

Let 𝜽 and 𝜽′ be the original and the deformed displacements of the virtual springs, respectively, following the
principle of virtual work, i.e., the work of the auxiliary forces is equal to the work of internal forces 𝝉𝜃 , namely,∑

(G𝑇
𝑗 𝛿t 𝑗 ) + F𝑇𝛿t = 𝝉𝑇𝜃 (𝜽′ − 𝜽) (7)

where the virtual displacements 𝛿t 𝑗 and 𝛿t can be computed from the linearized geometrical model derived
from 𝛿t 𝑗 = J 𝑗 (𝜽′ − 𝜽) and 𝛿t = J𝜃 (𝜽′ − 𝜽), respectively, J 𝑗 and J𝜃 being the Jacobians, namely,

J𝜃 =
[
j1 j2 J𝑢 j3 J𝑙 j4 j5

]
∈ R6×17 (8)

J 𝑗 = J𝜃 (:, 1 : 𝑘) (9)

where J𝜃 (:, 1 : 𝑘) stands for the first 𝑘 columns in J𝜃 and 𝑘 stands for the total degrees of freedom of the
virtual springs from the base to G 𝑗 . Moreover,

J𝑢 =
[

x1 y1 z1 0 0 0
q2 × x1 q2 × y1 q2 × z1 x1 y1 z1

]
(10a)

J𝑙 =
[

z3 x3 y3 0 0 0
q4 × z3 q4 × x3 q4 × y3 z3 x3 y3

]
(10b)

Equation (7) is rewritten as ∑
(G𝑇

𝑗 J 𝑗 (𝜽′ − 𝜽)) + F𝑇J𝜃 (𝜽′ − 𝜽) = 𝝉𝑇𝜃 (𝜽′ − 𝜽) (11)

consequently, the force equilibrium equation is derived as

𝝉𝜃 =
∑

(J𝑇𝑗 G 𝑗 ) + J𝑇𝜃F = J𝑇𝑔G + J𝑇𝜃F (12)

with
J𝑔 =

[
J𝑇1 J𝑇2 ... J𝑇7

]𝑇 ; G =
[
G𝑇

1 G𝑇
2 ... G𝑇

7
]𝑇 (13)

Assuming that K𝜃 is the stiffness matrix in the joint space, with the linearized force–deflection relation, the
equilibrium condition can be written as

J𝑇𝑔G + J𝑇𝜃F = K𝜃 (𝜽′𝑖 − 𝜽𝑖) (14)

http://dx.doi.org/10.20517/ir.2021.11
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with
K𝜃 = diag

[
𝐾act,1 𝐾act,2 K𝑢 𝐾act,3 K𝑙 𝐾act,4 𝐾act,5

]
(15)

where 𝐾act,𝑖 is the actuation stiffness andK𝑢 andK𝑙 are the upper and lower link stiffness matrices, respectively.

To calculate the stiffness matrix of the loaded mode, a neighborhood in the loaded configuration in which the
external loads and the joint location are supposed to be incremented by small values 𝛿F and 𝛿𝜽 , which can
still satisfy the equilibrium conditions, is considered, leading to

(J𝑔 + 𝛿J𝑔)𝑇G + (J𝜃 + 𝛿J𝜃)𝑇 (F + 𝛿F) = K𝜃 (𝜽′ − 𝜽 + 𝛿𝜽) (16)

and the linearized kinematic constraint
𝛿t = J𝜃𝛿𝜽 (17)

Based on Equation (14), expanding Equation (16) yields

H𝑇
𝑔 ⊗ G𝛿𝜽 + J𝑇𝜃 𝛿F + H𝑇

𝜃 ⊗ F𝛿𝜽 = K𝜃𝛿𝜽 (18)

where the symbol ⊗ represents the Kronecker product between matrices and H𝑔 = 𝜕J𝑔/𝜕𝜽 , H𝜃 = 𝜕J𝜃/𝜕𝜽 .
Combining Equations (17) and (18), the stiffness model of the robotic manipulator is reduced to[

0 J𝜃
J𝑇𝜃 K𝐹 − K𝜃

] [
𝛿F
𝛿𝜽

]
=

[
𝛿t
0

]
(19)

with
K𝐹 = H𝑇

𝑔 ⊗ G + H𝑇
𝜃 ⊗ F (20)

From 𝛿F = K𝛿t, the Cartesian stiffness matrix K of the robotic arm is calculated as

K =
(
J𝜃 (K𝜃 − K𝐹)−1 J𝑇𝜃

)−1
(21)

3.2. Mass matrix
The mass matrix can be derived from the expression of the system’s kinetic energy, consisting of energies of
the revolute joints, links, and end-effector. The energy of the five active joints are

𝐸𝐽 =
1
2

( 5∑
𝑖=1

𝐼𝜃,𝑖 ¤𝜃2 +
5∑
𝑖=3

𝑚𝜃,𝑖v𝑇𝜃,𝑖v𝜃,𝑖

)
(22)

with
v𝜃,3 = E3 ¤𝜽; v𝜃,𝑖 = E45 ¤𝜽 , 𝑖 = 4, 5 (23)

and

E3 =
[
z0 × q2 z1 × (q2 − q1) 03

]
(24a)

E45 =
[
z0 × q4 z1 × (q4 − q1) z2 × (q4 − q2) 03×2

]
(24b)

where 𝐼𝜃,𝑖 is the moment of inertia of the 𝑖th joint, 𝑚𝜃,𝑖 is the mass, and v𝜃,𝑖 is the velocity in the Cartesian
space. Let I𝜃 = diag[𝐼𝜃,1, 𝐼𝜃,2, ..., 𝐼𝜃,5]; then, Equation (22) can be written in a compact form, namely,

𝐸𝐽 =
1
2
¤𝜽𝑇M𝐽

¤𝜽 (25)

with
M𝐽 = I𝜃 + 𝑚𝜃,3E𝑇3 E3 + (𝑚𝜃,4 + 𝑚𝜃,5)E𝑇45E45 (26)

http://dx.doi.org/10.20517/ir.2021.11
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The kinetic energy of the upper/lower links and the wrist link can be expressed as

𝐸𝐿 =
1
2

(
v𝑇𝑢M𝑢v𝑢 + v𝑇𝑙 M𝑙v𝑙 + v𝑇𝑤M𝑤v𝑤

)
(27)

with

M𝑢 =

[
R1I𝑢R𝑇

1 0
0 𝑚𝑢13

]
(28a)

M𝑙 =

[
R3I𝑙R𝑇

3 0
0 𝑚𝑙13

]
(28b)

M𝑤 =

[
R4I𝑤R𝑇

4 0
0 𝑚𝑤13

]
(28c)

where the subscripted I, 𝑚, and v stand for the moment of inertia, mass, and velocities in the Cartesian space,
respectively, and

v𝑢 = E𝑢 ¤𝜽; v𝑙 = E𝑙 ¤𝜽; v𝑤 = E𝑤 ¤𝜽 (29)

with

E𝑢 =
[

z0 z1 03
z0 × q𝑢 z1 × (q𝑢 − q1) 03

]
(30a)

E𝑙 =
[

z0 z1 z2 03×2
z0 × q𝑙 z1 × (q𝑙 − q1) z2 × (q𝑙 − q2) 03×2

]
(30b)

E𝑤 =

[
z0 z1 z2 z3 03×1

z0 × q4 z1 × (q4 − q1) z2 × (q4 − q2) z3 × (q4 − q2) 03×1

]
(30c)

where q𝑢 and q𝑙 are the position vector of the centers of the mass of the upper and lower links, respectively.
Equation (27) can be cast in a matrix form as follows:

𝐸𝐿 =
1
2
¤𝜽𝑇M𝐿

¤𝜽 (31)

with
M𝐿 = E𝑇𝑢M𝑢E𝑢 + E𝑇𝑙 M𝑙E𝑙 + E𝑇𝑤M𝑤E𝑤 (32)

Similarly, the kinetic energy of the end-effector can be obtained as

𝐸𝐸 =
1
2

v𝑇𝑒 𝑓M𝐸v𝑒 𝑓 ; M𝐸 =

[
RI𝑒R𝑇 03

03 𝑚𝑒13

]
(33)

where I𝑒 is the moment of inertia of the end-effector and 𝑚𝑒 is the mass.

From the total kinetic energy of the robotic arm 𝐸 = 𝐸𝐽 +𝐸𝐿 +𝐸𝐸 , the mass matrix M for the robotic arm can
be expressed as

M = M𝐸 + J−𝑇 (M𝐽 + M𝐿)J−1 (34)

3.3. Dynamic equation and analysis
The dynamic equation of the robotic arm can be formulated as

M¥u + C ¤u + Ku = f − M¤v𝑒 𝑓 = F (35)

where C is the damping matrix, F is the resultant force, and u and ¥u are the elastic displacement and accelera-
tion, respectively. Since damping can only slightly influence the natural frequency andmode of free vibrations,

http://dx.doi.org/10.20517/ir.2021.11
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the damp can be ignored to determine the natural frequencies. Simplification of Equation (35) results in the
linearized elastodynamic equation below

M¥u + Ku = 0 (36)

The rigidity of the systemmay be represented by the natural frequency. The higher is the frequency, the higher
is the stiffness. From Equation (36), we get

det(−𝜔2M + K) = 0 (37)

where 𝑓 = 𝜔/2𝜋 denotes the natural frequency.

The displacement response analysis can be carried out from Equation (35) based on the initial conditions

u0 = u(0); ¤u0 = ¤u(0) (38)

Here, the damping ratios are set to 𝜍 = 6% according to the manipulator structure. From Equation (37), the
displacement vector u can be represented in terms of the modal contributions, namely,

u = Q𝜼 (39)

where Q and 𝜼 are the modal matrix and the vector of the displacements in each mode, respectively. Conse-
quently, Equation (35) can be rewritten as

¥𝜼 +𝚽 ¤𝜼 +𝛀𝜼 = f𝑑 (40)

with

𝚽 = Q𝑇CQ = diag
[
2𝜍𝜔1 2𝜍𝜔2 ... 2𝜍𝜔6

]
(41a)

𝛀 = Q𝑇KQ = diag
[
𝜔2

1 𝜔2
2 ... 𝜔2

6
]

(41b)

f𝑑 = Q𝑇F (41c)

Since the mass and stiffness matrices in Equation (35) are time-varying, the common way to solve such a
problem is to divide the motion period into extremely short intervals, where the stiffness and mass matrices
are considered as constant in each interval. Let 𝑇 denote the complete motion period that is divided into 𝑁
intervals, namely, Δ𝑡 = 𝑇/𝑁 . In the 𝑛th time interval 𝜏 ∈ [𝑡𝑛−1, 𝑡𝑛], the equation of motion in the 𝑖th mode is
expressed as

¥𝜂𝑖 + 2𝜍𝜔𝑖 ¤𝜂𝑖 + 𝜔2
𝑖 𝜂𝑖 = 𝑓𝑑𝑖 (42)

Thus, the 𝑖th mode contributes to the displacement response [44] is

𝜂𝑖 (𝑡𝑛) = 𝑒𝜍𝜔𝑖Δ𝑡

(
cos𝜔𝑑𝑖Δ𝑡 +

𝜍√
1 − 𝜍2

sin𝜔𝑑𝑖Δ𝑡

)
𝜂𝑖 (𝑡𝑛−1)

+ 1
𝜔𝑑𝑖

∫ 𝑡𝑛

𝑡𝑛−1

𝑓𝑑𝑖 (𝜏)𝑒−𝜍𝜔𝑖 (𝑡𝑛−𝜏) sin𝜔𝑑𝑖 (𝑡𝑛 − 𝜏)d𝜏

+
(

1
𝜔𝑑𝑖

𝑒𝜍𝜔𝑖Δ𝑡 sin𝜔𝑑𝑖Δ𝑡
)
¤𝜂𝑖 (𝑡𝑛−1) (43)

where
𝜔𝑑𝑖 = 𝜔𝑖

√
1 − 𝜍2 (44)
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Table 2. Mass and moment of inertia of the active joints

Joint i 1 2 3 4 5
𝐼𝜃,𝑖 [kg · mm2 ] 0.0210 0.0002 0.0001 0.0001 0.0002
𝑚𝜃,𝑖 [kg] − 2.2272 1.8196 2.2442 2.0053

Table 3. The properties of the links and end-effector

Links Mass [kg] Moment of inerita [kg · cm2 ]
upper link 𝑚𝑢 = 4.7995 I𝑢 = diag[1.1884, 25.0670, 24.4940]
lower link 𝑚𝑙 = 1.7795 I𝑙 = diag[4.0802, 4.0861, 0.2345]
wrist link − I𝑤 = diag[0.5556, 0.9154, 0.6119]
end-effector 𝑚𝑒 = 1.2961 I𝑒 = diag[0.4563, 0.4382, 0.2347]

Differentiating Equation (43) with respect to time leads to

¤𝜂𝑖 (𝑡𝑛) = ¤𝜂𝑖,1(𝑡𝑛) + ¤𝜂𝑖,2(𝑡𝑛) + ¤𝜂𝑖,3(𝑡𝑛) (45)

with

¤𝜂𝑖,1(𝑡𝑛) = 𝑒𝜍𝜔𝑖Δ𝑡

(
2𝜍2 − 1√

1 − 𝜍2
𝜔𝑖 sin𝜔𝑑𝑖Δ𝑡 +

2𝜍√
1 − 𝜍2

𝜔𝑑𝑖 cos𝜔𝑑𝑖Δ𝑡

)
𝜂𝑖 (𝑡𝑛−1) (46a)

¤𝜂𝑖,2(𝑡𝑛) =
1
𝜔𝑑𝑖

𝑒𝜍𝜔𝑖Δ𝑡 (𝜍𝜔𝑖 sin𝜔𝑑𝑖Δ𝑡 + 𝜔𝑑𝑖 cos𝜔𝑑𝑖Δ𝑡) ¤𝜂𝑖 (𝑡𝑛−1) (46b)

¤𝜂𝑖,3(𝑡𝑛) =
1
𝜔𝑑𝑖

∫ 𝑡𝑛

𝑡𝑛−1

𝑓𝑑𝑖 (𝜏)𝑒−𝜍𝜔𝑖 (𝑡𝑛−𝜏) (𝜍𝜔𝑖 sin𝜔𝑑𝑖 (𝑡𝑛 − 𝜏) − 𝜔𝑑𝑖 cos𝜔𝑑𝑖 (𝑡𝑛 − 𝜏)) d𝜏 (46c)

Hence, 𝜂𝑖 (𝑡𝑛) and ¤𝜂𝑖 (𝑡𝑛) can be solved as long as 𝜂𝑖 (𝑡𝑛−1) and ¤𝜂𝑖 (𝑡𝑛−1) are given, and

𝜂𝑖 (0) = e𝑇𝑖 Mu(0); ¤𝜂𝑖 (0) = e𝑇𝑖 M ¤u(0) (47)

where e𝑖 is the 𝑖th column of the modal matrix. The total displacement response is calculated by the following
addition

u(𝑡𝑛) =
6∑
𝑖=1

𝜂𝑖 (𝑡𝑛)e𝑖 (𝑡𝑛) (48)

Consequently, the natural frequency and displacement response can be obtained with numerical calculations.

4. NUMERICAL SIMULATION
Elastodynamic characteristics of the robotic arm are investigated in this section. The properties of the robotics
components are listed in Tables 2 and 3, respectively. Moreover, according to the output shaft of the gearbox,
the actuation stiffnesses are calculated and set to 𝐾𝑎𝑐𝑡,𝑖 = 2 · 104 Nm/rad, 𝑖 = 1, ..., 5, and the link stiffness
matrices given in Appendix A are derived by means of FEA with ANSYS [45]. The numerical simulation was
carried out with Matlab.

4.1. Natural frequency
To effectively measure the overall performance of the robotic arm, the distributions of natural frequencies over
the dexterous workspace in Figure 2 are visualized, as displayed in Figures 4 and 5.

Let the end-effector orientation follow the 𝑍𝑋𝑍 Euler convention; the distributions of the first- and second-
order natural frequencies over workspace are displayed in Figures 4 and 5 when the end-effector remains
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Figure 4. The natural frequency with constant-orientation [0, 0, 0] (in unit of rad): (a) first order; (b) second order. (The color bar stands for
the numerical value of the term in the legend, which is applicable to Figs. 5 to 7.)
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Figure 5. The natural frequency with constant-orientation [0, 𝜋/2 0]: (a) first order; and (b) second order.

vertical and horizontal, respectively. It can be observed that the nonsymmetric distributions of the natural
frequencies in Figure 5 are different from the symmetric ones in Figure 4. This is because the robot config-
urations are not axisymmetric about the vertical direction with the vertical end-effector, leading to different
inverse kinematic solutions of such a 5-dof robotic arm, which are different from the axisymmetric robot
configurations with horizontal end-effector. As the mass and stiffness matrices of the robot are configuration
dependent, non-symmetric distributions of natural frequencies in Figure 5 occur. These two figures show that
the first two orders of natural frequencies increase with the increasing 𝑧 coordinates but with decreased 𝑥 and
𝑦 coordinates, namely both the first and second frequencies increases from the workspace boundaries to the
origin of the global coordinate systems. As displayed in Figure 4, when the end-effector remains vertical, the
natural frequencies have the same varying trend in any vertical cross-section of the workspace. By contrast,
the first- and second-order frequencies become smaller counterclockwise within the workspace when the end-
effector is in the horizontal configuration, as shown in Figure 5. Moreover, it is found that the differences
among the frequencies of the manipulator in different configurations are not so large, which means that the
robotic arm has close frequencies inside the overall workspace.
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4.2. Sensitivity analysis
Sensitivity analysis can be used to evaluate the influence of the geometric parameters and design variables to
the manipulator performances. Based on the elastodynamic equation, there exists

(−𝜔2
𝑖 M + K)e𝑖 = 0 (49)

Upon differentiation of Equation (49), the derivative equation with respect to a variable 𝛿 is obtained as follows:

(−2𝜔𝑖
𝜕𝜔𝑖
𝜕𝛿

M − 𝜔2
𝑖

𝜕M
𝜕𝛿

+ 𝜕K
𝜕𝛿

)e𝑖 + (−𝜔2
𝑖 M + K) 𝜕e𝑖

𝜕𝛿
= 0 (50)

Taking the dot-product on both sides of Equation (50) yields

e𝑇𝑖 (−2𝜔𝑖
𝜕𝜔𝑖
𝜕𝛿

M − 𝜔2
𝑖

𝜕M
𝜕𝛿

+ 𝜕K
𝜕𝛿

)e𝑖 + e𝑇𝑖 (−𝜔2
𝑖 M + K) 𝜕e𝑖

𝜕𝛿
= 0 (51)

From
e𝑇𝑖 Me𝑖 = 1; e𝑇𝑖 (−𝜔2

𝑖 M + K) =
(
(−𝜔2

𝑖 M + K)e𝑖
)𝑇

= 0 (52)

we have
− 2𝜔𝑖

𝜕𝜔𝑖
𝜕𝛿

− 𝜔2
𝑖 e
𝑇
𝑖

𝜕M
𝜕𝛿

e𝑖 + e𝑇𝑖
𝜕K
𝜕𝛿

e𝑖 = 0 (53)

or
𝜕𝜔𝑖
𝜕𝛿

= − 1
2𝜔𝑖

(
−𝜔2

𝑖 e
𝑇
𝑖

𝜕M
𝜕𝛿

e𝑖 + e𝑇𝑖
𝜕K
𝜕𝛿

e𝑖
)

(54)

Figure 6 illustrates the sensitivity of the first-order natural frequency to the first two active joints with constant
orientation [0, 𝜋/2, 0]. It is found that the first-order natural frequency is much more sensitive to the second
joint, particularly in the upper and lower workspace regions, which implies that the robot’s dynamic perfor-
mance can be improved by replacing the second joint with a stiffer actuator. It is noted that the distributions
of sensitivity coefficients are not symmetric, which is because the robot configurations are not axisymmetric
about the vertical direction when the robot end-effector moves with some constant orientations, since the
robot under study is a 5-dof robotic arm. Moreover, if a payload with more mass were exerted to the robot, it
could be predicted that the sensitivity coefficients will be increased with very tiny varying trends, compared
to the present results.

4.3. Dynamic analysis of loaded system
With the payload 5 kg applied to the end-effector of the robotic arm, they constitute a new dynamic system
and the solved frequencies with constant-orientation [0, 𝜋/2, 0] are illustrated in Figure 7, from which it is
observed that the frequencies of the loaded robotic system decrease about 20% compared to Figure 5. Table 4
lists the average frequencies [46] within the constant-orientation workspace defined by

𝑓𝑖 =

∫
𝑓𝑖dΩ∫
dΩ

(55)

whereΩ stands for theworkspace volume. Different from the traditional industrial robots with low frequencies,
the high order frequencies have large values tomake themanipulator achieve high-speedmotion. Compared to
the average natural frequencies, the frequencies of the robotics with payload reduce 10%–40% for the six orders
of frequencies. From the view of kineto-elastodynamic characteristics, the difference between the frequency
of the loaded system and its natural frequency could be a consideration in the design of the mechanical system,
where the smaller difference implies higher rigidity and higher payload capability.
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Figure 6. Sensitivities of the first-order natural frequency to the joint stiffness: (a) Joint 1; and (b) Joint 2.
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Figure 7. The frequencies with payload at constant-orientation [0, 𝜋/2, 0]: (a) first order; and (b) second order.

Table 4. The mean frequency (Hz) within the dexterous workspace

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

Natural frequency 7.9404 8.9579 19.0263 84.9292 136.1418 300.6579
Frequency with payload 5.9538 6.5358 15.2772 55.8998 86.6291 276.5956

Assuming that the motion of the robotic arm follows the trajectory (unit: mm) defined by

𝑥 = 750 + 750(cos 𝜋𝜏 − 1)
𝑦 = 750(1 − cos 𝜋𝜏)
𝑧 = 600(1 − cos 𝜋𝜏)

(56)

where the end-effector keeps constant-orientation [0, 𝜋, 0] and the motion period 𝑇 = 0.5 s is divided into
1024 intervals, Figure 8 shows the displacement responses of the end-effector, from which it is seen that the
linear elastic displacement responses are close, whenever the robotic arm is under loaded and unloaded work-
ing modes. The angular displacements of the end-effector generate relatively large differences. The largest
deformations appear around 0.3 s where the end-effector is located in the middle layer of the workspace, ap-
proximately 𝑧 = 250 mm.

Figure 9 shows the comparison of the joint angular displacements between the numerical simulation and ex-
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Figure 8. Displacement responses of the end-effector: (a) 𝑥 direction; (b) 𝑦 direction; (c) 𝑧 direction; (d) 𝜙𝑥 direction; (e) 𝜙𝑦 direction; and
(f) 𝜙𝑧 direction.

perimental measurements along previous trajectory, where the experimental data are read from the motor
encoders. Due to the frictions and time-varying disturbance in the joints, the experimental curve profiles
have more fluctuations and larger vibration amplitudes than the simulation ones. On the other hand, the com-
parison shows that the differences between these two curves are small, thus, the built analytical model can be
acceptable for dynamic analysis of the robots.
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Figure 9. Comparison of the joint angular displacements under loaded mode.

5. CONCLUSION
This paper presents the elastodynamic characteristics of a 5-dof lightweight robotic arm. The main contribu-
tion is that a systematic approach of elastodynamic analysis for serial roboticmanipulators is formulated, where
the arm gravity and external load are taken into account to investigate the dynamic behaviors of the robotic
arms, i.e., frequencies, sensitivity analysis, and displacement responses, with auxiliary payloads exerted to the
robot. The modeling in this work eases the evaluation of elastodynamics of the manipulator at a large number
of postures as the elastodynamic aspect is usually time-consuming. As the mass and stiffness matrices are pos-
ture dependent, the proposed method can effectively provide a symbolic calculation and achieve the modal
analysis along an operating trajectory. Moreover, such a model can compute the additional mass or evaluate
the influence of an isolator to the system more precisely to eliminate/reduce vibration in the vibration control.
The developed model can be used in either performance evaluation or design optimization.

The frequencies of the loaded robotics are visualized within the representative workspace regions to show the
overall dynamic performance and compare themwith the natural frequencies. The comparison reveals that the
studied robot keeps relatively high rigidity with high payload ratio. It is found from sensitivity analysis that the
natural frequency can effectively increase by improving the second joint stiffness. Based on the displacement
responses analysis, the payload has a slight influence on the translational elastic displacements of this robotic
system, although it leads to reduced frequencies, while the effect on the rotation deflections cannot be ignored.
In the future, the developed model will be integrated into its control system and an optimum redesign of the
robotics will be conducted.
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APPENDIX A: STIFFNESS MATRICES OF ARM LINKS
The stiffness matrices of the upper and lower links K𝑢 and K𝑙 for the 5-dof robotic arm, computed by means
of finite element analysis (FEA) with ANSYS, are given as

K𝑢 =



0.0309 0 0 0 0 0
0 0.2675 0 0 0 0.4176
0 0 0.3574 0 −0.5957 0
0 0 0 15.3676 0 0
0 0 −0.5957 0 1.6919 0
0 0.4176 0 0 0 1.7505


· 106 (A-1a)

K𝑙 =



0.0417 0 0 0 0 0
0 1.0452 0 0 0 2.5493
0 0 1.1631 0 −2.8369 0
0 0 0 17.2304 0 0
0 0 −2.8369 0 8.3105 0
0 2.5493 0 0 0 8.2351


· 106 (A-1b)

where the blocks corresponding to rotation, translation, and coupling terms are given in Nm/rad, N/rad, and
N/m, respectively.
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