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Abstract
Non-small cell lung cancer (NSCLC) patients with Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation 
are associated with significant clinical heterogeneity and a poor prognosis to standard NSCLC therapies such as 
surgical resection, radiotherapy, chemotherapies, and targeted medicines. However, the application of immune 
checkpoints inhibitors (ICIs) has dramatically altered the therapeutic pattern of NSCLC management. Clinical 
studies have indicated that some KRAS-mutant NSCLC patients could benefit from ICIs; however, the responses in 
some patients are still poor. This review intends to elucidate the mechanisms of resistance to immunotherapy in 
KRAS-driven NSCLC and highlight the TME functions altered by immunoinhibitors, immunostimulators, and cancer 
metabolism. These metabolic pathways could potentially be promising approaches to overcome immunotherapy 
resistance.
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cancer metabolism.
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INTRODUCTION
Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer-related deaths 
worldwide[1]. According to Global Cancer Statistics 2020, lung cancer is estimated to represent 11.4% of new 
cancer cases and 18.0% of cancer-related deaths[1]. There are two main histological types of lung cancer: 
non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC)[2]. About 85% of lung cancer is 
NSCLC, which comprises lung adenocarcinoma (LUAD), lung squamous cell carcinoma, and large cell 
neuroendocrine carcinoma. SCLC accounts for the remaining 15%[3]. Despite inducements such as smoking, 
genetic mutations are the leading causes of lung cancer. The most common driver mutations in NSCLC 
involve Kirsten rat sarcoma viral oncogene homolog (KRAS), epidermal growth factor receptor (EGFR), 
and anaplastic lymphoma kinase[4].

KRAS, a member of the RAS family, was one of the first oncogenes identified in NSCLC[5]. Since KRAS 
mutation is reported to be associated with resistance to multiple therapies and poor prognosis in NSCLC, 
several preclinical and clinical studies have investigated effective therapies, including immunotherapy and 
targeted therapy[6,7]. In 2021, AMG510, specifically targeting KRASG12C, was approved by the FDA as the 
orphan drug to treat the NSCLC with KRASG12C[8]. Other inhibitors, peptides, and tumor vaccines are under 
preclinical and clinical studies, including MRTX849 targeting KRASG12C, MRTX1133 targeting KRASG12D, 
12VC1 targeting KRASG12C/V, mRNA-5671 targeting KRASG12C/D/V, etc.[9]. In addition to targeted therapy, 
immunotherapies have also remarkably changed the management of NSCLC[10]. The increased expression of 
programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) has also been 
demonstrated to be closely related to KRAS status[11]. Controversial results have been reported in multiple 
clinical studies on the efficacy of immune checkpoints inhibitors (ICIs) in NSCLC with KRAS 
mutation[12-15]. Jeanson et al.[16] and Arbour et al.[13] demonstrated no difference in response to ICIs among 
NSCLC patients with or without KRAS mutations. However, other studies have demonstrated more benefits 
from ICIs for NSCLC patients with KRAS mutation than those without[14,15]. In this review, we summarize 
and analyze the possible mechanisms underlying the resistance to ICIs in NSCLC with KRAS mutation and 
mainly focus on the role of the tumor microenvironment (TME) and metabolism, therapeutic implications, 
and potential targets for overcoming the resistance to or improving the efficacy of ICIs treatments in KRAS-
mutant NSCLC.

ICIS TREATMENTS IN NSCLC WITH KRAS MUTATION
Even though the status of KRAS mutation as being able to alter the responses to ICIs in NSCLC has been 
verified in multiple fundamental studies, solid clinical evidence is still lacking. In this section, we review the 
clinical trials of ICIs in KRAS-mutant NSCLC patients.

Checkmate-057 is a random and double-blind phase 3 clinical trial with a size of 582 cases, which is 
designed to compare the efficacy of monotherapy of nivolumab or docetaxel in advanced non-squamous 
NSCLC patients. Comparing to docetaxel, nivolumab significantly elongates the overall survival (OS) 
(medium OS = 12.2 months vs. 9.4 months; HR = 0.73; 95%CI: 0.59-0.89; P = 0.0002). The subgroup analysis 
showed that KRAS-mutant patients have better survival benefits than KRAS-wildtype patients (HR = 0.52, 
95%CI: 0.29-0.95; HR = 0.98, 95%CI: 0.29-0.95)[17]. Another phase 3 clinical trial, KEYNOTE-042, 
investigated the efficacy and safety of monotherapy of pembrolizumab or platinum-based chemotherapy in 
locally advanced or metastatic NSCLC harboring wildtype EGFR/anaplastic lymphoma kinase (ALK) and 
PD-L1+ (TPS ≥ 1%). The results show that the monotherapy of pembrolizumab can prolong the OS 
compared to platinum-based chemotherapy. Further analysis revealed that KRAS-mutant patients show 
higher PD-L1 expression and tumor mutational burden (TMB) and have significantly longer progression-
free survival (PFS) in the pembrolizumab treatment group than those in the platinum treatment group[14,18]. 
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KEYNOTE-189 evaluated the efficacy and safety of pemetrexed and platinum-based therapy or combined 
with pembrolizumab in metastatic non-squamous NSCLC patients. The results demonstrate that a 
combination of pembrolizumab and chemotherapy can significantly prolong the OS than chemotherapy 
regardless of the PD-L1 expression level. Both KRAS-wildtype and -mutant NSCLC patients benefit from 
chemotherapy combined with pembrolizumab. The pooled analysis of KEYNOTE-189 and KEYNOTE-042 
indicated that the non-squamous NSCLC patients with wildtype EGFR/ALK or KRAS show a better 
prognosis to the combination of pembrolizumab and chemotherapy (HR = 0.55) compared to 
pembrolizumab monotherapy (HR = 0.86). However, for KRAS-mutant non-squamous patients, the 
monotherapy of pembrolizumab shows a better prognosis (HR = 0.42 and HR = 0.28) than combination 
treatment of pembrolizumab and chemotherapy (HR = 0.79 and HR = 1.14)[19]. Altogether, the clinical 
outcomes above indicate that KRAS-mutant NSCLC patients can benefit from immunotherapy or 
combined treatment of immunotherapy and chemotherapy, whereas the conclusion is not supported by 
some meta-analyses with more solid evidence. Two meta-analyses and some retrospective analyses have 
reported that the status of KRAS mutation has no negative association with the survival outcome of 
immunotherapy in advanced NSCLC patients[7,16,20,21].

One possible illustration is that the co-mutations besides KRAS mutation might play the predictive and 
prognostic role in response to ICIs in KRAS-mutant NSCLC. Skoulidis et al.[22] defined three distinct co-
mutation subgroups of the early stage and advanced KRAS-mutant tumors: KRASmut/serine/threonine 
kinase 11 (STK11)-/-, KRASmut/tumor protein 53 (TP53)-/- (KP), and KRASmut/cyclin dependent kinase 
inhibitor 2A, 2B (CDKN2A, 2B)-/-/thyroid transcription factor 1low (KC)[22]. The retrospective analysis 
revealed that the KL patients show less responses to immunotherapy and shorter PFS and OS than KP 
patients[23]. Other investigations have revealed that KP patients show significant benefits from PD-1 
blockade monotherapy[24]. Collectively, PD-L1 blockade might be more beneficial to KP patients than KL 
patients.

Taken together, not all the KRAS-mutant NSCLC patients could benefit from ICIs. Co-mutations increase 
the TMB in patients and might contribute to the poor response to ICIs. The mechanisms of resistance to 
ICIs in NSCLC with KRAS mutation are sophisticated and not fully investigated, which we discuss in the 
following sections.

THE RESISTANT MECHANISMS OF ICIS TREATMENTS IN NSCLC WITH KRAS MUTATION
KRAS regulates TME through immunomodulatory molecules
Growing evidence has implicated that the intrinsic and extrinsic resistance mechanisms to ICIs might result 
from the immunosuppressive TME caused by alterations in disparate signaling pathways in tumor cells[25]. 
Previous studies have clearly indicated that the immunosuppressive TME can be regulated by alterations of 
immunoinhibitors and immunostimulators in tumor and stromal cells[26].

Immune checkpoints exert crucial roles in preventing overreaction and minimize the duration and 
expansion of immune responses[27]. PD-1 (CD279), coded by pdcd1, is ubiquitously expressed on various 
immune cells, including activated T cells, B cells, monocytes, NK cells, and dendritic cells (DCs)[28]. PD-1 
can be recognized by the ligands, PD-L1 and PD-L2, on normal tissue cells and cancer cells, which 
maintains the immune homeostasis but might also revoke the anti-tumor immunity[29]. After PD-1 binds to 
PD-L1, PD-1 undergoes a conformational change, which leads to the inactivation of phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha (PI3K)-serine/threonine kinase (AKT) and extracellular 
signal-regulated kinase 2 (ERK) pathways and, consequently, dysfunction of T cells[30]. In addition, studies 
have reported that tumor cells can secrete exosomes carrying PD-L1, which impede the function of CD8+ T 



Page 132 Li et al. Cancer Drug Resist 2022;5:129-46 https://dx.doi.org/10.20517/cdr.2021.102

cells, CD4+ T cells, and Tregs before infiltration[31]. It has been widely reported that oncogenic KRAS can 
increase PD-L1 from different aspects, including transcription, stabilization, and recycling. In LUAD cell 
lines, KRASmut has been found to increase the transcriptional level of PD-L1 through the mitogen-activated 
protein kinase kinase 1 (MEK) pathway[32]. In human lung and colorectal cancer, Coelho et al.[33] 
demonstrated that the adenylate-uridylate-rich element-binding protein tristetraprolin (TTP) can bind to 
the 3’ untranslated region of PD-L1 mRNA and consequently induce the degradation of PD-L1. The 
oncogenic KRAS activates MEK signaling and further phosphorylates and inhibits the TTP by MK2, which 
leads to the stabilization of PD-L1 mRNA[33]. In addition, it has been reported that mutant KRAS suppresses 
programmed cell death 4 and then promotes the translation of ADP ribosylation factor 6 and MYCBP 
associated protein expression, which facilitates PD-L1 recycling driven by platelet-derived growth factor 
and eventually the immune evasion[34].

As another factor, cytokine-modulated immune responses have been investigated for decades. Cytokines are 
a type of small proteins secreted by almost all types of cells and can be classified into seven families: 
interleukin (IL), colony stimulating factor (CSF), interferon (IFN), tumor necrosis factor, tumor growth 
factor-beta (TGF-β) family, growth factor (GF), and chemokine family[35]. Cytokines deliver messages in a 
paracrine, autocrine, or endocrine manner and can coordinate the recruitment of immune cells, spatial 
organization, and cellular interactions[36,37]. Plentiful cytokines and chemokines have both pro- and anti-
inflammatory functions and exert different functions in particular scenarios[36]. It has been reported that 
mutant KRAS can remodel the TME by regulating the production and secretion of pro- or anti-
inflammatory cytokines and chemokines[38]. The oncogenic mutant KRAS represses the expression of 
interferon regulatory factor 2 (IRF2) and results in increased production of C-X-C motif chemokine ligand 
3 (CXCL3), which binds to C-X-C motif chemokine receptor 2 (CXCR2) on myeloid-derived suppressor 
cells (MDSCs) and subsequently recruits the MDSCs to impede the cytotoxic T cells[39]. In lung cancer, the 
ubiquitin-specific protease 12 (USP12) induces protein phosphatase 1B, which thwarts transcription factor 
P65 (NF-κB). NF-κB can promote the production of multiple chemokines, including CXCL8, CXCL1, 
CCL2, etc., which can result in an immunosuppressive TME through recruiting the M2 macrophages, 
inducing PD-L1 expression and blocking the responses to T cells. Oncogenic mutant KRAS inhibits USP12 
and further promotes the production of chemokines through NF-κB, which ultimately causes the resistance 
to anti-PD-1[40]. Additionally, it has been reported that the development of resistance to anti-PD-L1 and 
MEK inhibition is the result of increasing IL-17 and IL-22 secreted by accumulated infiltration of Th17 in 
KRASmut/TP53-/- co-mutant lung cancer patients[41]. Moreover, KRAS has been reported to induce the 
releasing of pro-inflammatory cytokines (IL-6, IL-8, and IL-1) and anti-inflammatory cytokines (IL-10, IL-
22, and TGF-β), as reviewed by Hamarsheh et al.[42].

Immunomodulators are composed of all molecules that can regulate the immune response, including 
receptors/ligands on both tumor cells and stromal cells in TME and cytokines and chemokines secreted by 
cells. The studies cited above have uncovered that KRAS could mediate the rearrangement of 
immunomodulators through different signaling pathway in multiple cancers, which might contribute to the 
resistance to ICIs in NSCLC. A schematic figure of KRAS-driven signaling pathways in the regulation of 
immunomodulators is presented in Figure 1.

KRAS regulates TME through metabolic alteration
For the past decades, many studies have revealed adjustments of energy metabolism in cancers, which are 
involved in almost every stage of cancer development[43,44]. Oncogenic KRAS mutation has been reported to 
regulate diverse metabolic networks to fulfill the excessive requirement of distinct nutrients to support 
tumor growth and metastasis[45,46]. In this section, we discuss the mechanisms underlying how KRAS 
orchestrates the TME through metabolic networks.
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Figure 1. A schematic figure of KRAS-driven signaling pathways in the regulation of immunomodulators. PI3K: Phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha; AKT: serine/threonine kinase; MAPK: mitogen-activated protein kinase 1; ERK: 
extracellular signal-regulated kinase 2; PFK: phosphofructokinase; HIF1α: hypoxia inducible factor 1 subunit alpha; JNK: mitogen-
activated protein kinase 8; mTOR: mechanistic target of rapamycin kinase; LDHA/B: lactate dehydrogenase A/B; YAP: yes1 associated 
transcriptional regulator; IRF2: interferon regulatory factor 2; STAT3: signal transducer and activator of transcription 3; NF-κB: 
transcription factor P65; MHCs: major histocompatibility complex.

Glycolysis
In normal cells, glucose can be consumed either through oxidative phosphorylation (in mitochondria) or 
anaerobic glycolysis (in cytosol) to produce energy for cell activities. Glucose is mainly transported into cells 
with the help of glucose transporters (GLUTs) in an energy-consuming-free way. In cytosol, glucose is 
catalyzed to glucose-6-phosphate (G6P) by hexokinase (HK). G6P can enter the pentose-phosphorylation 
pathway with catalyzation of G6P dehydrogenase and be processed to ribulose-5-phosphate for the 
synthesis of purine. G6P can also be isomerized to fructose-6-phosphate (F6P) and further phosphorylated 
to fructose-1,6-biphosphate (FBP), which enters the glycolysis pathway. Under the aerobic condition, FBP is 
catalyzed to pyruvate and then converted to acetyl-CoA by pyruvate dehydrogenase (PDH), which 
participates in the TCA cycle. Under the anaerobic condition, pyruvate does not enter the TCA cycle but is 
converted to lactate by the lactate hydrogenase (LDH). Under normal condition, a small portion of F6P also 
enters the hexosamine pathway (HBP) with the help of glutamine--fructose-6-phosphate aminotransferase 
(GFPT) and provides glycans for protein glycosylation[47,48].

Back in 1985, it was reported that rat-1 cell maintains a higher level of glycolysis in the presence of ras 
transfection[49]. Accumulating evidence shows that oncogenic KRAS mutation modulates glycolysis through 
promoting the uptake of glucose and increasing glycolysis flux. In pancreatic ductal adenocarcinoma 
(PDAC) with KRASG12D, metabolomic and RT-qPCR analyses have revealed increasing glucose transporter 
solute carrier family 2-member 1 (GLUT1) expression and enhanced glycolysis flux. KRASG12D was found to 
upregulate the expression of several enzymes, including HK, PFK, enolase, etc.[50]. Many studies have 
explored in more detail about how mutant KRAS interacts with the enzymes involved in the carbon 
metabolism pathways. In KRAS-driven PDAC, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 is 
phosphorylated by p38γ induced by KRAS mutation and forms a ternary complex with solute carrier family 
2 member 2 (GLUT2), which promotes the uptake of glucose[51]. In addition, GLUT1 has been found 
significantly upregulated in NSCLC with KRAS mutation[52]. KRAS4A, a shorter isoform of KRAS, has been 
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found to bind to the N-terminal of HK1 and block the allosteric inhibition feedback, which promotes the 
transition of glucose to G6P and increases the glycolysis flux[53]. Based on both an in vivo mice model and an 
in vitro H23 cell line study, Wang et al.[54] reported that KRAS activation is required for HK2 expression. In 
a KRASmut/STK11-/- co-mutated lung cancer model, KRAS mutation induces the expression of GLUT. 
Meanwhile, the loss of STK11 impedes the phosphorylation and activation of protein kinase AMP-activated 
catalytic subunit alpha 1 (AMPK), thereby leading to the activation of GFPT enzyme. The increasing 
activity of GLUT and GFPT promotes HBP[55]. Glucose is also the primary energy source for the 
proliferation and differentiation of immune cells[56,57]. As a result of increasing glycolysis in tumor cells, the 
access to glucose for immune cells is limited in TME. A cruel competition between tumor cells stromal cells 
consequently impairs the glycolytic metabolism and normal functions of immune cells[58,59]. More 
specifically, the limited glycolysis causes the weakened activity of the AKT/mammalian target of rapamycin 
(mTOR) pathway in T cells, which impedes the production of INF-γ[59]. The limited availability of glucose 
also results in insufficient production of glycolytic metabolite phosphoenolpyruvate to maintain the anti-
tumor activity through calcium and NFAT signaling pathways in infiltrated T cells[60]. In NK cells, the 
aberrant expression of fructose-1,6-bisphosphatase (FBP1) in gluconeogenesis and TCA cycle leads to the 
halt in glycolysis and induction in cell death[61]. It has also been found that inhibition of glycolysis impairs 
the oligomerization of C-C motif chemokine receptor 7 and thus hinders the migration of DCs to draining 
lymph nodes[62].

One important metabolite of glycolysis is lactate. In KRAS-driven NSCLC, the high expressions of LDH-A 
and LDH-B are reported to be associated with tumorigenesis and disease progression[63,64]. One study found 
that phosphoglycerate kinase 1 (PGK1) can be phosphorylated by ERK1/2, which is the downstream of 
KRAS. The phosphorylated PGK1 phosphorylates PDHK1, the latter further phosphorylating and inhibiting 
PDH, which blocks the conversion of pyruvate to acetyl-CoA and subsequently promotes the conversion of 
pyruvate to lactate[65]. In PDAC, hypoxia and active KRAS can induce the expression of hypoxia inducible 
factor 1 subunit alpha (HIF1α) and inhibit the degradation of HIF1α, respectively. HIF1α then 
transcriptionally enhances the expression of the lactate transporter, solute carrier family 16 member 4 
(MCT4), which transports lactate out of cells[66]. The accumulation of lactate from the excessive glycolysis in 
tumor cells is transported by MCT4 out of cells, which generates a low-pH environment that discourages 
the normal proliferation and function of immune cells[67]. The accumulated lactate promotes the 
polarization of macrophages toward anti-inflammatory M2 phenotype and leads to a downregulation of 
interferon gamma (IFN-γ) secreted by the infiltration of T cells and NK cells[68,69]. Besides, the accumulated 
lactate directly blocks the glycolytic flux in T cells[70].

Taken together, the studies described above suggest that KRAS mutation can promote glycolysis by 
promoting various signaling pathways and molecules, such as related enzymes and transporters. The 
outrageous requirement of glucose and excessive excretion of lactate impair the normal proliferation and 
function of different immune cells, which ultimately diminishes the anti-tumor activity.

Lipid metabolism
Lipid metabolism is constantly in homeostasis due to the balance of fatty acids synthesis (FAS) and fatty 
acids oxidation (FAO) in normal cells. In the process of de novo lipogenesis, citrate is catalyzed to acetyl-
CoA in assistance with ATP-citrate lyase (ACLY) and then transformed to palmitate by FA synthetase 
(FASN), phosphatidic acids, and finally triacylglycerol. Triacylglycerol can be stored in the lipid droplets 
(LDs) in the cytoplasm[71]. Phospholipids are another source of lipogenesis and can be converted to 
arachidonic acid (ARA) by phospholipases (PLA2)[72]. ARA can be catalyzed by cyclooxygenase 1 and 2 
(COX-1 and COX-2) and transformed to prostaglandins 2 (PGE2), which has been shown to play a vital 
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role in tumorigenesis and immune response[73]. The FAO process can be classified into harmless β-oxidation 
and fatal lipid peroxidation. In β-oxidation, FAs are catalyzed to produce acetyl-CoA, NADH, and FAD. 
Besides, lipid peroxidation is believed to start from polyunsaturated fatty acid chains, induced by reactive 
oxygen species (ROS), and results in ferroptosis[74]. In the mouse model of KRAS-driven LUAD, the loss of 
stress-induced metabolic regulators, regulated in development and DNA damage responses 1, can induce a 
HIF-dependent lipid storage pathway, which induces the FA transporter CD36 and thereby uptake of 
exogenous fatty acid[75]. KRAS mutation has been shown to promote FA synthesis through inducing FASN 
and stearoyl-CoA desaturase mediated by ERK2[76]. Besides, the FA metabolism has been reported to be 
upregulated by the PI3K-mTOR pathway[77], which has already been demonstrated to be regulated by 
KRAS[78]. The active AKT can facilitate both the ACLY and mTORc1. ACLY promotes the transformation of 
citrate to acetyl-CoA, which subsequently boosts lipogenesis. Active mTORc1 can activate slicing factor 
serine/threonine-protein kinase (SRPK2) and transcriptional factor sterol regulatory element binding 
protein-1c in the nucleus, which ensures the expression of a series of lipogenesis enzymes, including ACLY, 
FASN, etc.[79-81]. Besides promoting FAS, KRAS mutation has also been reported to suppress the oxidation of 
lipids. The suppression of hormone-sensitive lipase (HSL) by KRAS mutation leads to the decreased 
β-oxidation of FAs, which results in the accumulation of FAs[82]. STK11 deficiency has been found to cause 
the downregulation of FAO upregulation of fatty acid synthesis via activation of acetyl-CoA carboxylase due 
to the low level of phosphorylation of AMPK[83]. Kelch like ECH associated protein 1 (KEAP1) is another 
frequently observed co-mutation along with KRASmut/STK11-/-. KEAP1 mutation has been reported to 
decrease lipid peroxides via enhancing the transcription factor nuclear factor, erythroid 2 like 2, which 
directly upregulates the suppressor of ROS, glutathione peroxidase 4[74,84,85]. The accumulated FAs in the 
TME have been found to cause the dysfunction of immune cells in KRAS-mutant mice model[86]. In the 
infiltrated cytotoxic CD8+ T cells, the long-chain fatty acids are unbreakable and can result in a reduction of 
very-long-chain acyl-CoA dehydrogenase and lipid toxicity in T cells, which cause the exhaustion of 
infiltrated T cells[87]. In addition, the excess FAs caused by immunoglobulin-like transcript 4/paired 
immunoglobulin-like receptor B via mitogen-activated protein kinase 1/ERK1/2 signaling has been 
demonstrated to cause the senescence of effector T cells[88]. Moreover, the absorption of the FA-carrying 
tumor-derived exosomes by DCs can generate increasing storage of FAs and the enhancement of β-
oxidation. The shift of mitochondrial oxidative phosphorylation due to the fuel alteration results in the 
dysfunction of DCs[89].

Previous studies have revealed that the accumulated FAs provides sufficient raw material for PGE2 
production[90,91], and KRAS mutation can also enhance the production of PGE2 via upregulation of 
COX-2[92]. In NSCLC, PGE2 has been found to induce forkhead box P3 (FOXP3) expression and 
subsequently promotes the activity of CD4+ and CD25+ Tregs[93]. In metastatic murine renal carcinoma, 
overproduced PGE2 has also been reported to suppress the anti-tumor cytotoxic T cell lymphocyte 
responses by preventing the production of IFN-γ[94]. Moreover, the excess PGE2 in TME suppresses the 
production of X-C motif chemokine ligand 1 and CCL5 by NK cells and further blocks the recruitment of 
the conventional type 1 dendritic cells (cDC1s) through downregulating the respective receptors on 
cDC1s[95]. Increasing evidence indicates that the accumulated PGE2 in tumor cells exerts an 
immunosuppressive TME.

Cholesterol is normally synthesized from acetyl-CoA. Recent studies have found that cholesterol exerts an 
immunosuppressive TME by promoting the expression of immune checkpoint on CD8+ T cells, which 
induces ER stress and consequently exhaustion of those T cells[96,97]. In KRAS-driven NSCLC, the synthesis 
of cholesterol has been found to be induced by Myc proto-oncogene protein (MYC) activation. The 
activation of MYC leads to an accumulation of cholesteryl esters (CE) stored in LDs and the increased 
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influx and the decreased efflux of cholesterol in tumor cells. Of note, the deactivation of MYC following 
activation gives rise to an additional increase of CEs[98].

In conclusion, there is supporting evidence indicating that FA metabolism can be induced by KRAS 
mutation through regulating various molecules. The excessive synthesis of FA and associated metabolites 
impedes the normal function of immune cells.

Glutamine and tryptophan metabolism
In normal cells, amino acid metabolism facilitates cells with energy and material for the biosynthesis of 
macromolecules, such as proteins and nucleotides. Amino acid metabolism reprogramming is required for 
hyperactive tumor cells to meet the high demand of energy and proteins required for cell proliferation[99]. 
Among the 21 amino acids within the human body, glutamine and tryptophan have been broadly reported 
to be rewired in various tumor cells and build an immune suppressive TME, which facilitates tumor cells to 
evade immune surveillance.

Glutamine can be successively transformed to glutamate, α-ketoglutarate, oxaloacetate, and aspartate by the 
catalyzation of glutaminase (GLS1), glutamate dehydrogenase 1, and glutamic-oxaloacetic transaminase 1/2, 
respectively[100]. KRAS mutation in NSCLC enhances the glutamine metabolism by inducing glutamine 
uptake, which results in a glutamine deficiency in TME[101]. KRAS mutation has been found to induce 
multiple glutamine transporters, such as solute carrier family 1 member 5 (SLC1A5) in NSCLC[102,103], solute 
carrier family 7 member 5 (SLC7A5)[104], and solute carrier family 38 member 2 (SLC38A2) via activation of 
hippo effector yes1 associated transcriptional regulator (YAP1)[103]. The upregulated transporter SLC1 
increases the influx of glutamine, and the increased antiporter SLC7A effluxes glutamines and intakes other 
essential amino acids. The essential amino acids transported by SLC7A induce mTORC1-ribosomal protein 
S6 kinase B1 signaling and further promote protein synthesis[103,104]. It has also been shown that the mRNA 
level of GLS is higher in KRAS-mutated NSCLC, which indicates a higher consumption of glutamine in 
NSCLC[102]. Additionally, the KRASmut/STK11-/-/KEAP1-/- co-mutant NSCLC was found dependent on 
glutaminolysis for fuel and was specifically sensitive to GLS inhibitors[85]. The high uptake of glutamine in 
tumor cells leads to a glutamine deficiency in TME, which causes immune suppression through blocking 
active T cells or producing immune suppressive cells. One study illustrated that the lack of glutamine results 
in the increase of HIF and then the rising secretion of IL-23 by macrophages, which promotes the 
proliferation of Tregs through the STAT3 signaling pathway. Tregs subsequently secretes TGF-β and IL-10 
and suppresses the cytotoxicity of T cells[105]. Besides the shortage of glutamine in the TME, other conditions 
can also result in glutamine deprivation in tumor infiltrated immune cells. One study showed that the 
shortage of glucose causes defective N-linked glycosylation and endoplasmic reticulum stress and 
accordingly activates the endoplasmic reticulum to nucleus signaling 1 (IRE1) - X-box binding protein 1 
(XBP1) axis. Activated XBP1 represses the glutamine transporters through post-translational regulation, 
which blocks glutamine uptake. The low level of glucose and glutamine causes the dysfunction of 
mitochondria, which impedes the production of IFN-γ by active T cells[106]. Moreover, glutamine 
deprivation increases the secretion of G-CSF and GM-CSF through activating the IRE1α/c-Jun N-terminal 
kinase pathway in cancer cells, which manipulates the formation of immunosuppressive MDSCs in 
TME[107]. However, the results from one study also indicate that high glutamine in TME tends to polarize the 
macrophages to pro-tumorigenic M2 type and inhibit the differentiation of the M1 macrophage[108], which is 
contrary to the conclusion from the above research. The contradictory conclusion of deprived glutamine 
indicates the complexity of glutamine in regulating TME.
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Tryptophan can either be catalyzed to 5-hydrooxytryptophan, serotonin, and 5-hydroxyindoleacetic acid by 
tryptophan hydroxylase 1 and 2 (TPH1, TPH2), dopa decarboxylase, and monoamine oxidase A and B, 
respectively, or be catalyzed to kynurenine, kynurenic acid by indoleamine 2,3-dioxygenase 1 and 2 
(IDO1/2), and tryptophan 2,3-dioxygenase (TDO2). In NSCLC, the KRAS mutation has been shown to 
reprogram tryptophan metabolism through upregulating the expression of immune checkpoint markers 
IDO1 according to microarray data[109]. The detailed mechanism remains to be discovered. The tryptophan 
metabolism has a pivotal role in promoting immune evasion. In tumor cells, tryptophan is transformed into 
kynurenine by IDO1. The upregulated IDO1 level induces excess kynurenine, which could be transferred to 
TME to promote Tregs and suppress effector T cells[110]. It has been illustrated that the activity of IDO can 
reflect the advanced disease, tumor metastasis, and immunotherapy responses to PD-1 inhibitors. The high 
expression of IDO can recruit immunosuppressive MDSCs through Tregs, which is Foxp3 dependent[111,112].

In summary, cancer cells can rely on glutamine as the main source of fuel and the precursor of other 
biomacromolecules. The deficiency of glutamine and increase of metabolite from tryptophan metabolism in 
TME give rise to an immunosuppressive phenotype. KRAS has been found to modulate several signaling 
pathways involved in glutamine metabolism, whereas further work is required to illustrate the more detailed 
mechanisms.

Besides the metabolism mentioned above, mutant KRAS has also been reported to regulate additional 
metabolic signaling pathways, including asparagine metabolism[113], authophagy[46,114], mcropinocytosis[115], 
etc. More detailed reviews of the metabolic rewiring driven by KRAS mutation can be found 
elsewhere[46,116-118]. Nutrient scavenging is a practical method for both tumor cells and immune cells to grab 
necessities from TME. Tumor cells and immune cells often outcompete stromal cells for nutrients or 
metabolites in TME, which leads to a nutrient-deprived environment[43]. However, most nutrients and some 
metabolites are also essential for the biosynthesis of macromolecules and production of energy craved by 
immunocytes[56,57,61,119,120]. Studies have also asserted that excess metabolites, such as lactate, alter the 
environment and affect the functions of immune cells[60,86,87,89,121]. A more comprehensive description of 
cancer metabolic reprogramming and immune response can be found in other reviews[122-125]. Collectively, 
the limited nutrients and redundant metabolites arouse the dysfunction in immune cells, which is one of the 
leading causes of resistance to ICIs. Taken together, KRAS mutation rewires the metabolic network in TME 
and thereby might cause a poor response to ICIs. A schematic figure of KRAS-driven metabolic signaling 
pathways in cancer cells is shown in Figure 2.

PROSPECTIVE STRATEGIES FOR OVERCOMING RESISTANCE TO ICIS
According to the ASCO guidelines, five main therapeutic strategies are applied in NSCLC: surgery, 
radiation therapy, chemotherapy, target therapy, and immunotherapy. The therapeutic schedule depends 
mostly on the stage and mutation type. As illustrated above, the efficacy of monotreatment of 
immunotherapy is controversial in NSCLC patients; thus, researchers have begun investigating the 
combinational strategy of immunotherapy and other therapies. In this section, we discuss the promising 
combined treatments of immunotherapy and other therapies in preclinical and clinical studies.

It is discussed above that PD-1/-L1 expression plays an essential role in response to ICIs. Therefore, 
targeting pathways modulating PD-1/-L1 expression might show potential for overcoming the resistance to 
ICIs, which has been demonstrated in several studies. In the KRAS-mutant lung cancer model, blockade of 
both PD-1 and helix-loop-helix transcription factor inhibitor of differentiation 1 knock out significantly 
enhances the amount of CD8+ T cells as well as the expression of PD-L1, which impairs the tumor growth 
and increases the survival[126]. In other studies of KRASmut lung cancer, anti-PD-1 combined with inhibition 
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Figure 2. A schematic figure of KRAS-driven signaling pathways in the regulation of metabolic signaling pathways. GLUT: Glucose 
transporters; HK: hexokinase; PFK: phosphofructokinase; PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; 
AKT: serine/threonine kinase; MAPK: mitogen-activated protein kinase 1; ERK: extracellular signal-regulated kinase 2; PDH: pyruvate 
dehydrogenase; PGK: phosphoglycerate kinase 1; HIF1α: hypoxia inducible factor 1 subunit alpha; JNK: mitogen-activated protein kinase 
8; mTOR: mechanistic target of rapamycin kinase; LDHA/B: lactate dehydrogenase A/B; YAP: yes1 associated transcriptional regulator; 
IRF2: interferon regulatory factor 2; STAT3: signal transducer and activator of transcription 3; NF-κB: transcription factor P65; HSL: 
hormone-sensitive lipase; COX: cyclooxygenase; SCD: stearoyl-CoA desaturase; FASN: FA synthetase; ACLY: ATP-citrate lyase; GLS: 
glutaminase.

of the AKT-mTOR pathway by mTOR inhibitor or the STAT3 pathway by natural compound luteolin can 
remarkably decreased the expression of PD-1 or PD-L1, respectively, which consequently surmounts the 
resistance to anti-PD-1[127,128].

Other potential strategies to overcome the ICIs resistance include promoting the proliferation and 
activation of cytotoxic T cells and thwarting immunosuppressive immune cells, among others. The 
cholesterol-lowering drug statin has been reported to inhibit prenylation of KRAS and cause ER stress and 
immunogenic cell death, which cross-primes DCs and provokes CD8+ T cells. Combinational treatment of 
anti-PD-1, statin, and oxaliplatin has shown the potential to overcome resistance to anti-PD-1[129]. In the 
KRASmut/TP53-/- lung cancer mouse model, chemokine CCL7 has also been found to recruit CD11c+ or 
Zbtb46+ DCs and promote T cell expansion, which increases the immune responses. When combined with 
anti-PD-1, CCL7 profoundly increases the survival of the NSCLC mouse model[130]. The BET bromodomain 
inhibitor has also been demonstrated to increase the number of infiltrated T-helper type 1 cells and reduce 
the population of Tregs, which augments the anti-tumor response to anti-PD-1[131]. Utilization of antibodies 
or natural compounds to block immunosuppressive cytokines or chemokines has been reported to hamper 
the resistance to ICIs in KRAS-mutant NSCLC mouse models[41,132].

Due to the approval of the KRASG12C inhibitor AMG 510 in KRASG12C NSCLC by the FDA, studies have been 
investigating the effect of the combination of KRAS inhibitors and ICIs at the bench and in clinics. In the 
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KRASG12C CT26 syngeneic mouse model, AMG510 treatment has been found to induce a pro-inflammatory 
microenvironment by enhancing the tumor infiltrated CD8+ T cells, DCs, NKs, etc., and it exerted extended 
anti-tumor efficacy when combined with anti-PD-1[133]. A phase 1 clinical study designed to evaluate the 
safety and efficacy of AMG 510 and immunotherapy is in process now (NCT03600883). In the KRASG12C 
CT26 syngeneic mouse model, KRAS inhibitor MRTX849 combined with anti-PD-1 has also been shown to 
increase major histocompatibility complex I expression and decrease immunosuppressive factors, which 
increased PFS compared to monotherapy[134]. Phase 1/2 studies evaluating the safety, tolerability, PK, and 
clinical activity of MRTX849 in combination with pembrolizumab in patients with NSCLC are now 
recruiting (NCT04613596 and NCT03785249).

Other attempts have been made to combine ICIs with inhibitors targeting KRAS downstream. A phase 1/2 
clinical trial has investigated the efficacy of the PLK inhibitor rigosertib combined with nivolumab in 
NSCLC patients with KRAS mutation (NCT04263090). The early results indicate that 29% (2/7) of patients 
achieved partial responses, most of whom harbor a KRASG12C or KRASG12V mutation; 43% (3/7) of patients 
had a stable disease; and 57% (4/7) of patients had progressive disease[135]. Studies on the combinational 
efficacy of other KRASG12C inhibitors and ICIs, such as GDC-6036 (NCT04449874) and JDQ-443 
(NCT04699188), are now recruiting. The efficacy of ICIs combined with tumor vaccine mRNA-5671, which 
specifically target KRASG12C/D/V and KRASG13D, is now under investigation (NCT03948763).

Combination treatments which are not specifically for KRAS-mutant NSCLC have also received positive 
results in the NSCLC group. Multiple ICI treatment has shown promising results in NSCLC patients. In a 
phase 3 trial, patients were designed to receive mono-nivolumab, nivolumab combined with ipilimumab, 
nivolumab combined platinum-based chemotherapy, or mono-chemotherapy. The nivolumab combined 
with ipilimumab treatment group (medium OS = 17.1 months; 95%CI: 15.0-20.1) has shown longer median 
duration of overall survival compared to the chemotherapy treatment group (medium OS = 14.9 months; 
95%CI: 12.7-16.7) among patients with PD-L1 (TPS ≥ 1%). The two-year overall survival rates were 40% and 
32.8% and the median duration responses were 23.2 and 6.2 months, in the nivolumab combined with 
ipilimumab treatment group and chemotherapy treatment group, respectively. Patients with a PD-L1 (TPS 
< 1%) also benefit from nivolumab combined with ipilimumab (medium OS = 17.2; 95%CI: 12.8-22.0) 
compared with chemotherapy treatment (medium OS = 12.2 months; 95%CI: 9.2-14.3)[136]. In a phase 2 
clinical trial, 97 patients were enrolled to study whether stereotactic body radiotherapy (SBRT) enhances the 
tumor responses to pembrolizumab. The results show that the ORR at 12 weeks was 36% in experimental 
arm (SBRT plus pembrolizumab) vs. 18% in control arm (pembrolizumab), the median PFS was 6.6 months 
(SBRT plus pembrolizumab, 95%CI: 4.0-14.6) vs. 1.9 months (pembrolizumab, 95%CI: 1.7-6.9), and the 
median OS was 15.9 months (SBRT plus pembrolizumab, 95%CI: 7.1 to not reached) vs. 7.6 months 
(pembrolizumab, 95%CI: 6.0-13.9)[137]. A phase 2 trial enrolled 96 patients to study the efficacy of 
combinational anti-PD-1 (SHR-1210) and anti-VEGFR (Apatinib) in NSCLC patients with wild-type EGFR 
and ALK (NCT03083041). The ORR was 29.7% and DCR was 81.3%. Further analysis showed that the ORR 
reached 50% in the patients with high TMB, indicating that this combo-treatment is acceptable in NSCLC 
patients with high TMB[138].

All the clinical trials mentioned above have illustrated good outcomes comparing with mono-
immunotherapy in NSCLC, regardless of KRAS status. Further umbrella analyses are still needed to 
elucidate the combo-treatment efficacy on the KRAS-mutant NSCLC groups. All clinical trials are listed in 
Table 1.
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Table 1. Immune checkpoint inhibitors active in clinical trials

Immune 
checkpoint 
inhibitors

NCT identifier 
numbers

Combined 
therapy Target Allocation Phase Size Primary ends Status

Anti-PD-1/-L1 NCT03600883 AMG 510 KRASG12C Randomized Phase 1 733 AEs, DLTs, significant 
clinical changes

Recruiting

Atezolizumab NCT04449874 GDC-6036 
bevacizumab, 
cetuximab, rrlotinib

KRASG12C 
VGFR 
EGFR 
TKI

Non-
randomized

Phase 1 236 AEs, DLTs Recruiting

NCT04429542 BCA101 EGFR/TGF-β Non-
randomized

Phase 1 292 Safety, Cmax, PFS, 
AEs, ORR, OS, DLTs, 
MTD

Recruiting

NCT04613596 MRTX849 KRASG12D N/A Phase 
2

120 Clinical activity Recruiting

NCT03785249 MRTX849 KRASG12D N/A Phase 1 565 Safety, tolerability, 
drug levels, molecular 
effects, and clinical 
activity

Recruiting

NCT03299088 Trametinib MEK Non-
randomized

Phase 1 15 DLTs, ORR, PFS Active, not 
recruiting

NCT02779751 Abemaciclib 
Anastrozole

CDK 
Estrogen 
synthesis

Non-
randomized

Phase 1 100 PFS, AEs, ORR, OS, 
DCR, PK

Active, not 
recruiting

NCT03948763 mRNA-5671/V941 Vaccine Non-
randomized

Phase 1 100 DLTs, AEs, ORR Recruiting

NCT04340882 Docetaxel 
Ramucirumab

Chemotherapy 
VEGFR

N/A Phase 
2

41 PFS, AEs, ORR, OS Recruiting 

Pembrolizumab

NCT03225664 Trametinib MEK N/A Phase 
1/2

37 ORR Active, not 
recruiting

NCT02492568 Radiation N/A Phase 
2

96 ORR, toxicity Complete

NCT04263090 Rigosertib PLK1 N/A Phase 
1/2

30 MTD, ORR, PFS, OS Recruiting Nivolumab 

NCT02852083 Pioglitazone 
Clarithromycin

PPARγ 
Bacteria 
proteins

Randomized Phase 
2

86 PFS, AEs, ORR, OS Unknown 
status

NCT02492568 Ipilimumab Anti-CTLA-4 N/A Phase 
3

1980 OS, ORR, disease 
related symptom

Recruiting

SHR-1210 NCT03083041 Apatinib Anti-VEGFR N/A Phase 
2

117 AEs, ORR N/A

AEs: Adverse events; DLTs: dose-limiting toxicities; PFS: progression-free survival; OR: overall survival; RR: response rate; MTD: maximum 
tolerant doses; ORR: objective response rate; DCR: disease control rate; PK: pharmacokinetics; Cmax: plasma concentration.

The application of dietary modifications to supplement other cancer therapies is drawing more attention 
currently. The intake of different nutrients might alter the nutrient availability in the plasma, thus the 
TME[139]. Preclinical and retrospective studies have assumed that cancer development and prognosis are 
negatively correlated to unhealthy diets, such as diets high in sodium and fat[121,140]. Growing research has 
found that restriction or supplementation of specific metabolites might ameliorate therapeutic responses. 
The manipulation of nutrient accessibility remarkably reprograms the metabolic activity and therefore leads 
to alterations in cell activities and sensitivity to therapies, which is mainly modulated by nutrient-sensing 
pathways[141-144]. The dietary modifications enhance cancer therapy through sophisticated mechanisms, 
which are well summarized in other reviews[145-147]. As mentioned above, glucose is the primary source for 
not only energy but also metabolic intermediates for macromolecule synthesis for both tumor cells and 
immune cells. A diet low in glucose but normal in calories can reduce the blood glucose and decelerate 
tumor growth in some tumor models[148]. However, the glucose restriction might also affect the normal 
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function of immune effect cells. During the process of proliferation, differentiation, and activation of 
immune cells, the requirement for glucose might differ. Studies have found that inhibition of glycolysis 
restrains the differentiation of CD4+ T cells to Treg cells and promotes the differentiation of activated CD8+ 
T cells to long-lived memory CD8+ T cells[119,149]. Accordingly, we presume that timing and personalized diet 
should be taken into account when applying glucose restriction to supplement ICI treatment. Likewise, the 
lipid and amino acid metabolisms function differently at different stages of differentiation and activation of 
immune cells, thus the need for nutrients varies[120,150-152]. Therefore, it is critical to understand the metabolic 
network and landscape in TME in KRAS-driven NSCLC and how they affect the behavior of tumor cells 
and the function of stromal cells. Moreover, the impact of dietary modification on ICI response might be 
influenced by patient-specific variables. Many studies are currently investigating the molecular mechanisms 
and evaluating the effects of dietary interventions in enhancing cancer therapies. Collectively, dietary 
modification is a promising strategy for overcoming resistance to or improving the efficacy of ICI treatment 
in KRAS-mutant NSCLC.

CONCLUSION
Further understanding of the resistance mechanisms to ICIs mediated by KRAS mutation in NSCLC could 
provide implications on prospective therapeutic interventions to overcome the resistance or improve the 
efficacy. This will need further investigations to unearth metabolic pathways regulated by specific KRAS 
mutations, as well the modulatory effect on shaping TME directly and indirectly. Additional attempts to 
identify metabolic signaling pathways that promote immunosuppressive TME and resistance to ICIs will 
help discover the targetable metabolic vulnerabilities to improve the efficacy or overcome the resistance to 
ICIs through dietary modifications.
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