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Abstract
Decision making in Hepatobiliary and Pancreatic Surgery is challenging, not least because of the significant 
complications that may occur following surgery and the complexity of interventions to treat them. Machine 
Learning (ML) relates to the use of computer derived algorithms and systems to enhance knowledge in order to 
facilitate decision making and could be of great benefit to surgical patients.  ML could be employed pre- or peri-
operatively to shape treatment choices prospectively, or could be utilised in the post-hoc analysis of complications 
in order to inform future practice. ML could reduce errors by drawing attention to known risks of complications 
through supervised learning, and gain greater insights by identifying previously under-appreciated aspects of care 
through unsupervised learning. Accuracy, validity and integrity of data are of fundamental importance if predictive 
models generated by ML are to be successfully integrated into surgical practice. The choice of appropriate ML 
models and the interface between ML, traditional statistical methodologies and human expertise will also impact 
the potential to incorporate data science techniques into daily clinical practice.
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INTRODUCTION
Machine Learning (ML) relates to the use of computer-derived algorithms and systems to enhance 
knowledge in order to facilitate decision making. In surgery, ML has the potential to shape clinical decision 
making and the management of postoperative complications in three ways: (a) by using the predicted 
probability of postoperative complications or survival to determine and guide optimal treatment; (b) by 
identifying anomalous data and patterns representing high-risk physiological states during the perioperative 
period and taking measures to minimise the impact of the existing risks; (c) to facilitate post-hoc 
identification of physiological trends, phenotypic patient characteristics, morphological characteristics of 
diseases, and human factors that may help alert surgeons to relevant risk factors in future patients. Here we 
aim to review the potential clinical relevance of ML to improving the prediction of postoperative 
complications in hepato-biliary and pancreatic surgery.

THE CURRENT LANDSCAPE OF PREDICTING POSTOPERATIVE COMPLICATIONS
Preoperative prediction
The occurrence of postoperative complications in pancreatic surgery is a major determinant of outcomes, 
not least because of the impact of complications on the non-completion of adjunctive therapies. Predicting 
postoperative complications prior to making a commitment towards surgical therapy is important because 
it has the potential to change the sequence of therapies provided and the options considered. Several 
decision making dilemmas exist in pancreatic surgery, which include debates surrounding upfront 
chemotherapy vs. upfront surgery for pancreatic ductal adenocarcinoma (PDAC), fast-track surgery vs. 
preoperative biliary drainage for head of pancreas tumours, and parenchymal preserving vs. oncological 
resection in small neuro-endocrine tumours amongst many others[1-3]. It is also challenging to determine the 
resectability of malignant disease of the pancreas and ML could help play a role in reducing futile surgery - 
this could have a beneficial impact on patients in terms of reducing avoidable morbidity on the one hand 
and maximising healthcare resources on the other. There is also a need to improve the interpretation of 
complex multivariable patterns that represent clinical response to chemo- and immuno-therapies so that 
the treatment regimens and the timing of surgery could be optimised.

In liver surgery, accurate preoperative prediction of post-hepatectomy liver failure and the functioning liver 
remnant (FLR) could change decision making by supporting the use of adjunctive methods to increase the 
FLR or by counselling against higher-risk surgery in favour of other lower-risk therapeutic options (e.g., 
ablation or hepatic artery pump chemotherapy) where the difference in outcome may be equivocal[4-8]. ML 
could help identify patients better suited to more aggressive therapeutic options such as transplantation and 
predict which grafts and recipients are at higher risk of failure, immune rejection and mortality.

In considering the potential application of ML to predict postoperative complications prior to surgery, it is 
helpful to appreciate the limitations of existing models, which are primarily based on regression analyses. 
Three important limitations of regression based scoring systems that are commonly encountered include: 
(a) insufficient statistical power, often arising when the number of recorded events relative to outcomes is 
low; (b) when the traditional rules of frequentist classical statistics are not met, e.g., the 10-to-1 rule of 10 
events for each variable included in a multivariable model; (c) where reporting of the area under the curve 
(AUC) is not accompanied by the standard error and p-value when making direct comparisons between 
models; (d) where a new variable is added to existing prediction models, but the discretional value of the 
additional variable is not evaluated through techniques such as Net Reclassification Improvement[9]. 
Regression models have struggled to translate data related to predictor variables into robust and reliable 
tools to improve decision making in “real-world” situations[10].



Page 3Shapey et al. Art Int Surg 2023;3:1-13 https://dx.doi.org/10.20517/ais.2022.31

Perioperative prediction
Using perioperative data to pre-empt postoperative complications is not a new concept, and is fundamental
to contemporary management of postoperative surgical patients. At an elementary level, clinicians use
mental models such as recognition primed decision making, critical decision methods, and data frame
theory[11-13]. These models of decision making are the framework for what is more commonly described as
“expertise” or “experience”. Such mental models, although often correct, are open to error, misuse or
misdirection[11-13]. In the search for additional data in support of a specified hypothesis (sensemaking),
individuals may be drawn along an erroneous path and misattribute data to the wrong association or cause.
It is easy to fall into the cognitive trap of “explaining away” the association between poor outcomes and
technical errors, or to over-interpret the significance of an adverse event in a patient whose morbidity may
have little to do with the surgeon themselves. The potential value of ML, therefore, to objectively identify
anomalous data and high-risk physiological patterns is of great importance. Cognitive bias may also lead
surgeons to change a technical approach when no change is warranted, and vice versa.

One method of pre-emptively identifying and pro-actively addressing potential complications is the use of
electronic app-based clinical algorithms, as reported by the PORSCH trial in pancreatic surgery[14]. In this
randomised controlled trial of best practice after pancreatic resection in the Netherlands, algorithm-based
care was used to determine when to perform an abdominal CT, radiological drainage, start antibiotic
treatment, and remove abdominal drains. The algorithms described in this study represent at a human level
what computers seek to achieve at a digital level. The value of algorithms of optimal perioperative care is
illustrated by a significantly lower rate of the primary outcome (bleeding that required invasive
intervention, new-onset organ failure, and death either during admission or within 90 days after resection)
in the intervention group utilising the algorithm (adjusted RR 0.48, 95%CI: 0.38-0.61; P < 0.0001). It is also
important to consider how ML algorithms could improve the prediction of postoperative complications
above and beyond existing optimal systems and human-derived algorithms.  Moreover, defining the key
outcome of interest, e.g., failure to rescue rather than new-onset organ failure per se, is of paramount
importance in shaping the way that ML will interact with clinical practice.

Modified Early Warning Scoring (MEWS) systems exist to identify and pre-empt clinical deterioration, and
are based on basic physiological parameters such as heart and respiratory rate, blood pressure, oxygen
saturation and requirement, and neurological status[15-16]. In many healthcare systems, MEWS systems can
be set at certain thresholds to trigger pre-determined actions by clinical staff, for example, the automated
review of a patient by a critical care outreach team. Such systems have been shown to have a beneficial
impact on medical patient care by reducing the rate of in-hospital cardiac arrest[17-19]. The absence of
individual patient context to the interpretation of MEWS data outputs (e.g., heart rate and beta-blockade or
athleticism) represents a critical limitation, as does the non-identification of critical junctures that arise
from reviewing isolated data outputs rather than appreciating the subtleties of data trends (e.g., swinging
pyrexia). ML could help address the deficiencies in existing systems: (a) by identifying anomalous data that
does not trigger an automated or human system; (b) by relating biomarker data to electronic health and
prescribing records; and (c) by alerting clinicians to concerning clinical note entries through free-text
associations.

Currently, the practical application of ML to perioperative care is limited by multiple stumbling blocks.
These include: (a) the accuracy of alerts and the potential of spurious data to divert attention; (b) real-time
delivery of alerts in a manner that could change clinical practice; and (c) convergence of data points and
gate-keeping over which data ought to be considered relevant. In due course, these limitations could each be
addressed by the regular auditing and quality control of ML systems, by automating real-time calculations
and subsequent alerts to accompany each new piece of data, and by utilising multi-faceted and integrated
electronic patient records.
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Post-hoc prediction
Reviewing specified cases that experience mortality or significant morbidity is a long-standing feature of
most contemporary surgical departments. However, the systematic collection of data according to pre-
defined criteria and data variables is a relatively new concept that is gaining popularity. The National
Surgical Quality Improvement Programme (NSQIP), championed by the American College of Surgeons,
provides a structured framework from which to capture and analyse relevant data. NSQIP uses a
standardised Participant Use File to collect data at the individual patient level and can be analysed according
to the procedure[20]. Failure to rescue is an important binary outcome variable that is collected and reported
by NSQIP and reflects the inability to identify and ameliorate postoperative complications. Meanwhile, in
the UK, O’Reilly et al. showed that the process of instituting a prospective quality improvement programme
was a significant driver behind a reduction in postoperative complications[21]. In this instance, granular data
using standardised definitions of postoperative complications as agreed by the International Study Groups
of Liver Surgery and Pancreatic Surgery[22-27] were prospectively collected and validated in a weekly meeting
of senior HPB surgeons. Moreover, adoption of the Comprehensive Complication Index (CCI) as a
continuous outcome variable representing the full and broad range of postoperative complications
facilitates a standardised tool for reliable comparison amongst cohorts[28]. The success of the Dutch
Pancreatic and Hepatobiliary National Audits in providing a data platform from which to perform practice
changing research illustrates the potential for machine learning methods to tap into rich data repositories
that could help improve outcomes[29-30].

Existing quality improvement and audit programmes highlight some important lessons that require due
consideration prior to instituting ML as an integral part of the analysis of postoperative complications. First,
variables and outcomes should only be reported according to clearly agreed definitions, while prospective
validation of recorded data is essential in order to ensure the accuracy and integrity of ML analyses. Second,
a mixture of data forms that include qualitative and quantitative outcomes (both binary and continuous) are
necessary in order to capture the true impact of surgical care on patient experience. Third, measures of
optimal outcomes (e.g. return to normal physiological function, and length of stay adjusted for the
complexity of surgery) should be included alongside complication outcomes. Effective quality improvement
mandates both the reduction of errors, deriving from the analysis of complications, and an increase in
insight, deriving from the analysis of best practices. It can be challenging to gain consensus on best practice
outcomes because patients, populations and health systems are very heterogenous groups. Nonetheless, it is
vitally important because the minimisation of complications is associated with improvements from multiple
marginal gains, whereas increasing insight can contribute to step-wise positive changes but that occur on a
much less frequent basis. In the absence of detailed attention to the validity of data inputs and outcomes, the
contribution of ML to quality improvement is likely to be, at best, irrelevant, and at worse, damaging to
patient well-being.

Bile duct injuries occurring during minimally invasive cholecystectomy remain a problematic issue.  The
advent of minimally invasive surgery, including robotic systems with three-dimensional visualisation, has
facilitated the opportunity for high-quality recording of surgical procedures. Artificial intelligence-assisted
post-hoc review of 290 laparoscopic cholecystectomies demonstrated the ability to accurately (0.95[+/-0.06])
and specifically (0.98[+/-0.05]) identify “No-Go” zones that were representative of hazardous anatomical
regions associated with a higher probability of bile duct injury. However, the technology suffered from a
much lower rate of sensitivity (0.80[+/-0.21]). In this instance, the discrepancy between sensitivity and
specificity is quite important, because the former has the capacity to identify a potential injury before it
occurs and thereby prevent it, whereas the value of the latter lies more in confirming whether an injury may
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have occurred[31]. It is reported that in due course, machine learning analysis could be incorporated in real-
time.

MACHINE LEARNING, METHODOLOGY AND DATA
The frequentist approach to statistical analysis has been the most commonly used approach to 
understanding and interpreting data in surgical care. Its broad philosophy is to consider, within the context 
of narrow rules and tight assumptions, the likelihood of achieving the same result if a test were to be 
repeated a given number of times. Different approaches to the analysis of data have recently gained favour; 
for example, the Bayesian approach, which is based on the application of pre-existing data to the 
consideration of the a-priori (by theoretical deduction) conditional probability of a future event occurring. 
The Bayesian approach represents a far more logical and intuitive approach to statistical analysis that is 
highly relevant to the understanding of postoperative complications, but is currently under-utilised. In 
contrast to the classical approach to statistical analysis, ML takes the relative certainty of known variables 
and outcomes and applies algorithms to better appreciate the relationship between them. All algorithms, 
regardless of their classification as frequentist statistical or ML methodology, have rules and prerequisites 
that need to be followed. Consequently, the scientific basis for utilising a certain ML methodology ought to 
be outlined on each occasion, lest the validity of the work performed should be challenged.

It is helpful to distinguish between algorithms that require supervision, where clearly labelled or defined 
data is selected for the model, vs. unsupervised algorithms where the algorithm labels the data and seeks to 
determine the relationships between them.  Reinforced learning describes a situation where the machine 
(i.e. a computer or robot) automatically processes the data for the first time and adapts its algorithms 
accordingly. Table 1 provides an overview of the potential application of the various ML methods, their 
strengths and limitations, to improve our understanding and prediction of postoperative complications. 
While it can be challenging to appreciate the mathematical equations that relate to the various ML 
algorithms, many of them are named according to everyday aspects of life that illustrate their methodology. 
For example, decision trees start with a trunk (i.e. the problem, or presenting state) and culminate in a series 
of branches that represent the various options and their associated probability of the outcome in question 
(e.g. survival). Random forests, therefore, represent the amalgamation of multiple trees in a given scenario. 
Neural networks are described in a manner that represents the neurons and synapses (i.e. nodes) in the 
human nervous system with the overall aim of replicating the higher functions of a human brain, albeit at a 
digital level.

The accuracy of ML rests on the reliability of the data entered, which comes in many forms and can be 
handled in many ways. In the “real world”, missing data is a big problem and can be addressed, most 
commonly, by imputation where a value is inferred to the missing data according to the distribution of 
existing data. There are various methods for imputing data; modal - using the modal[most frequent] data 
point; multiple - by creating multiple versions of the same dataset and attributing different values from 
within the given distribution to the missing data, and calculating the mean value from the multiple data sets; 
iterative - where multiple variables are taken into consideration together in order to provide an imputed 
value; and arbitrary - which provides a random value from within a pre-defined range. There is also the 
option of removing the subjects from a data set where there is missing data, but this is infrequently advised 
in large and complex datasets with significant amounts of missing data. The handling of data is of critical 
importance because some ML algorithms cannot be legitimately performed if there is considerable missing 
data or if it has been addressed in a certain way. Likewise, if the outcomes have not been labelled according 
to clear definitions, then the validity of the results could be questioned.
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Table 1. Machine Learning methodologies and their potential application in predicting complications following HPB surgery

Methodology Outcome 
data type Statistical assumptions Strengths Limitations Optimal 

phase
Potential clinical application in prediction of 
postoperative complications in HPB surgery

Supervised models

Linear regression Continuous Normal distribution of 
dependent variables 
Linear (diagonal) relationship 
between dependent and 
independent variables 
Observations are 
independent of each other 
Variance of residuals is the 
same irrespective of the value 
of the independent variable

Easy to execute Poor predictive power 
Minimal ‘tuning’ of learning 
parameters

Postoperative To appreciate the relationships between potential 
predictors and complications and also the inter-
predictor relationships

Logistic regression Binary Linear (diagonal) relationship 
between dependent and 
independent variables 
Normal distribution of 
continuous independent 
variables 
Observations are 
independent of each other

Easy to execute Poor predictive power 
Ability to accommodate missing, 
outlying or co-linearity between data 
Minimal ‘tuning’ of learning 
parameters

Postoperative To appreciate the relationships between potential 
predictors and complications and also the inter-
predictor relationships

Support vector 
machines

Nominal Linear and non-linear 
distributions

Accommodates non-linear data 
Deals with outliers easily

Slow processing of very large datasets 
Poor performance where the 
distinction between there is some 
overlapping of outcomes

Postoperative To identify variables associated with postoperative 
complications algorithms that require data from 
known predictors

Decision trees Continuous 
Nominal 
(better)

Non-linear relationship 
(along parallel axes)

Minimal impact of missing values 
Easy to understand, interpret and 
visualise

Rely on both quality and quantity of 
data 
Small changes to data can have a big 
impact on the tree 
Variables included in the tree need to 
be known predictors

Preoperative To assist treatment decision making according to the 
probability of a single complication or outcome

Random forest Continuous 
Binary

Variables included in the 
analysis need to known 
predictors

Minimal impact of missing values 
or outliers 
Amalgamates multiple decision 
trees to limit errors from a single 
tree 
Easy to understand, interpret and 
visualise

Trees within the forest need to be 
discrete and not correlated

Preoperative To consider the best treatment options by balancing 
the cumulative probability of individual risks and 
weighing up the overall benefits of treatment choices

Naive Bayes 
algorithm

Binary Each variable is considered 
equal

Fast to execute 
Easy and intuitive to interpret

Reliant on accurate training data 
Can utilise free text data

All Identifying triggers/red-flag features of clinical 
deterioration from numerical data (e.g. biomarkers, 
observations) and also by screening electronic health 
records for text “triggers/flags”

Unsupervised models
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Clustering 
(e.g. K-means)

Continuous 
Ordinal

Assumes that: 
- Clusters are spherical (i.e. 
the variance of the 
distribution) 
- All variables have similar 
variance 
- All clusters are of similar 
size (i.e. observations)

Easy to use and interpret 
Accommodates large amounts of 
data, including unlabelled data

Outcomes are specific to the time of 
analysis and data included 
Small changes in data will impact the 
outcome 
Reproducibility is limited 
Includes all data in the cohort and 
cannot easily adjust for outlying data

Perioperative Anomaly detection

Principal 
components 
analysis

Continuous 
Nominal

Data must be standardised 
and scaled prior to analysis

Accommodates very large data 
sets with wide variations 
Excludes highly correlated data 
which does not facilitate decision 
making 
Helps understand and visualise 
very complex data

Prone to remove data with low 
variance 
Some data may be lost in the process 
of maximising

Perioperative Identifying significant and relevant changes in 
biomarkers which are often highly correlated (e.g. 
liver enzymes/function tests, inflammatory cytokines 
or clinical observations)

K nearest neighbour Nominal None Easy to perform 
Simple to understand 
No statistical assumptions 
required 
Responds well to new data

Requires accurate and complete data 
Does not easily accommodate large 
and complex datasets

Perioperative Real-time identification and classification of 
complications according to agreed definitions (e.g. 
ISGPS, ISGLS)

Boosting (e.g 
gradient or XG 
boosting)

Ordinal Data must be ordinal 
Assumes that datasets are 
incomplete (i.e. missing data) 
Categorical variables must be 
converted into numerical 
data

Fast execution and interpretation 
Minimal impact of outliers 
Good model performance

Difficult to interpret 
Challenging to ‘tune’ the learning 
parameters

Postoperative Analysis utilising all features of an electronic health 
record

Supervised and unsupervised

Neural networks Continuous 
Binary

Digitalised data (i.e. not free 
text)

Application of 
established/trained models to 
prospective is fast and highly 
predictive 
Can easily accommodate missing 
data

Reliant on significant amounts of high-
quality training data 
Training the model can be lengthy 
The strength of relationships between 
dependent and independent variables 
cannot be determined (unlike 
regression analyses)

Pre- or 
perioperative

Primarily to help decide optimal treatment therapies 
or to guide adaptations to clinical care based on a 
changing clinical condition (e.g. deterioration due to 
sepsis)

ISGLS: The International Study Group of Liver Surgery; ISGPS: the International Study Group.

CURRENT EVIDENCE OF USING MACHINE LEARNING TO PREDICT POSTOPERATIVE COMPLICATIONS
As a relatively new field of statistical analysis, there is a paucity of published evidence reporting ML-based analysis of complications following HPB surgery. 
Simple regression-based studies using a classical statistics approach alone have been performed for many decades and are not discussed below. Here we digest 
and appraise studies that have utilised more contemporary ML methodologies. Tables 2 and 3 provide a summary of the technical aspects of these ML studies.
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Table 2. ML prediction of postoperative complications in pancreatic surgery

Paper Operation Model Patients, 
centre(s) Study Clinical phase Outcome Result 

(aROC)

Machine learning algorithms as early diagnostic tools for pancreatic 
fistula following pancreaticoduodenectomy and guide drain removal: a 
retrospective cohort study (Shen et al.[53])

Pancreatoduodenectomy CatBoost 2421, 1 Retrospective Pre, peri & 
postoperative

POPF 0.81

A machine learning risk model based on preoperative computed 
tomography scan to predict postoperative outcomes after 
pancreatoduodenectomy (Capretti et al.[39])

Pancreatoduodenectomy Logistic 
regression

100, 1 Retrospective Preoperative POPF 0.81

Perioperative risk assessment in pancreatic surgery using Machine 
Learning (Pfitzner et al.[54])

Pancreatectomy Logistic 
regression

521, 1 Retrospective Pre, peri & 
postoperative

POPF PPH, ICU 
readmission, death

0.37

Predicting outcomes in patients undergoing Pancreatectomy using 
wearable technology and Machine Learning: prospective cohort study 
(Cos et al.[45])

Pancreatectomy Gradient boosting 48, 1 Prospective Preoperative Textbook surgical 
outcome

0.79

Risk prediction platform for pancreatic fistula after 
pancreatoduodenectomy using artificial intelligence (Han et al.[44])

Pancreatoduodenectomy Neural network 1769, 1 Retrospective Pre & intra-
operative

POPF 0.74

Prediction of clinically relevant Pancreatico-enteric Anastomotic 
Fistulas after Pancreatoduodenectomy using deep learning of 
Preoperative Computed Tomography (Mu et al.[41])

Pancreatoduodenectomy Convolutional 
neural network

513, 4 Retrospective (externally 
validated with prospective 
dataset)

Preoperative POPF 0.89 

The potential of machine learning to predict postoperative pancreatic 
fistula based on preoperative, non-contrast-enhanced CT: a proof-of-
principle study (Kambakamba et al.[38])

Pancreatoduodenectomy Random forest 110, 1 Retrospective cohort Preoperative POPF 0.95

aROC: Area under the receiving operator characteristic curve; ICU: intensive care unit; ML: Machine Learning; POPF: postoperative pancreatic fistula; PPH: post-pancreatectomy haemorrhage.

Classical statistical modelling to predict postoperative pancreatic fistula
Predicting the probability of postoperative pancreatic fistula (POPF) using classical statistical (regression) modelling has received considerable attention in the 
published literature[32-35]. Although these models have undergone numerous iterations and validation cycles, they continue to rely on subjective assessment of 
pancreatic gland texture, and intraoperative blood loss (original Fistula Risk Score), which cannot be assessed until the time of surgery. Attempts have been 
made to overcome these issues by using parameters determined by preoperative Computed Tomogrpahy[35-36]. Nonetheless, the reported areas under the 
Receiving Operator Characteristic curve (aROC) range from 0.78 in original datasets to 0.67 in subsequent cohorts aiming to validate the original studies[33,37]. 
The performance of the FRS is not universally consistent across patient populations from different ethnicities and cultures[37]. ML, therefore, could make a 
much-needed contribution to improving the reliability and reproducibility of algorithms to predict POPF.

Machine Learning modelling to predict postoperative pancreatic fistula using preoperative computed tomography
Kambakamba et al.’s random forest ML model showed near-perfect performance in predicting CR-POPF using preoperative CT (AUC 0.95) as compared to 
the FRS and a-FRS (AUC 0.80 and 0.73, respectively)[38]. Similarly, Capretti et al. predicted CR-POPF and postoperative length of stay using CTs from 100 
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Table 3. ML prediction of postoperative complications in hepatic surgery

Paper Operation Model Patients, 
centre(s) Study Clinical phase Outcome Result 

(aROC)

Artificial neural network 
model for preoperative 
prediction of severe liver 
failure after hemihepatectomy 
in patients with hepatocellular 
carcinoma (Mai et al.[50])

Hemihepatectomy Artificial 
neural 
network

353, 1 Retrospective Preoperative Severe 
PHLF

0.88

Development and validation of 
a Machine Learning 
prognostic model for 
hepatocellular carcinoma 
recurrence after surgical 
resection (Huang et al.[49])

Hepatectomy XGBoost 7919, 2 Retrospective Pre, peri & 
postoperativepostoperative

RFS 0.70

Artificial neural network 
model for predicting 5-year 
mortality after surgery for 
hepatocellular carcinoma: a 
nationwide study (Shi et al.
[46])

Hepatectomy Artificial 
neural 
network

22926,
multiple

Retrospective Pre, peri & postoperative 5-year 
mortality

0.89

An artificial neural networking 
model for the prediction of 
post-hepatectomy survival of 
patients with early 
hepatocellular carcinoma 
(Qiao et al.[47])

Partial 
hepatectomy

Artificial 
neural 
network

829, 2 Prospective Pre, peri & postoperative Overall 
survival 
(OS)

0.83

aROC: Area under the receiving operator characteristic curve; ML: Machine Learning; OS: overall survival; PHLF: post-hepatectomy liver failure; 
RFS: recurrence free survival.

Italian patients using a logistic regression (LR) model, achieving AUC 0.81 and AUC 0.71, respectively[39]. 
These studies were limited by their retrospective nature and data from a single centre which risks model 
overfitting and limits generalizability. However, both reports showed great potential as proof-of-concept 
studies, and affirm recent work that has demonstrated the ability of ML to outperform human 
interpretation of images and recognise features inconceivable to the human eye[40].

In a larger study using the preoperative CTs of 513 patients across three centres7, Mu et al developed a 
convolutional neural network (CNN) to predict CR-POPF that outperformed the FRS[41]. Their CNN was 
externally validated in a fourth centre, achieving AUC 0.89 compared to AUC 0.73 in the FRS. The CNN 
showed particularly higher predictive performance in the > 50% of patients deemed ‘intermediate risk’ by 
FRS (FRS 3-6). However, hepatitis B infection, which is endemic in China where the study was based, may 
reduce generalizability[42].

Machine Learning modelling to predict postoperative pancreatic fistula using diverse variables
ML has the potential to aggregate multiple variables and analyse complex nonlinear relationships between 
them[43]. This is illustrated by the report from a large retrospective Chinese study of 2421 patients 
undergoing pancreatoduodenectomy that utilised 59 pre-, peri- and postoperative variables in a neural 
network to predict POPF (aROC 0.81). A further large study of 1769 Korean patients, also undergoing 
pancreatoduodenectomy utislised 16 variables in a neural network model (aROC 0.74)[44]. Despite 
harnessing significant volumes of data, the improved performance capabilities of these models were modest 
compared with the performance of the FRS and aFRS. Both models incorporated variables such as intra-
operative fluid status that are widely debated as to their role as predictors of POPF. It is plausible that these 
ML studies have uncovered variables with complex non-linear relationships that have been missed by 
previous classical statistical studies that assumed linearity.  A number of important observations can be 
drawn from this data: (a) more data does not always translate into better data; (b) identification of relevant 
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predictor factors using classical statistical methods are reasonably robust and reliable; (c) ML might be 
better suited towards appreciating the complex relationships between pre-identified predictor variables and 
incorporating them into predictive models, rather than identification of predictor variables in the first 
instance; (d) ML models demonstrate greater potential as dynamic tools to guide decision making, for 
example, the timing of drain removal, rather than as static models that represent predicted risk at a single 
point in time.

Prospective machine learning prediction of complications following pancreatic surgery
Only one study prospectively studied ML prediction of post-pancreatectomy complications[45]. Cos et al. 
used a telemonitoring wearable device (Fitbit) to measure heart rate, step count and sleep features in 48 
patients pre-pancreatectomy[45]. Combined with clinical characteristics, this activity data was used by a 
gradient boosting model (GBM) to predict a textbook surgical outcome postoperatively, outperforming the 
widely used ACS-NSQIP Surgical Risk Calculator (aROC: ML 0.79 vs. NSQIP 0.63).

Machine Learning to predict postoperative complications in hepatic surgery
In a first-of-its-kind nationwide population-based analysis of 22926 Taiwanese patients, Shi et al. predicted 
5-year mortality post-HCC surgery using an artificial neural network (ANN)[46]. This study reported that 
surgeon volume (caseload) was the most influential factor in predicting postoperative mortality, with an 
AUC of 0.89. Nonetheless, the retrospective nature of this work and the absence of clinical parameters 
represent significant limitations that preclude the clinical utility of the model.

Machine Learning prediction of post-hepatectomy outcomes
ML approaches in hepatic surgery have mostly focused on predicting survival and recurrence post-
hepatectomy in hepatocellular carcinoma (HCC). Qiao et al. collected prospective data on 725 patients with 
early HCC and predicted overall survival (OS) following minor hepatectomy using an ANN[47]. In this study, 
linear regression analysis was used to identify significant (P < 0.05) predictors, including tumor size & 
number, alpha-fetoprotein, microvascular invasion, and tumor encapsulation. ANN was then used to best 
appreciate the inter-variable relationships and develop a predictive model (aROC 0.86 - training cohort). 
The model was then externally validated on a separate dataset, achieving an aROC of 0.83. One limitation of 
ANN methodology is that the individual weightings and relationships of clinicopathological factors cannot 
be reported and interpreted because of the nature of the black box algorithm utilised by ANNs[48].

Huang et al. created an XGBoost model which predicted read recurrence-free survival (RFS) post-HCC 
resection from retrospective data collected in 7919 patients[49]. Their XGBoost model showed modest 
improvement over the Early Recurrence After Surgery for Liver tumour (ERASL) score in external 
validation (aROC; ML 0.70 vs. ERASL 0.67). The modest aROCs in this model highlight both the 
importance of high quality and prospectively validated data inputs and the impact of the chosen ML 
algorithm on the performance of the model. However, a unique capability reported by this study was the 
ability to create individualised patient risk heatmaps of tumour recurrence over time, which could inform 
personalised surveillance strategies.

Post-hepatectomy liver failure represents a significant postoperative complication that alters the trajectory 
of surgical outcomes. Mai et al. developed an ANN utilizing five preoperative indicators of hepatocyte 
function and volume (Platelet count, Prothrombin Time, Bilirubin, Aspartate Transaminase and Functional 
Liver Remnant) in 353 patients undergoing hepatic resection to predict severe post-hepatectomy liver 
failure (PHLF)[50]. This model demonstrated exceptional performance (aROC 0.88) in both training and 
validation cohorts and outperformed other commonly used scoring systems by considerable margins 
(Child-Pugh: 0.568, Model for End-stage Liver Disease: 0.608, Albumin-bilirubin: 0.627, platelet-albumin-
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bilirubin: 0.584, Fibrosis index based on the 4-factor -4: 0.665, and aspartate transaminase-platelet ratio 
index[50].

In all three studies, generalisability of the ML models outside of a hepatitis B endemic population remains to 
be seen[47]. This is important, because HCC associated with hepatitis C predominates in Western 
populations, which also tend to be older and more obese[51].

CONCLUSION
ML shows great promise in substantially increasing the performance of statistical models to predict 
postoperative complications following hepatobiliary and pancreatic surgery. The accuracy, validity and 
integrity of data that are input into ML predictive models are central to its future success. Future studies 
should follow the TRIPOD-AI guidance that is currently in development[52]. ML has the potential to 
improve outcomes following hepato-biliary and pancreatic surgery by reducing errors through highlighting 
known risks of complications using supervised learning and by gaining greater insights through identifying 
previously under-appreciated aspects of care using unsupervised learning. The success or failure of ML to 
enhance clinical care will not be determined by computer science. Rather, it will be determined at a human 
level through our willingness to integrate the compassion of clinical care with the objectivity of data science, 
through our acceptance and correction of our own errors in clinical practice and data coding, and through 
the cultures that dominate our workplace environments and shape our attitude towards life-long learning.
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