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Abstract
Employing organic semiconductors to drive photocatalytic processes for chemical fuel production and pollutant 
degradation is a viable pathway for tackling the energy crisis and environmental pollution. In this review, we 
summarize the development of organic semiconductor photocatalysis so far and propose the future vision of 
organic semiconductors as state-of-the-art photocatalysts in practical applications. Compared to inorganic 
semiconductors, organic semiconductors display a large absorption coefficient and easily tunable topological and 
electronic structures, which set them apart from ordinary inorganic photocatalysts. However, the chemical 
instability, high exciton dissociation energy and low charge carrier mobility of organic semiconductors are the 
major obstacles to the improvement of their photocatalytic activity. Obviously, the opportunity and challenge 
coexist in the development of organic semiconductor photocatalysis. In light of this, we systematically compare the 
merits and shortcomings of organic semiconductors for heterogeneous photocatalysis and enumerate some 
feasible approaches to overcoming the bottlenecks hindering their photocatalytic performance. By carefully 
considering factors such as conjugated linkage types, building blocks, and electron donor-acceptor structures, 
highly reactive and stable organic semiconductor photocatalysts can be developed.

Keywords: Organic semiconductors, heterogeneous photocatalysis, exciton dissociation and diffusion, charge 
carrier transport, chemical stability
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INTRODUCTION
Since clean energy production via the sunlight-driven photocatalytic pathway opened up by Fujishima and 
Honda[1], great efforts have been made to exploit state-of-the-art photocatalysts for solar fuel production 
and environmental remediation[2-4]. Up to now, inorganic semiconductors including metal oxides[5], metal 
oxynitrides[6], metal oxyhalides[7], and chalcogenides[8] are most widely investigated. Photocatalysis involves 
several key processes, such as light absorption, exciton generation, diffusion, separation, charge carrier 
transport and recombination, and charge carrier injection to interfacial reactant[9]. Accordingly, structural 
optimization strategies for inorganic semiconductor photocatalysts have been developed to enhance each of 
these processes. To enhance the light harvesting and redshift the absorption edge of UV-responsive 
semiconductors, strategies such as dye-sensitizing[10], quantum dot-sensitizing[11], heteroatom doping[12], 
solid solution construction[13] are employed. Heterojunction formation[14], defect engineering[15], and crystal 
facet modification[16] are promising methods to optimize electron-hole separation efficiency and charge 
carrier dynamics. Nanoparticle size tuning[17] and cocatalyst loading[18] facilitate the charge carriers-involved 
interfacial chemical reactions. In addition to the traditional inorganic semiconductor materials, other 
materials with certain intrinsic merits also arouse interest in the community of heterogeneous 
photocatalysis. Plasmonic nanostructures (Au, Ag, Cu), as a category of photon antennae in solar energy 
conversion, have recently drawn great attention in photocatalysis owing to their large extinction coefficient 
and electromagnetic field confinement at nanoscale[19]. The hot carriers with high energy generated after the 
plasmon dephasing can be injected into the interfacial adsorbed reactant molecules and subsequently trigger 
chemical reactions[20]. Despite the large absorption cross section and high near-field enhancement in the 
vicinity of plasmonic nanostructures, in which the electron-electron scattering and electron-phonon 
relaxation take place at an extremely transient timescale, the lifetime of hot carriers is significantly 
minimized, resulting in low solar-to-chemical conversion efficiency on the plasmonic nanostructures[21]. 
Metal-organic frameworks (MOFs), as inorganic-organic hybrid materials with three-dimensional network 
structures, are also explored for heterogeneous photocatalysis because of their large specific surface area and 
high porosity[22-24]. The Metal-Oxo clusters isolated by the organic linkers in some MOFs are analogous to 
semiconductor quantum dots[25], thus endowing corresponding MOFs with semiconductor-like 
properties[26]. However, a considerable amount of these MOF materials are sensitive to moisture and 
aqueous solution[25], hindering their further application in photocatalysis. In this context, it is indispensable 
to develop new classes of photocatalysts to realize the practical application of photocatalysis in energy 
conversion and environmental remediation.

Why do organic semiconductors arouse great interest in the photocatalysis field?
As stated above, the structure-activity relationship in the inorganic semiconductor photocatalysis has been 
well established; attention needs to be paid to other promising photocatalysts. Recent years have witnessed 
the booming progress of organic semiconductor-based optoelectronic devices[27-30] owing to their merit of 
low cost, flexibility, and facile solution processability. Notably, organic photovoltaic (OPV) has seen 
substantial advancements, with power conversion efficiencies (PCEs) of single-junction or tandem OPV 
devices approaching 20%, nearing the PCEs of commercial inorganic solar cells[31]. Considering that the 
development of inorganic semiconductor photocatalysis draws on a set of methodologies from the 
inorganic semiconductor solar cells and electronic devices, organic semiconductor photocatalysis could 
similarly benefit from the recent progress in OPV. Moreover, the fundamental workings of OPV can be 
divided into light absorption, exciton generation and dissociation, charge carrier transport, and charge 
carrier collection in organic semiconductor devices[31]. Likewise, organic semiconductor photocatalysis 
follows the same steps as OPV, with the additional final procedure of charge carrier transfer to reactant 
molecules. As a result, organic semiconductors are emerging as promising photocatalysts for solar fuel 
production.
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What are organic semiconductor photocatalysts?
Organic semiconductors are a group of organic molecules or polymers with a π-conjugated system 
constructed by the Pz orbitals of sp2-hybridized carbon or heteroatoms[32]. The transition between π 
bonding orbital and π* anti-bonding orbital (π-π*) has a much narrower energy gap compared to the σ-σ* 
transition in the molecules with σ-bonding backbones, endowing the organic semiconductors with visible 
light response[32]. Up to now, the widely investigated organic semiconductor photocatalysts mainly include 
supramolecular catalysts[33], conjugated polymers[34], Graphitic carbon nitride (g-C3N4)[35], and covalent 
organic frameworks[36] [Figure 1]. This review paper will focus on the advancement and outlook of organic 
semiconductor photocatalysis based on these four types of materials.

Supramolecular materials
Supramolecular chemistry is a research field defined as “chemistry beyond the molecule”[37]. As the name 
suggests, supramolecular formation is an intermolecular assembly via the non-covalent interaction 
(hydrogen bonding, π-π stacking, dipoles-dipoles interaction, metal-ligand coordination, cation-π 
interaction)[38,39]. Supramolecular materials have been extensively studied as photocatalysts in recent years 
[Figure 1A][33], such as porphyrin, phthalocyanine, perylene imide, metal polypyridine complex and their 
derivatives[40-46]. Inspired by the natural photosynthesis of chlorophylls, porphyrin-based materials have 
drawn great attention in artificial photosynthesis due to their structural similarity. Porphyrin macrocycles 
consist of four pyrrole subunits linked by methylene bonds, and these nitrogen atoms in the conjugation 
system can interact with metal ions via coordination bonds[47]. Based on the chelating interaction between 
Zn and N, Wang et al. realized the self-assembly of porphyrin into supramolecular nanocrystals via a 
surfactant-assisted synthetic process[48]. Specifically, an acidic solution of H2TPyP porphyrin derivative was 
mixed with a basic aqueous solution of cetyltrimethylammonium bromide (CTAB) surfactant. Afterward, 
adding Zn2+ to the mixed solution can chelate the N atoms in the porphyrin macrocycle and thus further 
results in the formation of ZnTPyP nanowires via a self-assembly process. The as-synthesized ZnTPyP 
porphyrin supramolecular photocatalyst shows a remarkably high photocatalytic hydrogen production rate. 
Based on this synthetic protocol, porphyrin derivative supramolecular photocatalysts with different shapes 
can also be successfully prepared by replacing the surfactant of CTAB[49]. On top of porphyrin-based 
supramolecular photocatalysts, phthalocyanine is also an important building block for supramolecular 
photocatalysts because of its excellent light harvesting capability. As another macrocycle with a structure 
similar to porphyrin, phthalocyanine is made up of four isoindole subunits interconnected via four interval 
nitrogen atoms, which are also useful for chelating different metal ions. Cu, Co, Zn chelated phthalocyanine 
supramolecular photosensitizers coupled with TiO2 show distinct hydrogen evolution rates[50,51], indicating 
the influence of metal-nitrogen coordination on light absorption and charge carrier transport properties. 
Additionally, phthalocyanines can also co-assemble with amphiphilic amino acids, forming the 
supramolecular photocatalysts via π-π stacking and electrostatic interaction. This photooxidase-mimicking 
vesicular photocatalyst facilitates the oxidation of dopamine into leucodopaminechrome[52]. Generally, 
porphyrin and phthalocyanine derivatives, as well as other types of supramolecular materials, are excellent 
photosensitizers and photocatalysts.

Conjugated polymers
Conjugated polymers are a category of macromolecules with π-conjugated main chains composed of 
repeating building units, which is different from the traditional polymers with saturated main chain 
structures[53]. The backbones of conjugated polymers are made up of repeating monomers with unsaturated 
π bonds, such as aromatic, olefinic, or acetylenic building units[34,53]. The mobile π-electrons in the main 
chain endow conjugated polymers with semiconducting properties[54]. In 1985, Yanagida et al. first reported 
the application of linear polymer poly(p-phenylene) in the photocatalytic hydrogen evolution under 290 nm 
light illumination[55], opening up a novel era for the conjugated polymer in photocatalysis. Since then, 
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Figure 1. Main organic semiconductor photocatalysts: (A) Supramolecular materials. Adapted with permission[33], Copyright 2020 
American Chemical Society; (B) Conjugated polymers. Adapted with permission[34], Copyright 2016 American Chemical Society; (C) 
Graphitic carbon nitride (g-C3N4). Adapted with permission[35], Copyright 2016 American Chemical Society; (D) Covalent organic 
frameworks. Adapted with permission[36], Copyright 2013 Royal Society of Chemistry. 2D: two-dimensional; 3D: three-dimensional.

multiple attempts have been made to probe the structure-property-activity relationship in conjugated 
polymer photocatalysis. Extending the oligomer length could redshift the optical absorption edge of 1,4-
phenylene/2,5-thiophene copolymers[56]. Furthermore, decreasing the 1,4-phenylene ratio and increasing the 
2,5-thiophene ratio in the copolymers can lower the band gap as well. However, a larger 2,5-thiophene ratio 
lowers the conduction band minimum potential of copolymers, leading to a smaller photocatalytic H2 
evolution rate[56]. Consequently, a trade-off between thermodynamic driving force and optical band gap has 
to be taken into account when it comes to the molecular design of conjugated polymer photocatalysts. 
Changing the hydrophobicity or hydrophilicity of the main chain is also a feasible way to tune the 
conjugated polymers’ photocatalytic performance[57]. In addition to the main chain engineering, side chain 
hydrophilic modification can also boost the photocatalytic activity of conjugated polymers[58,59]. When 
poly(benzene-dibenzo[b,d]thiophene sulfone) acts as the backbones, the hydrophilic side chain tri(ethylene 
glycol) shows great advantage in photocatalytic hydrogen production over n-decyloxy and n-dodecyl side 
chains[60].

Graphitic carbon nitride
Graphitic carbon nitride (g-C3N4) is a graphite-like layered carbon nitride material prepared via a simple 
high-temperature condensation process in an air or inert gas atmosphere using several low-cost, nitrogen-
rich precursors, such as cyanamide, dicyandiamide, melamine, thiourea, and urea[35,61]. The condensation of 
these N-containing monomers can form an in-plane large π-bonded conjugated system arising from sp2 
hybridization between C and N atoms. This π-conjugation system in g-C3N4 is composed of basic structural 
units of triazine (C3N3) structure and heptazine ring (C6N7)[35]. The layers stack via a weak intermolecular 
interaction with an interlayer spacing of 0.326 nm. As a visible light-responsive semiconductor, g-C3N4 
shows an optical absorption edge around 450 nm, equaling a band gap of 2.7 eV[61]. The valence band 
maximum and conduction band minimum energy level of g-C3N4 straddles the potentials of corresponding 
water oxidation reaction and hydrogen evolution, featuring as a promising photocatalyst for water 
splitting[62]. Since Wang et al. discovered the semiconductor photocatalytic performance of g-C3N4 in 
2009[63], much attention has been paid to exploiting the state-of-the-art g-C3N4-based photocatalysts for 
solar energy fuel production and environmental remediation. Specifically, doping transition metals (Mn, Fe, 
Co, Ni, Cu)[64] or main group elements (B, S, P) into the skeletons of g-C3N4 boosts the photocatalytic 
activity by narrowing the band gap and enriching the accessible catalytic sites[65-67]. Coupling g-C3N4 with 
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other semiconductors also improves the photocatalytic performance by facilitating the photoexcited 
electron-hole separation[68].

Covalent organic frameworks
Covalent organic frameworks (COFs) are covalent-bonding crystalline organic porous materials with highly 
ordered network structures, which are constructed by organic molecular building blocks via condensation 
reactions[69,70]. Similar to the metal-organic frameworks (MOFs), the two-dimensional and three-
dimensional networks of COFs are linked by the nodes and linkers. The corresponding linkage ways vary 
based on different organic building units, such as boronic acid esters, olefin, triazine, imine, β-ketoenamine, 
hydrazone, azine, and acrylonitrile, among others[71]. Because of the rigid π backbones, COFs also show 
semiconductor properties[72] and even have advantages over the other three types of organic semiconductors 
in some aspects. Compared with organic supramolecules, COFs have a significantly larger specific surface 
area[73], creating more accessible catalytic sites for photocatalytic reactions. In contrast to the low 
crystallinity of conjugated polymers, COFs possess a much higher crystallinity, which is beneficial for 
charge carrier transport[74]. Compared to the triazine- or heptazine-based building units in the g-C3N4 
structural backbone, the greater structural diversity endows COFs with easier tunable optical and electronic 
properties[72]. By virtue of so many advantages, COFs have become the most promising organic 
semiconductors for heterogeneous photocatalysis, as evidenced by the considerable amount of published 
works since the first reported photocatalytic hydrogen production on TFPT-COF in 2014[75-79].

The advantages of organic semiconductors over inorganic semiconductors in photocatalysis
As mentioned above, organic semiconductors constructed by organic building blocks with large π-
conjugation show their promising capability in photocatalytic reactions. In comparison to typical inorganic 
semiconductor photocatalysts, organic semiconductors exhibit some advantages in the aspects below:

Large absorption coefficient
Light absorption is the prerequisite for photocatalysis and lays the foundation for the subsequent photo-
excited charge carrier generation and interfacial catalysis. As a term describing the light attenuation per unit 
length in a given medium, absorption coefficient can reflect how light was harvested. A high absorption 
coefficient in a specific material represents that the light beam is mostly absorbed when it passes through 
the inner space of this material, while a low value indicates that this material has a limited impact on the 
light beam attenuation. In the layer-by-layer structure of photoelectrochemical working electrode, the 
thickness of photo-absorbing layer has to be balanced with the thickness of charge carrier mediator layer or 
catalyst layer[80,81]. A thicker photo-absorbing layer can guarantee high absorption efficiency, but impedes 
the charge carrier transport in the film or at the catalytic interface[80]. This trade-off strategy works for most 
of the semiconductors with low absorption coefficients and short charge carrier diffusion lengths. 
Compared to the typical inorganic semiconductors such as crystalline Si, multiple organic semiconductors 
possess a much higher absorption coefficient over 105 cm-1[82], meaning that thin layer thicknesses can 
simultaneously facilitate the charge carrier transport without sacrificing the light absorption efficiency, 
which is conducive for achieving the higher light harvesting efficiency on organic semiconductors. The high 
light absorption coefficient can be easily achieved on COFs by tuning building blocks with large π-
conjugation systems [Figures 2 and 3C].

Facile energy band structure engineering
The energy band structure of semiconductors is of crucial importance for photocatalysis. First and 
foremost, the band gap of a semiconductor determines which part of sunlight can be absorbed and utilized. 
As visible light accounts for nearly 43% of the solar spectrum[35], exploiting the visible light-responsive 
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Figure 2. Topological structure and building blocks of stacked 2D COFs of the Lieb lattice with the nodes highlighted in blue and edges 
in orange. 2D: Two dimensional; COFs: covalent organic frameworks.

photocatalysts is widely accepted as a promising approach for highly efficient capturing of solar energy. 
Additionally, the conduction band minimum (CBM) and valence band maximum (VBM) energy levels 
dictate whether the chemical reactions can be initiated thermodynamically. For hydrogen evolution, the 
potential of the conduction band minimum should be negative compared to the reversible hydrogen 
evolution (RHE) potential[62]. Designing the solid solution semiconductor is a common approach to redshift 
the absorption edge of inorganic semiconductors from ultraviolet (UV) to visible light region. For example, 
the as-synthesized (Ga1-xZnx) (N1-xOx) solid solution decreases the band gaps of ZnO and GaN from 3.3 to 
2.7 eV. However, this nitridation of Ga2O3 and ZnO mixture under NH3 flow takes place at 1,123 K[83]. 
Nitrogen doping is able to narrow the band gap of TiO2 as well, but the calcination process still occurs at 
823 K under N2 atmosphere[12]. These harsh synthetic conditions limit the optional inorganic semiconductor 
materials for photocatalysts and purge us to seek other band gaps tunable materials that can be synthesized 
under ambient conditions. The band structure of the organic semiconductors is determined by the electron 
density in the conjugated π-systems and can be manipulated via localizing or delocalizing the π electrons in 
their conjugation π-backbones[84]. Normally, adjusting the π-conjugation length and changing the 
substituent groups of organic semiconductors are the two feasible ways to tune the optical band gap, lowest 
unoccupied molecular orbital (LUMO) and  highest occupied molecular orbital (HOMO) energy 
positions[85-87]. Taking oligothiophenes-based compounds as an example, their band gaps increase from 2.19 
to 1.91 and 1.67 eV, with the Thiophene heterocyclic numbers increasing from 3 to 5 and 6. The extension 
of conjugated π-systems not only narrows the band gap but also upshifts the LUMO and HOMO energy 
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Figure 3. The electronic structure and optical properties of 2D COFs and their related molecular building blocks mentioned in Figure 2. 
(A) Energy band diagram of COFs; (B) HOMO and LUMO energy level diagram of the molecular building blocks; (C) Absorption 
coefficients of COFs. 2D: Two dimensional; COFs: covalent organic frameworks; HOMO: highest occupied molecular orbital; LUMO: 
lowest unoccupied molecular orbital.

levels concurrently[86]. Employing the building blocks (nodes and edges) with different electronic structures
also easily enables the band structure engineering of COFs [Figures 2, 3A and B]. When using tetrakis (4-
formylphenyl) phenyl as the node, changing the edge structures from phenyl to benzothiadiazole and
thiadiazoloquinoxaline results in the shrinking of the band gap because of the extended π-conjugation
system [Figures 2 and 3]. The band gap of the related COF remains almost unchanged with the edge
building block benzothiadiazole replaced by fluorine-substituted benzothiadiazole, but the HOMO and
LUMO positions are lowered because the electron-withdrawing group (-F) decreases the π-electron density
of the conjugation system and thus enhances the electron affinity energies[88].

Easy tailoring of dielectric constant
Photoexcited electron-hole recombination via the radiative or non-radiative way is detrimental to
enhancing the photocatalytic activity. According to the Langevin formula R = e(µe + µh) (e is the
elementary charge, ε0 represents vacuum permeability, µe and µh denote the electron mobility and hole
mobility, ne and nh are the electron and hole concentrations), the electron-hole recombination rate (R) is
related to the dielectric constant εr of a semiconductor[89]. Therefore, manipulation of the dielectric constant
can suppress the electron-hole recombination in semiconductor photocatalysts. Modification of dielectric
constants for inorganic semiconductors is only possible by changing their sizes. For example, tuning the
diameter of PdS quantum dots from 2.92 to 5.78 nm leads to a noticeable variation in their dielectric
constant[90]. On the contrary, the dielectric constant on organic semiconductors can be easily tuned via
functional group modification. Poly(3-hexylthiophene) (P3HT) shows a dielectric constant of 3.75, while the
structurally modified sulfinylated P3HT and sulfonylated P3AT polymers demonstrate dielectric constants
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spanning from 7.4 to 9.3[91]. Moreover, the dielectric constant can be manipulated by changing the structure 
of organic semiconductors from monomers to dimers and polymers[92]. This dielectric constant 
improvement relevant to structural modification offers the possibility of lowering the electron-hole 
recombination rate in organic semiconductors.

Overall, organic semiconductors prevail over inorganic semiconductors in light absorption coefficient, facile 
modification of energy band structure, and dielectric constant [Figure 4], featuring as an indispensable 
category of photocatalysts for realizing practical solar fuel production.

How can organic semiconductor photocatalysts be synthesized?
Multiple methods can be used for the synthesis of organic semiconductor photocatalysts. Taking porphyrin-
based supramolecular materials as an example, porphyrin monomers can self-assemble into nanostructures 
via reprecipitation, ion self-assembly, coordination polymerization, and metal-ligand coordination 
pathways[93]. Using the reprecipitation method, SnIV5-(4-pyridyl)-10,15,20-triphenylporphyrin (SnPyTriPP) 
and zinc-containing DP(CH3COSC5H10O)2P porphyrin derivatives can form the supramolecular 
nanostructures in different solvents[94]. In addition, surfactants, stabilizing reagents, and triblock copolymers 
can also be used to assist the self-assembly formation of supramolecular well-defined nanostructures[93]. 
Owing to the electrostatic interactions, supramolecular aggregates can be formed by mixing a cationic 
porphyrin monomer with an anionic porphyrin monomer. Based on this fundamental, porphyrin 
nanotubes were successfully prepared by the self-assembly of tin meso-tetra(4-pyridyl) porphyrin cations 
and tetrakis(4-sulfonatophenyl) porphyrin anions[95]. Concerning the conjugated polymers, their structures 
are derived from the polymerization of π-conjugated monomers. The aromatic monomers with halogen, 
alkynyl, amino, carboxyl, and boric acid groups will be interconnected via Sonogashira-Hagihara Coupling, 
Suzuki-Miyaura Coupling, Yamamoto Coupling, Heck Coupling, Cyclotrimerization Reaction, Phenazine 
Ring Fusion, Schiff-Base Condensations, Heterocycle Linkages, Alkyne Metathesis, Oxidative Coupling, 
Buchwald-Hartwig Amination pathways, etc[96]. The typical synthetic processes of conjugated polymers are 
mixing monomers, catalysts, and solvents under inert gas protection, and then refluxed at a specific 
temperature for a period of time[97]. The design and synthesis of covalent organic frameworks are similar to 
that of conjugated polymers. The monomers with different terminal groups undergo the polycondensation 
processes to form the two-dimensional (2D) or three-dimensional (3D) framework structures. The 
symmetry of monomers is of great importance, as it determines the topologies and pore sizes of COFs[98]. 2D 
COFs usually contain planar building blocks and the construction of 3D COFs requires at least one building 
unit with a tetrahedral or orthogonal geometry[98]. COF materials can be fabricated by various synthetic 
approaches, such as solvothermal synthesis, microwave synthesis, ionothermal synthesis, and room-
temperature solution synthesis[99]. The pristine g-C3N4 can be synthesized via thermal condensation of 
nitrogen-containing precursors including cyanamide, dicyandiamide, melamine, thiourea, and urea at 450-
650 °C[100]. Thin-layer g-C3N4 can be synthesized by exfoliating bulk g-C3N4. Sonication-assisted liquid 
exfoliation is a promising method to prepare two-dimensional g-C3N4 structures, as g-C3N4 nanosheets with 
a thickness of less than 2 nm can be obtained in isopropyl alcohol, 1,3-butanediol, and concentrated sulfuric 
acid under continuous sonication[101]. Additionally, thermal oxidation exfoliation, ball milling, and flash-
freezing methods can also be used to fabricate 2D g-C3N4 ultrathin nanosheets[100].

Characterization methods for organic semiconductor photocatalysts
Optical band gap
The optical band gap of organic semiconductors can be measured using a UV-Vis spectrometer. The 
absorption edge wavelength (λ) of the organic semiconductors is regarded as the absorption onset position 
in the UV-vis spectra. Accordingly, the band gap of organic semiconductors (Eg) will be calculated based on 
the equation: Eg = hc⁄λ (h and c denote Plank constant and light speed in vacuum, respectively).
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Figure 4. The advantages of organic semiconductors over inorganic semiconductors in photocatalysis.

Energy band potential
HOMO or VBM of organic semiconductors is regarded as ionization energy (IE), which can be measured
directly by ultraviolet photoelectron spectroscopy (UPS)[102]. Additionally, LUMO or CBM of organic
semiconductors is equivalent to the electron affinity (EA), and the corresponding measurement can be
performed via the low-energy inverse photoelectron spectroscopy (LE-IPES) technique on thin-film
samples. Moreover, cyclic voltammetry (CV) is also a widely used technique for estimating the IE (or
HOMO) and EA (or LUMO) by measuring the redox potentials[103]. CV measurements can be performed
both in solution and on thin films.

Dielectric constant
The dielectric constant (εr) of organic semiconductors can be measured by impedance spectroscopy at
different frequencies[104]. By fabricating a parallel-plate-type capacitor, εr of organic semiconductors can be
calculated by the equation shown as follows: εr = Cmd/ε0A, where Cm, d, ε0, and A denote measured
capacitance, thickness, vacuum permittivity, and area of the capacitor, respectively. The value of Cm can be
obtained based on the impedance test Cm = ω|Z|, where Z, Z", and ω represent the total impedance, the
imaginary part of the impedance, and angular frequency, respectively[102]. Therefore, the exact value of the
dielectric constant (εr) will be acquired after the determination of measured capacitance (Cm).

Exciton binding energy
The exciton binding energy Eb of organic semiconductors can be determined from the temperature
dependence of photoluminescence (PL) measurements[105]. Thermal dissociation of excitons was assumed to
fully contribute to the radiative recombination of electron-hole pairs, which can be reflected by PL intensity
change. Since the PL intensity decreases with the enhancement of temperatures, the calculation of activation
energy in the Arrhenius equation can be extrapolated to the determination of exciton binding energy. Based
on this equation: I(T0) = 1 + Aek, where I(T0) and I(T) are the PL intensity at different temperatures, kB

denotes Boltzmann constant, and the slope of the linear fitting of ln[I(T0)/I(T)−1)] versus 1/(kBT)
corresponds to the exciton binding energy[106].

Charge carrier dynamics
The exciton dissociation of organic semiconductors can be probed by photoluminescence spectroscopy
(PL), and the PL emission peak intensity declining at a certain wavelength indicates the exciton
quenching[107]. The charge transfer dynamics of organic semiconductors can be investigated via time-
resolved photoluminescence (TRPL) technique. PL emission peak intensity decay as a function of time can
reflect the lifetime of the photo-excited electron-hole pair. Considering that TRPL mainly monitors the
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charge carrier dynamics at nanosecond (ns) timescale, more precise information about charge carrier 
dynamics in a picosecond timescale can be provided by the femtosecond pump-probe transient absorption 
spectroscopy (TAS)[107,108]. In this technique, the pump laser beam excites the organic semiconductors, 
generating excitons, and the probe beam then reaches the excited sample after a delay to trace exciton 
diffusion and dissociation[108,109].

Photocatalytic reactions for organic semiconductors
Hydrogen evolution reaction
Photocatalytic water splitting is considered a sustainable approach to producing clean hydrogen, which 
takes place when the conduction band minimum potential of a photocatalyst is more negative than the 
reversible hydrogen evolution (RHE) potential. Organic semiconductors with tunable energy band 
structures show their competencies for hydrogen production[110]. Using triethanolamine (TEOA) as a 
sacrificial agent, g-C3N4 was found to be active in hydrogen evolution with a reaction rate ranging from 0.1 
to 4 μmol·h-1 under visible light illumination[63]. As bulk g-C3N4 still suffers from low visible light harvesting, 
high photo-excited charge carrier recombination, and limited surface catalytic sites, much effort has been 
made to its structural modification[110]. Doping sodium ions into the skeleton of g-C3N4 decreases the band 
gap of pristine g-C3N4 from 2.74 to 2.42 eV[111]. Because of the extended visible light response, as-synthesized 
Na-doped g-C3N4 displays a H2 evolution rate nearly 4 times higher than that of pristine g-C3N4. Moreover, 
g-C3N4 and sulfur-doped g-C3N4 can form the staggered gap heterojunction, which is able to separate the 
electrons and holes efficiently[112]. Compared to the shorter charge carrier lifetime in g-C3N4, time-resolved 
photoluminescence spectroscopy reveals that photo-excited charge carrier lifetime is prolonged in this 
isotype heterojunction, leading to a H2 evolution rate 11 times higher than that of pure g-C3N4. 
Furthermore, forming layered nanojunctions with MoS2 can enrich the surface catalytic sites on g-C3N4 for 
hydrogen production[113]. MoS2 not only serves as a charge carrier mediator to deliver the photogenerated 
electrons on g-C3N4 to proton, but also reduces the activation energy for hydrogen evolution. Designing 
mesoporous g-C3N4 is also a feasible way to improve the hydrogen evolution activity by enhancing the 
accessible catalytic sites[114]; this methodology also works for the optimization of covalent organic framework 
photocatalysts. The hydrophilic 3.2 nm mesopores in fused-sulfone-COF can adsorb dye 
photosensitizers[115]. Owing to its high specific surface area and wide visible light response, this dye-
sensitized COF exhibits a hydrogen production rate of 16.3 mmol·g-1·h-1 and an apparent quantum efficiency 
of 2.2% at 600 nm[115]. As the first reported organic semiconductor photocatalyst for hydrogen production, 
conjugated polymers undoubtedly have drawn great attention in this field. The hydrophilicity of conjugated 
polymers was enhanced significantly when the building unit of dibenzo[b,d]thiophene was replaced by 
dibenzo[b,d]thiophene sulfone, resulting in a remarkably improved hydrogen evolution rate[116]. 
Additionally, decreasing the particle size of conjugated polymers can also boost the hydrogen generation 
activity[116]. However, it is still disputable about the hydrogen evolution activity of conjugated polymers 
because the polycondensation polymerization processes of multiple conjugated polymers are catalyzed by 
metals, and the trace amount of these residual metals in the conjugated polymers can serve as cocatalysts 
boosting hydrogen evolution reaction to some extent[117-119]. Control experiments have unraveled that even 
though purified by Soxhlet extraction, Pd with a concentration smaller than 40 ppm can still reside in F8BT 
conjugated polymers, thus impacting hydrogen evolution reaction[117]. The long-lived photogenerated 
electrons in F8BT conjugated polymers can instantly and efficiently transfer to the residual Pd clusters 
before being injected into protons[118]. Therefore, the excellent photocatalytic activities on a majority of 
conjugated polymers originate from the synergy of residual metals cocatalysts and conjugated polymers 
photocatalysts rather than only conjugated polymers themselves. It is still impossible to thoroughly rule out 
the existence of residual metals in conjugated polymer photocatalysts at the current stage[119].
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CO2 reduction reaction
Photocatalytic CO2 reduction to useful chemicals or industrial feedstocks has aroused great interest in the 
community of organic semiconductor photocatalysis[120]. Much attempt has been made to design robust 
organic semiconductor photocatalysts for CO2 reduction, but the multiple proton-coupled electron transfer 
pathways in the reaction result in sluggish kinetics and low product selectivity[120,121]. ACOF-1 constructed by 
the condensation of hydrazine hydrate and 1,3,5-triformylbenzene generates methanol in photocatalytic 
CO2 reduction without any sacrificial agent[122]. HCOF-1 synthesized by the condensation of hydrazine 
hydrate and 1,3,5-triformylphenol shows the same azine-linkage type as ACOF-1, while producing CO and 
CH4 in photocatalytic CO2 reduction reaction using TEOA as sacrificial agent[123]. Moreover, LZU1-COF 
formed via condensation of p-phenylenediamine and 1,3,5-triformylbenzene generates only CO in pure 
water under light illumination[124]. All these results indicate that photocatalytic CO2 reduction reaction 
selectivity strongly depends on the building units of the organic semiconductor and the solvent 
microenvironment. In general, CO, HCOOH, CH4, CH3OH, and C2H5OH are common products in organic 
semiconductor photocatalytic CO2 reduction reactions. CO2 reduction to CO is the most kinetically 
preferable pathway because of its lowest quantity of involved protons and electrons[120]. The ultrathin imine-
based 2D COF nanosheets (NSs) show excellent photocatalytic CO2 reduction to CO. Among them, COF-
367-Co NSs display a CO production rate of 10,162 μmol·g-1·h-1[125]. CoO4 catalytic sites-modified 2,3-
dihydroxybenzene-1,4-dicarboxaldehyde (2,3-DHTA)-based COF also shows an extremely high CO 
generation rate of 18,000 µmol·g-1·h-1[126], outperforming any other organic semiconductor photocatalysts. 
Similar to CO production, HCOOH generation also involves the transfer of two electrons and two 
protons[120]. Metal-nitrogen coordination catalytic sites are proved to be crucial for boosting the formation 
of HCOOH. The Ru-N2 incorporated covalent triazine framework (CTF-2) displays a HCOOH generation 
rate of 2,090 µmol·g-1·h-1[127], which, to the best of our knowledge, is the highest photocatalytic HCOOH 
production rate reported among all organic semiconductor photocatalysts. The ketoenamine-based COFs 
with the same TpBD framework and different functional groups show distinct photocatalytic HCOOH 
production activity. Functional group -OCH3 exhibits an advantage over -CH3 and -NO2, resulting in a 
higher HCOOH generation rate for TpBD-(OCH3)2 COF compared to other COFs[128]. Different from CO 
and HCOOH production with relatively facile reaction kinetics, CH4 generation is more difficult on reaction 
kinetics because of the involvement of eight electrons and protons[129]. By designing a D-A structure between 
tris(4-ethynylphenyl)amine (TPA) and phenanthraquinone (PQ) to enhance the intramolecular electron 
transfer, the synthesized TPA-PQ photocatalyst overcomes the sluggish kinetics of CH4 generation and 
displays a visible-light-driven photocatalytic CH4 production rate of 2.15 mmol·g-1·h-1[130], which is much 
higher than that of TEB-PQ (0.268 mmol·g-1·h-1) constructed from the building blocks of triethynylbenzene 
(TEB) and PQ. The production of alcohols via photocatalytic CO2 reduction is challenging, but can be 
realized by designing appropriate catalytic sites. Embedding PdIn bimetallic clusters into the pores of N3-
COF facilitates the generation of CH3OH and C2H5OH simultaneously[131], resulting in CH3OH and 
production rates of 24.5 and 8.75 µmol·g-1·h-1, respectively. Tan et al. introduced N vacancies and O doping 
to create dual catalytic sites in the skeleton of a melon-based organic photocatalyst[132]. The localized charge 
polarization in the as-synthesized oxygen-doped and nitrogen-defective melon-based organic photocatalyst 
(ON-MOP) simultaneously promotes C-C coupling and lowers the exciton binding energy, thus yielding a 
C2H5OH production rate of 800 µmol·g-1·h-1 with a selectivity of 97%. These state-of-the-art organic 
photocatalysts in CO2 reduction are shown in Table 1.

H2O2 production reaction
Hydrogen peroxide (H2O2) is an eco-friendly oxidant widely used in various fields[133]. Compared to the 
commercial anthraquinone process for H2O2 production, the synthesis of H2O2 via photocatalytic oxygen 
reduction is a more environmentally friendly pathway[134]. To date, supramolecular materials, conjugated 
polymers, covalent organic frameworks, and g-C3N4-based materials have all shown their potential for 
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Table 1. State-of-the-art organic semiconductor photocatalysts in CO2 reduction

Photocatalysts Product Reaction rate 
(µmol·g-1·h-1) Illumination source Reaction solvent Reference

COF-367-Co NSs CO 10,162 300 W Xe lamp, λ ≥ 420 nm KHCO3 (aq) [125]

Co-2,3-DHTA-COF CO 18,000 300 W Xe lamp, λ > 420 nm CH3CN/H2O [126]

Ru-CTF-2 HCOOH 2,090 8W LED lamp N,N-dimethylacetamide/TEOA [127]

TpBD-(OCH3)2 HCOOH 108.3 300 W Xe lamp, 800 nm ≥ λ ≥ 420 nm CH3CN/TEOA [128]

TEB-PQ CH4 269 300 W Xe lamp, λ > 420 nm CH3CN/H2O [130]

TPA-PQ CH4 2,150 300 W Xe lamp, λ > 420 nm CH3CN/H2O [130]

PdIn@N3-COF CH3OH 24.5 300 W Xe lamp, λ ≥ 400 nm H2O [131]

PdIn@N3-COF C2H5OH 8.75 300W Xe lamp, λ ≥ 400 nm H2O [131]

ON-MOP C2H5OH 800 300 W Xe lamp, λ > 420 nm NaHCO3(aq)/K2SO3(aq) [132]

photocatalytic H2O2 production[134-137]. The more efficient approach toward H2O2 production is the two-
electron oxygen reduction pathway (O2 + 2e- + 2H+ = H2O2, 0.695 V vs. NHE), as its oxidant potential of 
0.695 VNHE is much lower than that of two-electron water oxidation reaction (2H2O + 2h+ = H2O2  + 2H+, 
1.76 V vs. NHE)[138]. It is reported that adjacent nitrogen atoms in covalent organic frameworks can facilitate 
O2 adsorption, leading to an enhanced activity in H2O2 generation via the two-electron oxygen reduction 
pathway[139]. Therefore, efforts have been made to explore nitrogen-rich organic semiconductor 
photocatalysts. Zhang et al. designed and synthesized the self-assembled porphyrin-derivative 
supramolecular catalysts that enabled H2O2 generation from H2O and O2. This photocatalyst achieved a 
quantum efficiency of 14.9% at 420 nm and a solar-to-chemical conversion efficiency of 1.2% under 
simulated sunlight illumination[140]. Remarkably, this high photocatalytic activity of H2O2 production was 
achieved without the assistance of sacrificial agents, which has inspired other researchers to explore non-
sacrificial H2O2 generation using organic semiconductors[141].

In addition to hydrogen evolution, CO2 reduction, and H2O2 production reactions, recent years have also 
seen the application of organic semiconductors in the photocatalytic degradation of pollutants and organic 
synthesis[142].

Shortcomings of organic semiconductor photocatalysts
Although organic semiconductors display their capability in solar fuel production and environmental 
remediation, some shortcomings of organic semiconductors still hinder the enhancement of their 
photocatalytic activity.

Large exciton binding energy
The exciton is a quasi-particle in semiconductors composed of an electron-hole pair bound together by the 
Coulomb interaction[143]. The energy separating the bounded electron-hole pair is called the exciton binding 
energy, which is affected by the strength of the Coulomb interaction[144-146]. When the size of an inorganic 
semiconductor goes down from bulk to subnanoscale, the Coulomb force in the exciton becomes 
significantly stronger. Specifically, both the monolayer of two-dimensional material and a quantum dot 
have a larger exciton binding energy than their bulk counterparts due to their stronger excitonic Coulomb 
interactions[144-146]. It is well known that the binding energy of exciton (Eb) is inversely correlated to the 
exciton Bohr radius a0 and dielectric constant (εr): Eb = ε0εra0 (e is the elementary charge)[147]. Hence, Eb will 
increase with the decrease of exciton Bohr radius in semiconductors. In general, excitons are classified into 
two different types - Frenkel exciton (a smaller exciton radius) and Wannier-Mott exciton (a larger exciton 
radius)[148]. Frenkel excitons often exist in organic semiconductors, where the electron-hole relative distance 
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is limited to one or only a few neighboring unit cells[148]. Consequently, organic semiconductors usually 
possess a smaller exciton Bohr radius. In contrast, the significant overlap of interatomic electronic wave 
functions in inorganic semiconductors allows electrons and holes to be bound over longer distances in the 
excitonic state. Therefore, exciton dissociation in organic semiconductors is more difficult than in inorganic 
semiconductors [Figure 5A and B], although tuning substituent groups and extending the conjugation 
length of the backbone can partially lower the exciton binding energy in organic semiconductors [Figure 5C 
and D][149]. In addition to the exciton Bohr radius, the relative dielectric constant εr is also inversely 
proportional to the exciton binding energy [Figure 5C]. Given that organic semiconductors typically have a 
much smaller εr than inorganic semiconductors[148], the exciton binding energy in organic semiconductors 
becomes significantly higher than that in their inorganic counterparts. As a result, a smaller exciton Bohr 
radius and a lower dielectric constant synergistically lead to an exciton binding energy that is one or two 
orders of magnitude greater in organic semiconductors compared to inorganic semiconductors.

Short exciton diffusion length and low charge carrier mobility
The exciton diffusion length and charge carrier mobility in organic semiconductors are crucial factors 
influencing photon-to-electron conversion efficiency[150]. Due to their electrical neutrality, excitons in 
semiconductors primarily move by diffusion rather than drift. The exciton diffusion length, defined as the 
average distance an exciton can travel before recombination, determines how many excitons reach the 
interface and thus affects electron-hole recombination. Generally, a longer exciton diffusion length allows 
more excitons in the bulk of organic semiconductors to reach the interface, thereby inhibiting the electron-
hole radiative or non-radiative recombination[151]. However, the exciton diffusion length in organic 
semiconductors is typically less than 10 nm[152].

After exciton diffusion and dissociation, the generated electrons and holes migrate either in the bulk or 
toward the surface of photocatalysts. Unlike the band-like charge carrier transport in crystalline inorganic 
semiconductors, charge transport in organic semiconductors primarily occurs through inter-molecular 
hopping, where carriers move from one molecule to another[153-156]. This mode of transport results in 
significant charge carrier scattering, leading to a shorter mean free time and mean free path in organic 
semiconductors compared to inorganic semiconductors. According to the classical Drude model µ = τe/m*, 
the charge carrier mobility (µ) scales positively with the mean free time (τ) and is inversely proportional to 
the effective mass of the carrier (m*). The shorter mean free time in organic semiconductors already reduces 
their mobility relative to inorganic semiconductors. Moreover, the effective masses of charge carriers in 
organic semiconductors are larger than those in inorganic semiconductors[157], further diminishing mobility. 
Consequently, the combination of shorter mean free times and larger effective masses results in charge 
carrier mobilities that are several orders of magnitude lower in organic semiconductors than in inorganic 
semiconductors under identical conditions. This intrinsic drawback tremendously limits the number of 
charge carriers that can reach the surface of organic semiconductors to trigger interfacial chemical 
reactions.

Chemical instability
The instability of organic semiconductors is a major disadvantage that hinders their practical 
application[158]. Although organic semiconductor solar cells are typically fabricated and assembled in an inert 
gas atmosphere with extremely low humidity[30], their practical application is still bottlenecked by issues 
related to device durability and lifespan[31]. Even when these devices are kept away from direct contact with 
inorganic or organic solvents, they still cannot maintain optimal performance for extended periods. This 
issue is even more pronounced for organic semiconductor photocatalysts, which are often tested in solvents 
or under harsher conditions, such as strong acids or alkaline environments. For example, boronate ester-
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Figure 5. (A) Exciton binding energy in common inorganic semiconductors and its relationship with the exciton Bohr radius. Adapted 
with permission[147], Copyright 2013 American Physical Society; (B) Exciton binding energy in organic semiconductors; (C) Relationship 
between exciton binding energy and dielectric constant in organic semiconductors; (D) Exciton binding energy as a function of 
conjugation length in organic semiconductors[149], Copyright 2022 Wiley-VCH.

linked COFs decompose when exposed to water or moisture[159]. The photostability of organic 
semiconductor photocatalysts is another significant drawback. Different from the rigid and stable Ti-O 
octahedra building units in TiO2

[5], the C-N or C-O bonds in organic semiconductors are more prone to 
structural damage from surface-adsorbed hydroxyl radicals and photogenerated holes[160]. Graphitic carbon 
nitride (g-C3N4) has been extensively studied for solar water splitting and CO2 reduction due to its suitable 
conduction band minimum potential and visible light response[62]. However, the origin of the CO2 reduction 
products generated on g-C3N4 has not been traced in detail before. Chen et al. found that CO production 
occurs on g-C3N4 under light illumination, both in the presence and absence of a CO2 gas atmosphere[160]. In 
other words, g-C3N4 undergoes rapid self-decomposition during the gas-solid photocatalytic CO2 reduction 
process, accompanied by CO production. Specifically, hydroxyl groups attack the C−N=C structural units in 
g-C3N4, leading to the release of CO after a series of complex reactions. These findings highlight the possible 
structural damage to the backbones of ordinary organic semiconductors in photocatalysis, emphasizing the 
need to develop more robust organic semiconductor photocatalysts with improved chemical stability.

Solutions to the shortcomings of organic semiconductor photocatalysts
To overcome the shortcomings of organic semiconductors in photocatalysis, several strategies have been 
developed. π-conjugation extension is a feasible method to lower exciton binding energies in organic 
semiconductors. Donor-acceptor structure design and heterojunction can improve charge carrier dynamics. 
Modifying building blocks is also a viable strategy to extend exciton diffusion lengths and improve the 
chemical stability of organic semiconductors.
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π-conjugation extension
After theoretically analyzing the electronic structures of 32 organic semiconductors, Sugie et al. identified a 
quasi-linear relationship between exciton binding energy and transport band gap, i.e., the exciton binding 
energy is one-quarter of the transport band gap[161]. It is well known that the band gaps of organic 
semiconductors decrease with the enlargement of π-conjugation. Accordingly, the exciton binding energy is 
also expected to decline with π-conjugation extension. Ma et al. directly proved this concept via theoretical 
calculations. They demonstrated that COFs formed by incorporating polyyne (−C≡C−)n groups between the 
tertiary amino group and the heptazine ring of the g-C3N4 skeleton show reduced exciton binding energies 
as the number of polyyne units increases[162]. Lan et al. further experimentally verified this strategy for 
lowering exciton binding energy in conjugated polymers. Using dibenzothiophene-S, S-dioxide (FSO) as an 
electron-deficient structural unit, they showed that replacing the electron-rich building block biphenyl (BP) 
with dibenzothiophene (FS) modulated the exciton binding energy in the resulting conjugated polymers[163]. 
The larger π-conjugation system in FS compared to BP endows the FSO-FS conjugated polymer with a 
lower exciton binding energy (88 meV) than that of FSO-BP (104 meV). This reduction in exciton binding 
energy in FSO-FS leads to a higher photocatalytic hydrogen evolution rate (170 µmol·h-1) compared to FSO-
BP (60 µmol·h-1)[163]. Thus, π-conjugation extension is both a theoretically and experimentally validated 
approach to reducing exciton binding energy in organic semiconductor photocatalysts.

Donor-acceptor structure design
The design of electron donor-acceptor (D-A) structures is a widely adopted strategy to facilitate exciton 
dissociation and charge carrier transport in organic semiconductor photocatalysts[164,165]. The difference in 
electron affinity between electron-rich donors and electron-deficient acceptors drives electron transfer from 
the donor to the acceptor in the excited state[166]. When electron donor and acceptor units coexist within the 
same molecule, an intramolecular D-A structure is formed, which can be realized in conjugated polymers 
and covalent organic frameworks [Figure 6A and B][166,167]. COFs featuring D-A designs have demonstrated 
exceptional capabilities in promoting exciton diffusion and charge delocalization, particularly in systems 
with fully π-conjugated skeletons and large crystalline domain sizes[168-172]. For example, coupling a π-
conjugation electron donor system with a typical electron acceptor, such as benzothiadiazole, results in a D-
A structure where photoexcited electrons accumulate at the benzothiadiazole unit. These electrons can then 
be transferred to protons through the catalytic sites provided by N heteroatoms in benzothiadiazole to 
generate H2

[173]. Utilizing benzothiadiazole as the electron acceptor unit, an imine-linked D-A-D structured 
COF has achieved a photocatalytic hydrogen evolution rate of 5,458 µmol·g-1·h-1 under visible light 
illumination[174]. Moreover,  built-in electric fields within intermolecular D-A-type structures can 
facilitate electron-hole separation [Figure 6C][175]. The dipole moment changes caused by these built-in 
electric fields accelerate exciton dissociation in supramolecular photocatalysts. For instance, 
tetraphenylporphinesulfonate (TPPS), an electron-donating building block with a large π-conjugated 
system, possesses a considerable dipole moment (3.94 D). Meanwhile, the well-known electron acceptor 
fullerene (C60), with its highly delocalized π-electron surface, can bind to TPPS throughπ-π stacking 
interactions. The resulting TPPS-C60 hybrid forms a D-A supramolecular structure, leading to an enhanced 
electron polarization on TPPS and a significantly higher dipole moment (12.37 D). This 3.14-fold increase 
in dipole moment facilitates charge carrier separation and results in a 6.03-fold improvement in 
photocatalytic H2 evolution rate compared to TPPS alone[175]. Additionally, tuning the distance between 
donor and acceptor units within the structure can further enhance photocatalytic activity[176]. For example, 
adjusting the σ-linkage length in the D-σ-A structure of imidazole-alkyl-perylene diimide enables 
optimization of the π-π stacking distance, a key factor influencing fast charge carrier transfer and reduced 
carrier recombination[177]. The supramolecular structure C2IPDI shows a shorter π-π stacking distance 
(3.19 Å) compared to C0IPDI (3.42 Å) and C3IPDI (3.33-3.51 Å)[176], resulting in the highest photocatalytic 
water oxidation activity among the three supramolecular photocatalysts.
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Figure 6. Design of Donor-Acceptor (D-A) structure in organic semiconductor photocatalysts: (A) Conjugated polymers with D-A 
structure. Adapted with permission[166], Copyright 2023 Wiley-VCH; (B) Covalent organic frameworks with D-A structure. Adapted 
with permission[167], Copyright 2022 Elsevier Ltd; (C) Supramolecular composites with D-A structure. Adapted with permission[175], 
Copyright 2021 Wiley-VCH.

Heterojunction
Constructing a heterojunction between two organic semiconductors is also a feasible way to promote 
photoexcited electron-hole separation and transport[178]. Similar to heterojunctions formed between two 
inorganic materials, proper band alignment is a prerequisite for the formation of organic semiconductor 
heterojunctions. The staggered CBM and VBM energy levels drive charge transfer between the two organic 
semiconductors - electrons are collected by the semiconductor with the lower CBM position, while holes 
accumulate in the semiconductor with the higher VBM position. Specifically, the donor polymer PTB7-Th 
can form a type II heterojunction with EH-IDTBR, where the staggered bandgap enables highly efficient 
electron-hole separation. As a result, the PTB7-Th/EH-IDTBR organic heterojunction exhibits significantly 
higher photocatalytic hydrogen evolution activity than benchmark photocatalysts such as TiO2 and C3N4

[179]. 
In addition to favorable band alignment, efficient sunlight harvesting is also essential for constructing 
effective heterojunctions. According to the U.S. Department of Energy’s solar-driven photocatalytic 
hydrogen production guidelines, commercial application of solar-driven photocatalytic hydrogen 
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production is not feasible if a photocatalyst lacks activity at wavelengths above 500 nm[180]. In this scenario, 
an inorganic/organic S-scheme heterojunction was formed by growing CdS nanocrystals on the surface of a 
pyrene-based conjugated polymer[181]. Both the CdS nanocrystals and the pyrene-based polymer show 
absorption edges beyond 500 nm, thereby meeting the threshold for achieving high solar-to-chemical 
conversion efficiency. Furthermore, the staggered energy bands generate a built-in electric field that 
facilitates highly efficient hole-electron separation, resulting in a prominent apparent quantum efficiency of 
24.3% under visible light irradiation[181]. Additionally, a ternary heterojunction composed of PM6, ICTT-M, 
and IDMIC-4F - organic semiconductors with strong absorption in the 600-800 nm wavelength range - 
achieved an apparent quantum yield of 5.9% at 600 nm. This further highlights the vital importance of 
heterojunctions with broad solar spectrum response in boosting exciton dissociation and charge carrier 
transport[182].

Building block modification
Modifying the building blocks (i.e., the backbones and substituent groups) of organic semiconductors can 
effectively extend the exciton diffusion length and improve charge carrier transport. For example, removing 
the electron-withdrawing thiadiazole units from the backbone of the photovoltaic material Y6 [Figure 7A] 
results in a new semiconductor molecule, F1, which exhibits an exciton diffusion length 1.67 times greater 
than that of Y6. This improvement further leads to a 2.26-fold increase in the photocatalytic H2 evolution 
rate for F1 compared to Y6 under AM 1.5G light irradiation[151]. In addition to tuning the backbone 
structure, modifying substituent groups also improves charge carrier dynamics in organic semiconductor 
photocatalysts [Figure 7B]. For instance, the incorporation of a 4-carboxylphenyl group into a porphyrin 
molecule yields Tetra(4-carboxylphenyl)porphyrin, which possesses a molecular dipole moment of 
4.08 Debye (D) - significantly higher than that of Tetra(4-cyanophenyl)porphyrin (0.14 D) and Tetra(4-
pyridylphenyl)porphyrin (0.08 D). A higher dipole moment markedly enhances the photocatalytic water-
splitting activity of Tetra(4-carboxylphenyl)porphyrin by promoting more efficient electron-hole 
separation[183]. Beyond improving exciton binding, electron-hole recombination, and charge carrier 
transport, modifying the building blocks also addresses the chemical instability of organic semiconductor 
photocatalysts. One effective strategy for enhancing chemical stability is increasing the hydrophobicity of 
the backbones. For example, the periodic incorporation of isopropyl groups imparts COFs with robust 
resistance to strong acids and bases[184], as the hydrophobicity of isopropyl groups protects the otherwise 
hydrolytically sensitive backbones of COFs[185]. To fundamentally overcome the chemical instability of COFs 
in photocatalysis, a general strategy involves replacing reversible linkages with irreversible ones during COF 
construction[186,187]. For instance, boronate ester linkages - formed through the condensation of a boronic 
acid and a diol, releasing two water molecules[159] - are reversible. Consequently, boronate ester-linked COFs 
can hydrolyze in the presence of water, regenerating the boronic acid and diol and leading to COF 
decomposition. To address this issue, using building units such as triazine, annulative, and quinoline 
enables the formation of irreversible linkages, substantially enhancing the chemical stability of COFs 
[Figure 7C].

CONCLUSION
As discussed above, organic semiconductors with large absorption coefficients, tuneable electronic band 
structures, and controllable dielectric constants have shown merits in boosting photocatalytic reactivity. 
However, drawbacks in exciton dissociation, exciton diffusion, charge carrier transport, and chemical 
stability still hinder their practical application in photocatalysis. In addition to well-established strategies for 
optimizing photocatalytic performance - such as π-conjugation extension, donor-acceptor structural design, 
interface engineering, and building block modification - the following aspects should also be considered to 
further improve exciton dissociation, exciton diffusion, surface catalytic activity, and chemical stability:
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Figure 7. Modifying the building blocks of organic semiconductors to enhance charge carrier dynamics and chemical stability: (A) 
Tailoring the molecular backbone. Adapted with permission[151], Copyright 2022 American Chemical Society; (B) Modifying substituent 
groups. Adapted with permission[183], Copyright 2019 Wiley-VCH; (C) Introducing irreversible linkages to enhance the chemical 
stability of COFs[186], Copyright 2024 American Chemical Society.

Enhancing the Dielectric Constant: A high dielectric constant can not only reduce exciton binding energy 
but also suppress electron-hole recombination in organic semiconductors. Therefore, greater efforts are 
needed to design and synthesize organic semiconductor photocatalysts with elevated dielectric constants. 
One approach involves incorporating functional groups with flexible permanent dipoles into the molecular 
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structures of organic semiconductors[102]. For example, ethylene glycol (EG) chains, which possess 
permanent dipoles and maintain conformational flexibility in the solid state, can reorient rapidly and 
thereby help enhance the dielectric constant[102]. Additionally, the polarizability of the molecules 
significantly affects the dielectric constant. Incorporating non-fullerene building units with large fused-ring 
structures offers a promising route to increasing molecular polarizability and, consequently, the dielectric 
constant[188].

Optimizing Surface Catalysis in Porous Structures: Beyond light absorption, exciton dissociation, and 
charge carrier transport, surface catalysis plays a crucial role in improving photocatalytic performance. The 
catalytic sites in organic photocatalysts influence reactant adsorption, the efficiency of charge carrier 
transfer to adsorbed reactants, and product desorption. In porous organic photocatalysts, fine-tuning the 
chemical environment within pores and modifying the structure of pore walls are key strategies for 
enhancing photocatalytic efficiency[189-192]. Such designs can improve hydrophilicity and reactant 
accessibility. For instance, chiral pore environments can promote enantioselective reactions and facilitate 
product separation[193-195]. Moreover, rationally designed pore walls allow precise regulation of cocatalyst 
loading and distribution, which can lower the overpotential of specific reactions[18,99]. Pore size also 
significantly affects the photocatalyst’s surface area and the mass transport of reactants and products, 
ultimately influencing turnover rates and overall catalytic efficiency[196-199]. Larger and more flexible pores 
generally improve molecular dynamics, enhancing reactant utilization and product release. Therefore, 
future research should focus on constructing large and adaptable pore structures in organic semiconductors.

Balancing Stability and Activity: In some cases, enhancing photocatalytic activity may compromise the 
stability of organic semiconductors. For example, increasing hydrophilicity can significantly enhance 
photocatalytic H2 production[115,200], but the reversible linkage of hydrophilic building blocks may lead to the 
destruction of the semiconductor framework[159]. Therefore, achieving chemical stability without sacrificing 
catalytic activity is critical for designing robust organic semiconductor photocatalysts. In this context, 
employing irreversible linkages lays a solid foundation for enhancing long-term chemical stability. 
Furthermore, integrating hydrophilic building blocks with irreversible linkages, such as carboxyl-substituted 
quinoline or imidazole, could enable the construction of highly durable organic photocatalysts.
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