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Abstract
In recent years, it has become an urgent task to design new types of indole-based platform molecules for Nazarov-
type cyclizations and develop organocatalytic Nazarov-type cyclizations for synthesizing indole derivatives. To 
fulfill this task, in this work, by changing the alkynyl terminal substituent from t-Bu to an aryl group, the reactivity of 
3-alkynyl-2-indolylmethanols is modulated and the new platform molecules serve as competent substrates for 
Brønsted acid-catalyzed Nazarov-type cyclization. Based on this new reactivity, the first organocatalytic Nazarov-
type cyclization of aryl-substituted 3-alkynyl-2-indolylmethanols with 2-naphthols is accomplished, leading to the 
efficient construction of a new class of axially chiral 3, 4-dihydrocyclopenta[b]indole scaffolds. This preliminary 
investigation of organocatalytic asymmetric Nazarov-type cyclization provides an optional strategy for the 
atroposelective construction of this new class of axially chiral cyclopenta[b]indole scaffolds. In addition, the first 
preparation of axially chiral 3, 4-dihydrocyclopenta[b]indole with optical purity is established through chiral 
resolution, which could serve as a complementary method to catalytic asymmetric approaches.
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INTRODUCTION
Indoles belong to an important nitrogen-containing heterocyclic motif that is present in many bioactive 
natural products and pharmaceuticals[1-4]. Therefore, the construction of indole-based frameworks, 
particularly via organocatalysis, has become an important field of study[5-8]. Among indole-fused rings, 
cyclopenta[b]indoles are attractive frameworks[9-13], which constitute the core structures of many natural 
products and biologically important compounds, such as yuehchukene[9], bruceolline I[10], fischerindole L[11], 
thomitrem A[12] and MK-0524[13] [Figure 1].

As a result, the construction of such indole-containing scaffolds has remained a long-standing goal in the 
chemistry community[14-20] and many synthetic approaches have been developed for the synthesis of these 
important structural units[21-29]. Among these approaches, the Nazarov-type cyclization[30-37] for the 
construction of 1, 2, 3, 4-tetrahydrocyclopenta[b]indole scaffolds is undoubtedly one of the most step-
economical and efficient methods[38-47]. However, the classical synthesis of such indole derivatives via 
Nazarov-type cyclizations has largely focused on the Lewis acid (LA)-catalyzed 4π-electrocyclizations of 
indole-fused 1,4-dien-3-ones, which involve the process of generating a pentadienyl cation (I) intermediate 
to form the corresponding 1, 2, 3, 4-tetrahydrocyclopenta[b]indoles [Scheme 1A][37-41]. Nevertheless, other 
Nazarov-type cyclizations for the construction of such scaffolds are rather rare[42-47]. In our previous work, 
we designed 3-alkenyl-2-indolylmethanols as a new class of indole-based platform molecules for Brønsted 
acid-catalyzed interrupted Nazarov-type cyclizations with various nucleophiles[45-47] based on the formation 
of a pentadienyl cation (II) intermediate to construct 1, 2, 3, 4-tetrahydrocyclopenta[b]indole scaffolds 
[Scheme 1B]. In spite of these approaches, there are still some challenges in this research field. The first is 
that the indole-derived substrates suitable for Nazarov-type cyclizations are confined to indole-fused 1, 4-
dien-3-ones and 3-alkenyl-2-indolylmethanols. The second is that many Nazarov-type cyclizations are 
enabled by Lewis acid catalysis and organocatalytic Nazarov-type cyclizations are underdeveloped[40,48-56], 
even though organocatalysis has been proven to have tremendous advantages[57-63]. Therefore, it has become 
an urgent task to design new types of indole-based platform molecules for Nazarov-type cyclizations and 
develop organocatalytic Nazarov-type cyclizations for synthesizing indole derivatives.

To overcome these challenges and fulfill this task, based on our long-lasting interests in synthesizing indole 
derivatives via designing indole-based platform molecules and their involved organocatalytic reactions[5-8], 
we decided to design a new type of indole-based platform molecules for organocatalytic Nazarov-type 
cyclizations. In our previous work, we designed t-Bu-substituted 3-alkynyl-2-indolylmethanols for 
constructing axially chiral alkene-indole scaffolds via addition reactions [Scheme 2A]. Specifically, in the 
presence of a chiral Brønsted acid, this class of 3-alkynyl-2-indolylmethanols transformed into allene-
iminium intermediates, which were readily attacked by nucleophiles to undergo 1, 4-addition, thus giving 
axially chiral alkene-indoles. When using dinucleophiles, the OH group of 2-indolylmethanols undergoes 
dehydration to give carbocation intermediates[64-72], which subsequently undergo an intramolecular addition 
reaction to generate axially chiral cyclic alkene-indoles[73,74]. In these previous studies, the t-Bu group, as an 
aliphatic and bulky group, was detrimental to the delocalization of carbocation, thus making this class of 3-
alkynyl-2-indolylmethanols unsuitable for Nazarov-type cyclizations. On this basis, we considered changing 
the t-Bu group to a less steric aryl (Ar) group, thus making aryl-substituted 3-alkynyl-2-indolylmethanols 
suitable for Nazarov-type cyclizations [Scheme 2B]. This design is based on the consideration that the 
carbocation can readily undergo 4π electron delocalization due to the existence of the terminal aryl group, 
therefore undergoing Nazarov-type cyclization and constructing 3, 4-dihydro-cyclopenta[b]indoles.

Based on this concept, we design an organocatalytic Nazarov-type cyclization of aryl-substituted 3-alkynyl-
2-indolylmethanols with 2-naphthols [Scheme 2C]. The selection of 2-naphthols as suitable nucleophiles is 
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Figure 1. Representative natural products and bioactive compounds containing the cyclopenta[b]indole scaffold.

based on the consideration that 2-naphthols[75-77] are easily activated by Brønsted acids through the 
interaction of hydrogen bonding. It is noteworthy that 2-naphthols with a planar structure and the effect of 
steric congestion should lead to the formation of a C-C bond as a chiral axis[78-80], thus endowing the 
constructed cyclopenta[b]indole frameworks with axial chirality[81-89]. Therefore, the significance of this 
work is threefold: (1) modulating the terminal substituents of 3-alkynyl-2-indolylmethanols to achieve 
different reactivities; (2) the first organocatalytic Nazarov-type cyclization of aryl-substituted 3-alkynyl-2-
indolylmethanols; (3) the efficient construction of a new class of axially chiral 3, 4-dihydrocyclopenta[b]
indole scaffolds.

EXPERIMENTAL
To a mixture of 3-phenyl-2-indolylmethanol 1 (0.30 mmol), 2-naphthol 2 (0.2 mmol) and catalyst 4a (7.0 
mg, 0.02 mmol) was added CHCl3 (1 mL). The reaction mixture was then stirred at 30 °C for 12 h. After the 
completion of the reaction, which was indicated by thin layer chromatography, the reaction mixture was 
directly purified through column chromatography on silica gel (petroleum ether:dichloromethane = 2:1 as 
eluent) to afford pure product 3.

RESULTS AND DISCUSSION
Based on this design, we initially attempted the reaction of 3-alkynyl-2-indolylmethanol 1a bearing a 
terminal phenyl group with 2-naphthol 2a in the presence of 10 mol% racemic phosphoric acid 4a in 
chloroform (CHCl3) at 20 °C for 12 h [Table 1 and entry 1]. Gratifyingly, the designed Nazarov-type 
cyclization occurred in a facile manner to afford cyclopenta[b]indole 3aa in a moderate yield of 55%. A 
series of Brønsted acids 4 were then evaluated for the reaction (entries 2-7), which revealed that p-
toluenesulfonic acid monohydrate 4c (TsOH.H2O) and trifluoromethanesulfonic acid 4d (TfOH) could 
catalyze the reaction to some extent (entries 3 and 4), whereas other Brønsted acids could barely catalyze the 
reaction and only trace amounts of product were observed (entries 2 and 5-7). Therefore, racemic 
phosphoric acid 4a was selected as the optimal catalyst for this Nazarov-type cyclization. Subsequently, 
several different types of solvents were screened (entries 8-12). It was found that the reaction could only 
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Table 1. Screening of catalysts and optimization of reaction conditionsa

Entry Cat. Solvent T (oC) 1a: 2a Yield (%)b

1 4a CHCl3 20 1:1.2 55

2 4b CHCl3 20 1:1.2 trace

3 4c CHCl3 20 1:1.2 45

4 4d CHCl3 20 1:1.2 11

5 4e CHCl3 20 1:1.2 trace

6 4f CHCl3 20 1:1.2 trace

7 4g CHCl3 20 1:1.2 trace

8 4a toluene 20 1:1.2 43

9 4a acetone 20 1:1.2 trace

10 4a MeCN 20 1:1.2 trace

11 4a THF 20 1:1.2 trace

12 4a EtOAc 20 1:1.2 trace

13 4a CHCl3 20 1:1.5 64

14 4a CHCl3 20 1.2:1 62

15 4a CHCl3 20 1.5:1 70

16c
4a CHCl3 20 1.5:1 76

17d
4a CHCl3 20 1.5:1 61

18e
4a CHCl3 20 1.5:1 37

19c
4a CHCl3 30 1.5:1 85

20c
4a CHCl3 40 1.5:1 79

aUnless otherwise indicated, the reaction was carried out at a 0.1 mmol scale and catalyzed by 10 mol% Cat. in a solvent (1.0 mL) at the indicated 

temperature for 12 h; bIsolated yield; cPerformed in 0.5 mL of CHCl3; dPerformed in 2.0 mL of CHCl3; ePerformed in 3.0 mL of CHCl3.

occur in chloroform (entry 1) and toluene (entry 8), with chloroform acting as a better reaction medium in 
terms of yield. To further improve the yield of this model reaction, other reaction parameters, such as 
reagent ratio and reaction concentration and temperature, were modulated (entries 13-20). It was found 
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Scheme 1. Profile of the construction of 1, 2, 3, 4-tetrahydrocyclopenta[b]indole scaffolds via Nazarov-type cyclizations.

that the yield of product 3aa could be improved by modulating the ratio of 1a and 2a (entries 13-15). When 
the ratio was adjusted to 1.5:1, the yield of product 3aa could be increased to 70% (entry 15). In addition, the 
subsequent evaluation of the reaction concentration (entries 16-18) revealed that a higher concentration was 
helpful for increasing the yield (entry 16), i.e., when the reaction was performed in 0.5 mL CHCl3, product 
3aa could be obtained in a higher yield of 76% (entry 16). Finally, slightly modulating the reaction 
temperature (entries 19 and 20) resulted in the yield of product 3aa being further improved to 85% when 
performing the reaction at 30 °C (entry 19). Therefore, the optimal conditions for the Nazarov-type 
cyclization were set as those of entry 19.

With the optimal reaction conditions determined, we then investigated the substrate scope of the Nazarov-
type cyclization [Figure 2]. First, the substrate scope of the 3-alkynyl-2-indolylmethanols 1 was studied by 
reactions with indole 2a. As shown in Figure 2, the Brønsted acid-catalyzed Nazarov-type cyclization was 
compatible with a variety of substrates 1 bearing different R/Ar/Ar1 substituents, which successfully 
participated in the reaction to give the expected 3, 4-dihydrocyclopenta[b]indoles 3 in moderate to good 
yields. Specifically, the terminal Ar substituents of the alkyne functionality in the structures of 3-alkynyl-2-
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Scheme 2. Design of a new type of 3-alkynyl-2-indolylmethanols for constructing 3, 4-dihydrocyclopenta[b]indoles via organocatalytic 
Nazarov-type cyclization.

indolylmethanols 1 could be para- and meta-substituted phenyl groups with different electronic natures and 
these substrates successfully engaged in the reaction to deliver the corresponding products 3ba-3ga in 
generally high yields. In addition, the R substituents on the indole ring could be changed and C5- and C6-
substituted substrates 1h-1j were employed in the reaction for synthesizing 3, 4-dihydrocyclopenta[b]
indoles 3ha-3ja in moderate yields. Regarding the Ar1 substituents, meta- and para-substituted phenyl 
groups with either electron-donating or electron-withdrawing properties proved to be suitable substituents 
for substrates 1k-1n, which readily took part in the Nazarov-type cyclization to give the desired 3, 4-
dihydrocyclopenta[b]indole products 3ka-3na in moderate to good yields (57%-71%).

Next, the substrate scope of 2-naphthols 2 was investigated by the Nazarov-type cyclization with 3-alkynyl-
2-indolylmethanol 1a. As shown in Figure 2, this reaction was amenable to a series of C6- and C7-
substituted 2-naphthols 2b-2i, which underwent the Nazarov-type cyclization to afford the desired products 
3ab-3ai in moderate to good yields. In detail, C6-substituted 2-naphthols 2, regardless of their electronic 
nature, could be applicable to the reaction, and it was found that 2-naphthol 2c with an electron-donating 
group could give product 3ac in the highest yield of 86%. For C7-substituted 2-naphthols 2, various 
substituents with electron-donating or electron-withdrawing properties were tolerant to the reaction and 2-
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Figure 2. Substrate scope of Nazarov-type cyclization. Reaction conditions: 0.2 mmol scale; 10 mol% 4a; CHCl3 (1.0 mL); 30 ℃; 12 h; 1:
2 = 1.5:1. Isolated yields.

naphthol 2g with a C7-methoxyl group could furnish product 3ag in a high yield of 81%. Interestingly, 2-
naphthalenethiol 2j serving as an analogue of 2-naphthol 2a could be employed for the Nazarov-type 
cyclization under the standard conditions, giving product 3aj in a moderate yield.

In addition, we performed a 1 mmol scale reaction of 3-alkynyl-2-indolylmethanol 1a with 2-naphthol 2a 
under the optimal reaction conditions [Scheme 3A]. In this case, product 3aa was afforded in a high yield of 
80%, which demonstrated that this Brønsted acid-catalyzed Nazarov-type cyclization could be scaled up and 
should have potential applications. In order to gain some insights into the organocatalytic Nazarov-type 
cyclization, we performed some control experiments [Scheme 3B]. First, N-methyl-protected 3-alkynyl-2-
indolylmethanol 1o was employed as a substrate to the reaction with 2-naphthol 2a under the standard 
reaction conditions with no reaction observed, which indicated that the NH group of 3-alkynyl-2-
indolylmethanol 1 played an important role in controlling the reactivity. Second, O-methyl-protected 
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Scheme 3. One mmol scale reaction and control experiments.

substrate 2k was used as a nucleophile to react with 1a and still no reaction occurred. This result 
demonstrated that the OH group of substrate 2 was necessary for performing the reaction.

Based on the control experiments, a possible reaction pathway and activation mode of this Brønsted acid-
catalyzed reaction were proposed [Scheme 4]. As exemplified by the model reaction, 3-alkynyl-2-
indolylmethanol 1a was initially transformed into allene-iminium intermediate A under the activation of 
Brønsted acid 4a via hydrogen-bonding interaction. Subsequently, catalyst 4a simultaneously activated 
allene-iminium intermediate A and 2-naphthol 2a via forming two hydrogen bonds, thus facilitating a 1, 4-
addition between them to generate intermediate B. Intermediate B then experienced a dehydration process 
under the catalysis of Brønsted acid 4a to give carbocation C, which was easily converted into 4π 
carbocation D due to electron delocalization. Finally, activated by catalyst 4a via the interactions of 
hydrogen bonding and ion pairing, intermediate D underwent a Nazarov-type cyclization to form the cyclic 
carbocation intermediate E, which immediately underwent α-H elimination to deliver 3, 4-
dihydrocyclopenta[b]indole 3aa with the regeneration of catalyst 4a.

Because this class of 3, 4-dihydrocyclopenta[b]indole scaffolds 3 contains a carbon-carbon chiral axis, we 
then carried out a preliminary investigation on the organocatalytic asymmetric version of the Nazarov-type 
cyclization. In fact, in recent years, the catalytic asymmetric construction of axially chiral indole-based 
scaffolds has become an emerging area of study[8,78] due to the importance of such scaffolds in many natural 
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Scheme 4. Suggested reaction pathway.

products[90-92], bioactive molecules[93,94] and chiral catalysts or ligands[95-101]. Although a number of axially 
chiral indole-based scaffolds, such as N-arylindoles[102-110], 3-arylindoles[111-120], 2-arylindoles[121-127], 3-
quinonylindoles[128,129], isochromenone-indoles[130], bisindoles[131-135] and other indole derivatives[136-143], have 
been successfully synthesized, the catalytic asymmetric construction of axially chiral 3, 4-dihydrocyclopenta
[b]indole scaffolds is unknown. As shown in Table 2, a series of chiral phosphoric acids (CPAs)[144-151] 5-7 
were chosen as chiral organocatalysts to promote the reaction between 1a and 2a (entries 1-13). As 
expected, axially chiral cyclopenta[b]indole 3aa could be obtained in an atroposelective manner. 
Particularly, when CPA (S)-5f was used as a chiral organocatalyst, axially chiral product 3aa was generated 
with an atroposelectivity of 47% ee, albeit with an extremely low yield of 7% (entry 6). Under the catalysis of 
CPA (S)-5f, several different types of solvents were examined (entries 14-18), which disclosed that only 
toluene could serve as an effective reaction media to deliver axially chiral product 3aa in 69% ee and 11% 
yield (entry 14). Subsequently, to further improve the atroposelectivity and the yield of product 3aa, we 
attempted to modulate the catalyst loading in the reaction (entries 19 and 20). When the catalyst loading of 
(S)-5f was increased to 20 mol%, product 3aa was generated in a slightly improved yield of 20% with the 
retained atroposelectivity of 69% ee (entry 20). These preliminary results implied that simultaneously 
controlling both the enantioselectivity and the yield of this organocatalytic asymmetric Nazarov-type 
cyclization is a significant challenge. Although the yield and atroposelectivity of axially chiral product 3aa in 
this organocatalytic asymmetric version are not satisfactory, this organocatalytic asymmetric Nazarov-type 
cyclization provides an optional strategy for the atroposelective construction of this new class of axially 
chiral cyclopenta[b]indole scaffolds.

Finally, to obtain the two enantiomers of axially chiral 3aa, we tried using the strategy of chiral resolution 
[Scheme 5]. In detail, the racemic compound rac-3aa was subjected to the acylation reaction with (R)-(-)-O-
formylmandeloyl chloride (R)-8 as a resolution reagent in the presence of DMAP, which gave rise to two 
separable diastereomers (Sa, R)-9 and (Ra, R)-9. By treating with hydrazine hydrate, the two diastereomers 
were then easily transformed into the corresponding single enantiomers (Sa)-3aa and (Ra)-3aa, respectively, 
in high yields with excellent atroposelectivities. In this manner, the first preparation of axially chiral 3, 4-
dihydrocyclopenta[b]indoles with optical purity was established, which could serve as a complementary 
method to catalytic asymmetric approaches. Moreover, the absolute configuration of product (Sa)-3aa was 
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Table 2. Preliminary investigation of organocatalytic asymmetric version of Nazarov-type cyclizationa

Entry Cat. Solvent Yield (%)b ee (%)c

1 5a CHCl3 85 12

2 5b CHCl3 32 10

3 5c CHCl3 trace -

4 5d CHCl3 21 27

5 5e CHCl3 10 4

6 5f CHCl3 7 47

7 5g CHCl3 trace -

8 5h CHCl3 89 2

9 5i CHCl3 47 10

10 6a CHCl3 58 15

11 6b CHCl3 trace -

12 7a CHCl3 34 16

13 7b CHCl3 trace -

14 5f toluene 11 69

15 5f EtOAc trace -

16 5f THF trace -

17 5f MeCN trace -

18 5f acetone trace -

19d
5f toluene 9 68

20e
5f toluene 20 69

aUnless otherwise indicated, the reaction was carried out at a 0.1 mmol scale and catalyzed by 10 mol% Cat. in a solvent (1.0 mL) at 30 °C for 18 h 

and the molar ratio of 1a:2a was 1.2:1; bIsolated yield; cEnantiomeric excess (ee) was determined by high-performance liquid chromatography; d

Catalyzed by 5 mol% 5f; eCatalyzed by 20 mol% 5f.

determined by X-ray diffraction analysis[152] of its single crystal (see Supplementary Materials), which was 
obtained by recrystallization.

5400-SupplementaryMaterials.pdf


Page 11 of Wu et al. Chem Synth 2023;3:6 https://dx.doi.org/10.20517/cs.2022.42 17

Scheme 5. Preparation of (Sa)-3aa and (Ra)-3aa by the strategy of chiral resolution.

CONCLUSION
In summary, by changing the alkynyl terminal substituent from t-Bu to an aryl group, the reactivity of 3-
alkynyl-2-indolylmethanols was modulated as competent platform molecules for Brønsted acid-catalyzed 
Nazarov-type cyclization. Based on this new reactivity, we accomplished the first organocatalytic Nazarov-
type cyclization of aryl-substituted 3-alkynyl-2-indolylmethanols with 2-naphthols, thus realizing the 
efficient construction of a new class of axially chiral 3, 4-dihydrocyclopenta[b]indole scaffolds. The 
preliminary investigation on the organocatalytic asymmetric Nazarov-type cyclization provided an optional 
strategy for atroposelective construction of this new class of axially chiral cyclopenta[b]indole scaffolds. In 
addition, we realized the first preparation of axially chiral 3, 4-dihydrocyclopenta[b]indoles with optical 
purity by the strategy of chiral resolution, which could serve as a complementary method to catalytic 
asymmetric approaches. This work will not only add new contents to the chemistry of Nazarov-type 
cyclization and indolylmethanols, but also contribute to the research field of constructing axially chiral 
indole-based scaffolds via asymmetric organocatalysis.
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