
Fang et al. J Surveill Secur Saf 2024;5:62-79
DOI: 10.20517/jsss.2023.42

Journal of Surveillance,
Security and Safety

Original Article Open Access

Improved differential fault analysis of Grain-128AEAD
Tianyu Fang, Iftekhar Salam, Wei-Chuen Yau

School of Computing and Data Science, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia.

Correspondence to: Iftekhar Salam, School of Computing andData Science, XiamenUniversityMalaysia, Sepang 43900, Selangor,
Malaysia. E-mail: iftekhar.salam@xmu.edu.my; ORCID: 0000-0003-1395-4623

How to cite this article: Fang T, Salam I, Yau WC. Improved differential fault analysis of Grain-128AEAD. J Surveill Secur
Saf 2024;5:62-79. http://dx.doi.org/10.20517/jsss.2023.42

Received: 15 Nov 2023 FirstDecision: 24 Jan 2024 Revised: 21 Feb 2024 Accepted: 13Mar 2024 Published: 30Mar 2024

Academic Editor: Moti Yung Copy Editor: Yanbin Bai Production Editor: Yanbin Bai

Abstract
The number of smart devices connected to the Internet has been constantly increasing, and as a result, lightweight
cryptography (LWC) has become more important in the past decade. The Lightweight Cryptography (LWC) Project
is an initiative taken by the National Institute of Standards and Technology (NIST) to standardize such LWC algo-
rithms. Grain-128AEAD, which was submitted to the NIST LWC project, is an encryption algorithm that provides
both confidentiality and integrity assurance. Third-party security analysis of the submitted ciphers is an important
aspect of the evaluation of the submission to the NIST LWC project. Although several pieces of existing research,
such as the bit-flipping attack, random fault attack, and deterministic random fault attack, have examined the secu-
rity of Grain-128AEAD, there is still room for improvement in the fault attack models of these studies. This work aims
to fill this research gap by analyzing the security margin of Grain-128AEAD against a series of improved differential
fault attacks. In this study, we developed a probabilistic random fault attack and applied it to Grain-128AEAD. As
an improvement of the existing research, a probabilistic approach can be applied to a more relaxed moderate con-
trol attack model. The existing moderate control model assumes the fault to be injected within any bit of a given
byte, whereas the faults in our improved approach can be injected within any bits of a two-byte/four-byte segment,
thereby relaxing the fault precision. The results indicate that the improvedmoderate control requires 388 keystreams
for the two-byte model and 279 for the four-byte model to identify the target fault locations for implementing a state
recovery attack. The relaxed fault attack models presented in this work are more practical to implement; hence, the
findings of this research have improved the existing studies and narrowed the current research gap on the fault attack
models of Grain-128AEAD.

Keywords: Stream cipher, lightweight cryptography, differential fault attack, Grain-128AEAD

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.jsssjournal.com

https://creativecommons.org/licenses/by/4.0/
www.jsssjournal.com
http://crossmark.crossref.org/dialog/?doi=10.20517/jsss.2023.42&domain=pdf


Page 63 Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42

INTRODUCTION
The National Institute of Standards and Technology (NIST) initiated the Lightweight Cryptography (LWC)
Project to solicit, test, and standardize lightweight cryptographic algorithms for use in restricted environ-
ments [1]. This project aims to standardize the ciphers feasible for resource-constrained applications. After
two rounds of evaluation, NIST announced the winner, ASCON, from the ten finalists. Among the finalists,
Grain-128AEAD is one of the stream cipher-based algorithms. Several finalists are not fully explored by the
third party against various fault attacks. This paper investigates improving the differential fault attacks on
Grain-128AEAD.

This work presents a set of fault attacks that successfully recovers the majority of the internal state bits of
Grain-128AEAD[2,3]. As an improvement of the research by Salam et al. [4], we have investigated two more
relaxed fault attack models–a two-byte moderate control model assuming the injection of a random fault into
two consecutive bytes and a four-byte moderate control model assuming the injection of a random fault into
four consecutive bytes. This paper shows that the improved attack, a combined probabilistic-deterministic fault
attack of more relaxed moderate control models, is feasible to identify all the required target fault registers in
the linear feedback shift register (LFSR). In the moderate control models with two or four bytes, we employ a
probabilistic approach to recover some of the fault targets when a deterministic approach is not feasible. Table 1
compares the results of this study with those obtained in the work conducted by Salam et al. [4]. Compared
to their research, the findings reported in this paper require access to more keystreams and inject more faults;
however, the fault attack models of this work are more practical to implement in terms of fault precision.

We use the term probabilistic-deterministic to refer to the fact that some of the fault target locations are iden-
tified using a deterministic signature, while some others are identified with a probabilistic signature. Table 2
shows that with two-byte moderate control precision, 100 target LFSR register locations can be identified using
the deterministic method, and the remaining 28 need to be recovered with the probabilistic method. On the
other hand, 96 target LFSR register locations can be identified using the deterministic method, and the remain-
ing 32 need to be recovered with the probabilistic method. Comparing these two moderate control models,
with the two-byte precision, more target registers have a deterministic signature but require more keystream
and have a slightly higher data complexity. The four-byte precision requires using the probabilistic signature
for a slightly larger number of target registers and, therefore, requires less keystream and lesser data complex-
ity. The attacks presented in this paper are feasible in identifying the majority of the target registers. The fault
precision with moderate control is practical as recent works have shown the practicality of fault injection using
laser beams [5,6] and focused flashlights [7]. For a random byte fault model, depending on the target device, the
fault may be induced with an optical flashgun or using a voltage glitch. The cost of such attacks ranges from
low to 500 EUR, where a low cost refers to only a standard desktop PC (and in some cases, connection wires)
to apply the attack [8]. Therefore, we conclude that the attacks presented in this work are practically feasible.

GRAIN-128AEAD SPECIFICATION
Grain-128AEAD[2,3] is a stream cipher-based design suitable for applications requiring authenticated encryp-
tion with associated data (AEAD). It is based on the Grain family of stream ciphers that consists of Grain-v1 [9],
Grain-128 [10], Grain-128a [11] and Grain-128AEAD, which are known for their high security and efficiency.
Grain-128AEAD uses a 128-bit key and operates on blocks of 128 bits [12]. It offers three different operation
modes:

1) Grain-Authenticate: This mode provides integrity protection for the associated data and confidentiality for
the message.

2) Grain-Encrypt: This mode provides confidentiality for both the associated data and the message.
3) Grain-Seal: This mode combines the features of the previous two modes, providing both confidentiality

http://dx.doi.org/10.20517/jsss.2023.42


Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42 Page 64

Table 1. Summary of required keystreams to determine the faulty register

Ref. Fault type Fault precision Required
keystream

Data
complexity

[4]

Bit-flipping Precise 223 27.80

Probabilistic random Precise 223 211.60

Deterministic random
Precise 200 28.80

Moderate 223 212.98

This
work

Probabilistic-Deterministic random
Moderate (Two-byte) 388 28.60

Moderate (Four-byte) 279 28.12

Table 2. Comparison between Two-byte and Four-byte Precision Methods

Precision Two-byte Four-byte

Method
Deterministic 100 96

Probabilistic 28 32

Identified target registers 128 128

Total Required Keystream 388 297

Figure 1. General structure of Grain-128AEAD [12].

and integrity protection for the associated data and the message.

Grain-128AEAD is designed from the idea of a nonlinear filter generator. It consists of the 𝑛-bit LFSR and
the 𝑛-bit non-linear feedback shift register (NFSR). LFSR is used to produce a sequence of a large period,
and a nonlinear function is used for the LFSR as input to ensure nonlinearity in the keystream.

Grain-128AEAD consists of two building blocks: the pre-output generator and the authenticator generator.
The former consists of a 128-bit LFSR, 128-bit NFSR, and the output function ℎ(𝑥). The latter comprises a
64-bit accumulator and a 64-bit shift register. Figure 1 illustrates the basic structure of Grain-128AEAD. In
addition, the cipher consists of a 128-bit key, a 96-bit initial vector (IV), and a 64-bit tag, 𝑇 , to ensure integrity
assurance.

The 256-bit internal state ismade up of the contents of LFSR 𝑆 = {𝑠0, 𝑠1, . . . , 𝑠127} andNFSR 𝐵 = {𝑏0, 𝑏1, . . . , 𝑏127} [12].

http://dx.doi.org/10.20517/jsss.2023.42


Page 65 Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42

The primitive feedback polynomial of the LFSR is defined as

𝑓 (𝑥) = 1 + 𝑥32 + 𝑥47 + 𝑥58 + 𝑥90 + 𝑥121 + 𝑥128 (1)

The LFSR update function is denoted as

𝑠(𝑡+1)
127 = 𝑠𝑡0 + 𝑠𝑡7 + 𝑠𝑡38 + 𝑠𝑡70 + 𝑠𝑡81 + 𝑠𝑡96

= 𝐿 (𝑆𝑡) (2)

The NFSR function is given by

𝑔(𝑥) = 1 + 𝑥32 + 𝑥37 + 𝑥72 + 𝑥102 + 𝑥128 + 𝑥44𝑥60 + 𝑥61𝑥125 + 𝑥63𝑥67 + 𝑥69𝑥101 + 𝑥80𝑥88

+ 𝑥110𝑥111 + 𝑥115𝑥117 + 𝑥46𝑥50𝑥58 + 𝑥103𝑥104𝑥106 + 𝑥33𝑥35𝑥36𝑥40. (3)

The update function for NFSR is defined by

𝑏 (𝑡+1)
127 = 𝑠𝑡0 + 𝐹 (𝐵𝑡). (4)

The Boolean function ℎ(𝑥) takes nine state variables as input; seven are taken from the LFSR, and the other
two are from the NFSR. The function is expressed as

ℎ(𝑥) = 𝑥0𝑥1 + 𝑥2𝑥3 + 𝑥4𝑥5 + 𝑥6𝑥7 + 𝑥0𝑥4𝑥8. (5)

The output generated by the output generator is formulated as

𝑦𝑡 = ℎ(𝑥) + 𝑠𝑡93 +
∑
𝑗∈𝐴

𝑏𝑡𝑗 (6)

where 𝐴 = {2, 15, 36, 45, 64, 79, 89}.

During the initialization phase, the 128-bit key fills the NFSR, 𝑏0
𝑖 = 𝑘𝑖 , 0 ≤ 𝑖 ≤ 127, and the IV is loaded into

the first 96 bits of the LFSR, 𝑠0
𝑖 = 𝐼𝑉𝑖 , 0 ≤ 𝑖 ≤ 95. Another 32 are then loaded with padding 𝜋, 31 1s with one 0

at the last bit. Then, in the first 256 clock cycles, the pre-output function is fed back to the LFSR and the NFSR
and then XOR-ed with the input. The state update functions are defined as

𝑠𝑡+1
127 = 𝐿 (𝑆𝑡) + 𝑦𝑡 , 0 ≤ 𝑡 ≤ 255 (7)

𝑏𝑡+1
127 = 𝑠𝑡0 + 𝐹 (𝐵𝑡) + 𝑦𝑡 , 0 ≤ 𝑡 ≤ 255 (8)

During the last 128 rounds of initialization, the states are updated as follows:

𝑠𝑡+1
127 = 𝐿 (𝑆𝑡) + 𝑘 𝑡−256, 256 ≤ 𝑡 ≤ 383 (9)

𝑏𝑡+1
127 = 𝑠𝑡0 + 𝐹 (𝐵𝑡), 256 ≤ 𝑡 ≤ 383 (10)

During encryption, every even bit of the pre-output generator is used as the keystream bits 𝑧𝑖 determined by

𝑧𝑖 = 𝑦384+2𝑖 (11)

FAULT ATTACK
A differential fault analysis (DFA) is a type of side-channel attack. In this attack, an adversary induces faults
or errors in the execution of a cryptographic algorithm and observes the differences in the outputs caused by
these faults. By analyzing these differences, the attacker aims to gain information about the secret key used in
the cryptographic process [13]. Fault attacks can pose a significant threat to a wide range of industries, including
banking, defense, and critical infrastructure. They have been shown to be a powerful technique against many
modern ciphers; for examples of fault attacks on stream ciphers, refer to the provided references [14,15,15–23].
Fault attacks can be measured by four parameters: the fault type, duration, number, and precision [4,24].

http://dx.doi.org/10.20517/jsss.2023.42


Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42 Page 66

1) The fault type describes how it affects a specific register. The target register bit may become 0 or 1, be
flipped, or be a random value by the fault injection. To perform a bit-flipping attack, the attacker is capable
of changing the value of the target bit(s) by complementing them. In the event of a random fault, the
attacker has no control over its impact; the targeted register bit has an equal chance of flipping or remaining
the same.

2) The fault duration determines the period it remains active. A fault can be divided into two types depending
on the fault duration: temporary and permanent. For a temporary fault, the error remains active for a short
period, such as a single clock cycle, while a permanent fault remains active for the entire duration of the
operation.

3) The number of faults indicates the count of bits influenced by the fault injection process. The length of
affected bits varies from a single bit to multiple bytes.

4) The precision of fault, indicating the ability to control the timing and the intended target of the fault, can
be categorized into three types according to the degree of precision: precise, moderate, and no control. In
the first type, the attacker can induce an error into a specific target at a specific time. In the second type,
the attacker can moderately control the fault target and timing; e.g., it can inject fault in a specific byte but
does not have control over the specific bits in the given byte. In the third type, the attacker cannot control
the fault target and timing.

Existing fault attacks on Grain-128AEAD
Several recent studies have performed a series of fault analyses against Grain-128AEAD. In one of these works,
a bit-flipping attack, a probabilistic random fault attack, and a deterministic random fault attack were imple-
mented to recover the internal state of the cipher. We discuss these attacks briefly below.

Bit-flipping fault attack
A bit-flipping fault attack is a side-channel attack that complements the target register bit by injecting a fault.
Salam et al. [4] applied a bit-flipping fault attack on Grain-128AEAD.This aspect of their work investigated the
existence of unique quadratic terms in the keystream outputs. Consider the output function 𝑧0, expressed as:

𝑧0 = 𝑠93 ⊕ 𝑏12𝑠8 ⊕ 𝑠13𝑠20 ⊕ 𝑏95𝑠43 ⊕ 𝑠60𝑠79 ⊕ 𝑏12𝑏95𝑠94 ⊕ 𝑏2 ⊕ 𝑏15 ⊕ 𝑏36 ⊕ 𝑏45 ⊕ 𝑏64 ⊕ 𝑏73 ⊕ 𝑏89, (12)

where the monomial 𝑠13𝑠20 is a unique quadratic term in the fault-free pre-output 𝑧0. This enables the recovery
of 𝑠13 by complementing the content of 𝑠20, and vice versa. Applying this approach to the different keystream
polynomials of Grain-128AEAD, this work managed to recover 128 LFSR bits and 95 NFSR bits with a data
complexity of 27.88.

Probabilistic random fault attack
A probabilistic random fault attack is applied when the attacker cannot conclusively determine whether the
value of the faulty register has been complimented, i.e., the effect of the fault is random. In the research by
Salam et al. [4], several distinct cases are considered when a register 𝑠𝑖 is injected by a fault for which the impact
of the fault is unknown. Consider the fault target register appears as a linear term in the fault-free keystream 𝑧𝑖 .
By XOR-ing the fault-free keystream 𝑧𝑖 and the faulty keystream 𝑧′𝑖 , the output differential 𝛿𝑖 can be calculated
by

𝛿𝑖 = 𝑧𝑖 ⊕ 𝑧′𝑖 (13)

By observing the output differential 𝛿𝑖 = 1, the impact of the fault is conclusive; i.e., certain that the target reg-
ister contents are complemented. However, the fault impact cannot be confirmed when 𝛿𝑖 = 0. This finding
suggests that if the fault is injected into the same target register several times, the impact of the injected fault
can be concluded with a high probability. The probability of conclusively determining the impact of the fault
is higher when more faults are injected into the target register. This work [4] indicates that the probability ap-
proaches 99.99% when injecting more than six faults. The data complexity of the applied probabilistic random
fault model is 211.60.

http://dx.doi.org/10.20517/jsss.2023.42


Page 67 Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42

Deterministic random fault attack
The deterministic random fault attack [4] is carried out on attack models with three different levels of control
precision. A simple example is used to illustrate the idea. Notice that 𝑠93 in Equation (12) is a unique linear
term. Let 𝑧′0 represent the faulty keystream resulting from a fault 𝑒 at time 𝑡 = 0, as given in

𝑧′0 = (𝑠93 ⊕ 𝑒) ⊕ 𝑏12𝑠8 ⊕ 𝑠13𝑠20 ⊕ 𝑏95𝑠43 ⊕ 𝑠60𝑠79 ⊕ 𝑏12𝑏95𝑠94 ⊕ 𝑏2 ⊕ 𝑏15 ⊕ 𝑏36 ⊕ 𝑏45 ⊕ 𝑏64 ⊕ 𝑏73 ⊕ 𝑏89 (14)

Then, the value of the fault 𝑒, which can be determined by XOR-ing Equations (12) and (14), is calculated by

𝛿0 = 𝑧0 ⊕ 𝑧′0
= 𝑠93 ⊕ (𝑠93 ⊕ 𝑒)
= 𝑒. (15)

The unique linear term in the equation is targeted by the fault model and can be determined by calculating the
first-order derivative of the keystream equations with respect to the LFSR register 𝑠𝑖 or the NFSR register 𝑏𝑖 ,
with 0 ≤ 𝑖 ≤ 127, as given in

𝜕𝑧 𝑗

𝜕𝑠𝑖
= 1 𝑜𝑟

𝜕𝑧 𝑗

𝜕𝑏𝑖
= 1 (16)

With this approach, a list of the output indices can be generated and used to compute the value of the random
fault for Grain-128AEAD. Accordingly, once the fault is determined to complement the target register, the
corresponding equations with the unique quadratic terms (bit-flipping) are used to recover specific state bit(s).

As previously stated, three varying degrees of precision control are considered in these attacks: precise, moder-
ate, and no control. From the results of precise control, it was concluded that an average of two faults is needed
to complement a specific target register. The average number of required faults for this approach is 200, with
a data complexity of 28.88. In the moderate control, the fault was injected in a 1-byte array, assuming that the
injected fault could affect any registers within that byte array. Applying this approach to all the 128-bit LFSR
and 128-bit NFSR, the entire internal state of LFSR and 24 NFSR register bits can be identified with a data
complexity of 211.69. For the no-control approach, the fault is injected at a random location within the LFSR
and at any time. In their study, the no-control model was shown to be infeasible in recovering the LFSR and
required further investigation.

IMPROVED FAULT ATTACKS ON GRAIN-128AEAD
We consider possible extensions and improvements for the differential fault attacks based on the research
by Salam et al. [4]. We investigated and implemented a moderate control model to a more relaxed degree.
Moderate control refers to the assumption in which an attacker can introduce the error in a particular byte
array, where the error can affect any of the bits in that byte array. We considered two scenarios: i) injecting
faults within a two-byte array and ii) injecting faults within a four-byte array.

Inject a fault within two consecutive bytes
Instead of focusing on a single byte, this study first assumes the injection of a random fault to two consecutive
bytes. The 128-bit LFSR and NFSR are grouped into eight arrays, each consisting of sixteen register bits. For
example, 𝑠0, . . . , 𝑠15 are grouped into 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1, and 𝑏0, . . . , 𝑏15 are grouped into 𝐵𝑏𝑦𝑡𝑒0&𝐵𝑏𝑦𝑡𝑒1. In this
moderate control case, this study will have to observe multiple output differentials to confirm whether all the
target registers within the two consecutive bytes array have been affected by the injected fault. The study by
Salam et al. indicated that it is required to observe 425 keystreams in order to confirm that all the LFSR registers
are affected by the random fault 𝑒, and in Table 3, the total number of keystream indices required is 361 for all
the two-byte arrays.

http://dx.doi.org/10.20517/jsss.2023.42


Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42 Page 68

Table 3. List of keystream indices required and the number of output indices for each two-byte array

Two-byte Output indices Quantity

𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100

34

𝑆𝑏𝑦𝑡𝑒2&𝑆𝑏𝑦𝑡𝑒3 44, 46, 48, 52, 54, 56, 58, 60, 66, 68, 70, 72, 74, 78, 80, 82, 86, 90, 94, 96, 98, 100, 102, 104, 106, 108,
114, 116

28

𝑆𝑏𝑦𝑡𝑒4&𝑆𝑏𝑦𝑡𝑒5 34, 36, 38, 40, 42, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102,
104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 130, 132, 134, 136, 138

42

𝑆𝑏𝑦𝑡𝑒6&𝑆𝑏𝑦𝑡𝑒7 44, 46, 48, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 112, 114, 116, 118, 120, 122,
124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154

41

𝑆𝑏𝑦𝑡𝑒8&𝑆𝑏𝑦𝑡𝑒9 36, 40, 64, 82, 84, 86, 88, 90, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 126,
128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 152, 154, 156, 158, 160, 162

40

𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11 0, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92,
98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142,
144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178

68

𝑆𝑏𝑦𝑡𝑒12&𝑆𝑏𝑦𝑡𝑒13 2, 6, 10, 14, 34, 38, 42, 46, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 78, 92, 96, 98, 100, 102, 104,
106, 108, 110, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 136, 154, 158, 160, 162, 164, 166, 168, 170, 172,
174, 182, 186, 190, 194

56

𝑆𝑏𝑦𝑡𝑒14&𝑆𝑏𝑦𝑡𝑒15 18, 20, 22, 24, 26, 28, 30, 32, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 84, 86, 88, 92,
94, 96, 108, 110, 128, 130, 132, 138, 146, 150, 152, 154, 170, 172, 174, 192, 198, 200, 202, 204, 206, 208,
210, 212

52

Figure 2. Output indices to determine the target registers in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1 (duplicated values are presented in matching colors).

Determining required single output index to confirm the effect of random fault
To further reduce the data complexity, this study obtains single or multiple output keystream bits that may
be used to conclusively determine the impact on the fault for any target register. The first step is eliminating
the duplicated output indices in two bytes because observing output indices with duplicated values can only
conclude an ambiguous result. In Figure 2, all the output indices that output a differential of 1 for each register
in 𝑆𝑏𝑦𝑡𝑒0 and 𝑆𝑏𝑦𝑡𝑒1 are listed. The duplicated output indices are in matching colors, and the unique output
indices are not colored. Suppose that a fault is injected into a random register in 𝑆𝑏𝑦𝑡𝑒0 and 𝑆𝑏𝑦𝑡𝑒1, and it can
be observed fromFigure 2 that when 𝛿34 = 1, the faultmay be injected at 𝑠0 or 𝑠7. After removing the duplicated
values, every output index of 𝑠1, 𝑠3, 𝑠5, 𝑠7, 𝑠9, 𝑠10, 𝑠11, 𝑠13 and 𝑠15 is removed, leaving no keystream indices
to identify the impact of the fault. After the same approach is performed on all eight LFSR two-byte arrays, it
was observed that in every array, a similar situation occurs where some output indices of a target register are
duplicated and eliminated. The next step is to determine whether it is possible to recover the fault location
using a single output differential, 𝛿 𝑗 . To do this, we experimented on each LFSR two-byte array, as given in

http://dx.doi.org/10.20517/jsss.2023.42


Page 69 Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42

Figure 3. Number of times 𝛿 𝑗 = 1 for registers in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1 in 100 tests (values of the number of times = 100 are colored in green and
0 < 𝑣𝑎𝑙𝑢𝑒𝑠 < 100 are colored in red).

Algorithm 1. For each register in each two-byte array, the output polynomials are tested for 100 random initial
key-IV pairs. The output differentials between the faulty and fault-free keystreams for each keystream round
(0 ≤ 𝑗 ≤ 199) are then calculated, and the number of times when 𝛿 𝑗 = 1 in 100 tests is recorded.

Algorithm 1: Determining the number of times when 𝛿 𝑗 = 1 for each target register
Require :Target register 𝑅𝑡 in two consecutive bytes and the corresponding output indices 𝑧 𝑗 of the two

bytes
For 𝑅𝑡 do

Initialized an array of the size of the number of total required keystream bits, 𝑟𝑒𝑠𝑢𝑙𝑡 = [0, ..., 0];
For 𝑖 = 0 to 100 do

Initialize Grain-128AEAD with a random initial state;
Reinitialize with random initial states where faulty register = 𝑅𝑡 ;
For 𝑗 do

Generate the fault-free keystream bit, 𝑧 𝑗 ;
Generate the faulty keystream bit, 𝑧′𝑗 ;
𝛿 𝑗 = 𝑧 𝑗 ⊕ 𝑧′𝑗 ;
If 𝛿 𝑗 = 1 then

𝑟𝑒𝑠𝑢𝑙𝑡 [𝑖]+ = 1;
end

end
end

end

As an example, Figure 3 shows the result obtained from Algorithm 1 using registers in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1, i.e., the
number of times for each register in the two-byte array where 𝛿 𝑗 = 1 in 100 random experiments. For better
observation of the data representation, the cells with values equal to 100 are highlighted in green, while cells
with values between 0 and 100 are highlighted in red. This experiment shows that we cannot determine the
fault target by observing a single output differential, as the signature is not always unique in the given byte
array. For instance, when 𝛿50 = 1, the fault could be applied at 𝑠2, 𝑠9, and 𝑠12. This is because, in 100 tests, a

http://dx.doi.org/10.20517/jsss.2023.42


Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42 Page 70

Figure 4. Number of times 𝛿 𝑗 = 1 for registers in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1 in 100 tests with duplicated output differentials (values of the number of
times = 100 are colored in green, and 0 < 𝑣𝑎𝑙𝑢𝑒𝑠 < 100 are colored in red).

fault injected at 𝑠12 leads to 𝛿50 = 1 for 100 times, while 42 times at 𝑠2 and 53 times at 𝑠9 for 𝛿50 = 1. The result
of this experiment clearly indicates that it is infeasible to conclusively determine the target location in LFSR
two-byte arrays using a single-bit keystream differential.

Then, attempting to gain a clearer conclusion, the experiment is extended by not removing the duplicated
values in Figure 2 and using Algorithm 1. The results obtained are shown in Figure 4. We observe that
although the output differential injected with a fault may be applied to only two registers, it is still impossible
to indicate the fault location conclusively. For example, when 𝛿58 = 1, the fault could be applied at 𝑠4 and 𝑠10.
This is because, in 100 tests, a fault injected at 𝑠4 leads to 𝛿58 = 1 for 100 times, while 50 times at 𝑠10. Hence,
the fault location in LFSR two-byte arrays cannot be determined by observing a single output index only.

Determining required pairs of keystream indices to confirm the effect of random fault
Another experiment was conducted to determine the unique pairs of output keystream bits that can conclu-
sively establish if the injected fault affects a target register. For this, in each register of the two-byte array, all
the possible pairs of keystream indices were generated first. For example, pairs of differentials can be formed
from the output indices array of register 𝑠1 as (𝛿64, 𝛿76), (𝛿64, 𝛿82), (𝛿76, 𝛿82).

The pair combination of output indices for each register in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1 is shown in Figure 5. The duplicated
values are highlighted in matching colors. It can be seen that when 𝛿34 = 𝛿70 = 1, the potential faulty registers
are 𝑠0 and 𝑠7. To further locate the injected fault, the duplicated pairs should be removed. Then, an experiment
is conducted to determine the possibility of identifying the fault location using the differentials of the unique
pairs of output keystream indices. This experiment aims to identify the conditions under which the faulty
register can be decisively determined. Similar to the previous experiment, 100 tests are run with a random
initial state for each register in the two-byte array and the number of times where the output differential 𝛿 𝑗 = 1
is recorded. The algorithm applied is similar to Algorithm 1. The difference is that the output is grouped into
output indices pairs formed from the array of output indices according to the register.

Figure 6 presents the results obtained from the experiment with differential pairs of output indices for the
target register 𝑠0. The experiment shows that if a fault is injected into a random register within 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1
and 𝛿34 = 𝛿38 = 𝛿54 = 𝛿66 = 1 is observed, it can be concluded that the register 𝑠0 is affected by the fault. This
is because no other faulty registers in 𝑆𝑏𝑦𝑡𝑒0 ∩ 𝑆𝑏𝑦𝑡𝑒1 produce (𝛿34 = 𝛿38) = (1, 1) or (𝛿34 = 𝛿54) = (1, 1) or
(𝛿54 = 𝛿66) = (1, 1).

http://dx.doi.org/10.20517/jsss.2023.42


Page 71 Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42

Figure 5. Pairs of output keystream indices to determine the target registers in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1 (Duplicated pairs are presented in matching
colors).

Figure 6. Number of times where 𝛿𝑖 = 𝛿 𝑗 = 1 for each register in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1. The unique pairs of output indices listed here are for target
register 𝑠0. Pairs with both values equivalent to 100 are highlighted in green, while those greater than 0 and less than 100 are highlighted
in red.

Generally, these conclusive pairs of output differentials can be obtained by examining the table columns where
no other faulty target results in 𝛿𝑖 = 𝛿 𝑗 = 1, i.e., by observing table columns with only green-colored cells.
Carrying out the experiment for all the sixteen registers in 𝑆𝑏𝑦𝑡𝑒0 and 𝑆𝑏𝑦𝑡𝑒1 using the output indices, the
conclusive pairs for each register are directly obtained except for 𝑠1, 𝑠3, 𝑠5, 𝑠7, 𝑠9, 𝑠11, 𝑠13 and 𝑠15. Table 4
shows the conclusive pairs of output differentials for the sixteen registers in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1.

Table 4 indicates that it is infeasible to obtain conclusive pairs of output differentials for registers 𝑠1, 𝑠3, 𝑠5, 𝑠7, 𝑠9,
𝑠11, 𝑠13 and 𝑠15 with the unique pair of output indices. This is because the unique pairs of these target registers
do not produce similar results, as shown in Figure 6, where there is no single column with only green-colored
cells. Take 𝑠1 as an example; the result produced using the unique pairs of 𝑠1 in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1 are displayed

http://dx.doi.org/10.20517/jsss.2023.42


Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42 Page 72

Table 4. Required output differential pairs (𝛿𝑖 , 𝛿 𝑗) for all registers in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1

Target register Pairs of output differentials (𝛿𝑖 , 𝛿 𝑗)

𝑠0 (34, 38), (34, 54), (54, 66)
𝑠1 No unique output differential pair
𝑠2 (36, 40), (36, 56), (56, 68)
𝑠3 No unique output differential pair
𝑠4 (38, 42), (38, 58)
𝑠5 No unique output differential pair
𝑠6 (40, 44), (40, 60)
𝑠7 No unique output differential pair
𝑠8 (42, 46), (42, 62)
𝑠9 No unique output differential pair
𝑠10 (44, 48), (44, 64)
𝑠11 No unique output differential pair
𝑠12 (46, 50)
𝑠13 No unique output differential pair
𝑠14 (48, 52)
𝑠15 No unique output differential pair

Figure 7. Number of times where 𝛿𝑖 = 𝛿 𝑗 = 1 for each register in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1. The unique pairs of output keystream indices listed here are
for target register 𝑠1. Pairs with both values equivalent to 100 are highlighted in green, while those greater than 0 and less than 100 are
highlighted in red.

in Figure 7. It can be observed that no clear indication of pairs can conclusively determine the location of the
faulty register. For instance, when 𝛿64 = 𝛿82 = 1, the faulty register may be 𝑠0, 𝑠1, or 𝑠10. The same situation
appears in pair (𝛿76, 𝛿82). Since no columns contain only the green-colored cell, there are no conclusive pairs
of output indices for the register 𝑠1. The same case happens to register 𝑠1, 𝑠3, 𝑠5, 𝑠7, 𝑠9, 𝑠11, 𝑠13 and 𝑠15.

Determining required conditions to confirm the effect of random fault
After conducting the above-mentioned set of experiments for all the registers in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1, it can be ob-
served that a particular register is affected by the fault if several conditions are satisfied. Figure 7 shows that
when 𝛿64 = 𝛿82 = 1, there are three possible fault registers, 𝑠0, 𝑠1, or 𝑠10. However, in Table 4, the conclusive
pairs that can determine 𝑠0 or 𝑠10 being injected with the fault can be found by observing if 𝛿34 = 𝛿38 = 𝛿54 =
𝛿66 = 1 and 𝛿44 = 𝛿48 = 𝛿64 = 1, respectively. Hence, (𝛿34 ≠ 1 or 𝛿38 ≠ 1 or 𝛿54 ≠ 1 or 𝛿66 ≠ 1) and (𝛿44 ≠ 1
or 𝛿48 ≠ 1 or 𝛿64 ≠ 1) imply that 𝑠0 and 𝑠10 are not injected with the fault. Furthermore, if 𝛿64 = 𝛿82 = 1, it
can be concluded that 𝑠1 is the register injected with the fault. Similarly, the conditions that should be satisfied
to determine whether the registers 𝑠3, 𝑠5, 𝑠7, 𝑠9, 𝑠11, 𝑠13 and 𝑠15 are the faulty register can be concluded. The
summary of the conditions is provided in Table 5.

http://dx.doi.org/10.20517/jsss.2023.42


Page 73 Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42

Table 5. Required output differential pairs (𝛿𝑖 , 𝛿 𝑗) for all registers in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1

Target register Keystream condition

𝑠0 𝛿34 = 𝛿38 = 1

𝑠1 (𝛿34 , 𝛿38 ) ≠ (1, 1), and (𝛿44 , 𝛿48 ) ≠ (1, 1), and 𝛿64 = 𝛿82 = 1

𝑠2 𝛿36 = 𝛿40 = 1

𝑠3 (𝛿34 , 𝛿38 ) ≠ (1, 1), and (𝛿36 , 𝛿40 ) ≠ (1, 1), and (𝛿42 , 𝛿46 ) ≠ (1, 1), and (𝛿46 , 𝛿50 ) ≠ (1, 1), and 𝛿64 = 𝛿68 = 1

𝑠4 𝛿38 = 𝛿42 = 1

𝑠5 (𝛿34 , 𝛿38 ) ≠ (1, 1), and (𝛿64 , 𝛿82 ) ≠ (1, 1), and (𝛿36 , 𝛿40 ) ≠ (1, 1), and (𝛿38 , 𝛿42 ) ≠ (1, 1), and (𝛿42 , 𝛿46 ) ≠ (1, 1), and (𝛿44 , 𝛿48 ) ≠ (1, 1), and
(𝛿48 , 𝛿52 ) ≠ (1, 1), and 𝛿68 = 𝛿86 = 1

𝑠6 𝛿40 = 𝛿44 = 1

𝑠7 (𝛿34 , 𝛿38 ) ≠ (1, 1), and (𝛿64 , 𝛿82 ) ≠ (1, 1), and (𝛿36 , 𝛿40 ) ≠ (1, 1), and (𝛿42 , 𝛿46 ) ≠ (1, 1), and 𝛿34 = 𝛿82 = 1

𝑠8 𝛿42 = 𝛿46 = 1

𝑠9 (𝛿36 , 𝛿40 ) ≠ (1, 1), and (𝛿64 , 𝛿68 ) ≠ (1, 1), and (𝛿38 , 𝛿42 ) ≠ (1, 1), and (𝛿44 , 𝛿48 ) ≠ (1, 1), and 𝛿36 = 𝛿84 = 1

𝑠10 (𝛿44 , 𝛿48 ) = (1, 1)

𝑠11 (𝛿34 , 𝛿38 ) ≠ (1, 1), and (𝛿38 , 𝛿42 ) ≠ (1, 1), and (𝛿68 , 𝛿86 ) ≠ (1, 1), and (𝛿40 , 𝛿44 ) ≠ (1, 1), and (𝛿46 , 𝛿50 ) ≠ (1, 1), and 𝛿38 = 𝛿92 = 1

𝑠12 (𝛿46 , 𝛿50 ) = (1, 1)

𝑠13 (𝛿36 , 𝛿40 ) ≠ (1, 1), and (𝛿40 , 𝛿44 ) ≠ (1, 1), and (𝛿34 , 𝛿82 ) ≠ (1, 1), and (𝛿42 , 𝛿46 ) ≠ (1, 1), and (𝛿48 , 𝛿52 ) ≠ (1, 1), and 𝛿40 = 𝛿94 = 1

𝑠14 (𝛿48 , 𝛿52 ) = (1, 1)

𝑠15 (𝛿38 , 𝛿42 ) ≠ (1, 1), and (𝛿42 , 𝛿46 ) ≠ (1, 1), and (𝛿36 , 𝛿84 ) ≠ (1, 1), and (𝛿44 , 𝛿48 ) ≠ (1, 1), and 𝛿42 = 𝛿96 = 1

After implementing this experiment on all eight two-byte arrays, the conditions required to confirm the target
registers are determined for 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1 and 𝑆𝑏𝑦𝑡𝑒2&𝑆𝑏𝑦𝑡𝑒3, but for the remaining six, some target registers
cannot be conclusively determined; one example is 𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11, where no target registers can be deter-
mined.

Determining required combinations of output indices to confirm the effect of random fault
To further investigate the conditions used to confirm all the registers in the remaining six two-byte arrays,
instead of using pairs, a combination of all the unique output indices of the corresponding register is generated
and used to further determine the faulty register. The process is similar to Algorithm 1, but the output pairs
are replaced with a list of all unique output differentials of the register. As determined by Algorithm 2, arrays
are declared to store the result of all the registers in the two-byte array of the 100-round tests. The experiment
is carried out on every two consecutive bytes of LFSR.

For example, Figure 8 presents the results of the experiment conducted using all the combinations of output
indices for register 𝑠82 in 𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11. The outcomes illustrate that if a random register in 𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11
is subjected to a fault, and 𝛿46 = 𝛿82 = 𝛿104 = 𝛿116 = 𝛿136 = 𝛿148 = 𝛿168 = 1 is observed, then it can be
inferred that 𝑠82 is affected by the fault. This is due to the absence of any other faulty register that can produce
(𝛿46, 𝛿82,𝛿104, 𝛿116, 𝛿136, 𝛿148, 𝛿168) = (1, 1, 1, 1, 1, 1, 1) in 100 out of 100 tests. However, we observed that the
signatures generated through this experiment are insufficient to precisely determine the fault locations for all
the sixteen target registers in 𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11. For example, Figure 9 indicates that when 𝛿44 = 𝛿102 = 𝛿114 =
𝛿118 = 𝛿134 = 𝛿146 = 𝛿150 = 𝛿166 = 1, the fault might have been injected either at 𝑠80 or 𝑠87.

Figure 10 demonstrates that for the target register 𝑠81 in 𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11, although the combination of output
indices equals one for 𝑠81 and 𝑠82, it only appears to 𝑠81 where the combined output indices are equal to one in
the same round test. Here, the same round test refers to all the corresponding differentials being simultaneously
one for the unique combinations of 𝑠81 or 𝑠82. Hence, the target register 𝑠81 can be determined using the result
of the combined output indices.

http://dx.doi.org/10.20517/jsss.2023.42


Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42 Page 74

Algorithm 2:Determine the number of times when combined unique output indices result in a differential
of one for each register in Grain-128AEAD
Require :Register 𝑅𝑡 in two consecutive bytes and the corresponding output indices 𝑧 𝑗 of the two bytes
For 𝑅𝑡 do

Initialize an array of the size of the number of total required keystream bits of the byte,
𝑟𝑒𝑠𝑢𝑙𝑡 = [0, ..., 0];

Declare an empty array to store the result of 100 rounds of test results for all registers,
𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 = [];

Declare an empty array as the sub-array of 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 to store the single round test results for all
registers, 𝑠𝑖𝑛𝑔𝑙𝑒_𝑡𝑒𝑠𝑡 = 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙;

For 𝑖 = 0 to 100 do
Initialize 𝑠𝑖𝑛𝑔𝑙𝑒_𝑡𝑒𝑠𝑡 of the size of the number of total required keystream bits of the two-byte
array filled with zeros, 𝑠𝑖𝑛𝑔𝑙𝑒_𝑡𝑒𝑠𝑡 = [0, ..., 0];

Initialize Grain-128AEAD with a random initial state;
Reinitialize with random initial states where faulty register = 𝑅𝑡 ;
For 𝑗 do

Generate the fault-free keystream bit, 𝑧 𝑗 ;
Generate the faulty keystream bit, 𝑧′𝑗 ;
𝛿 𝑗 = 𝑧 𝑗 ⊕ 𝑧′𝑗 ;
If 𝛿 𝑗 = 1 then

𝑟𝑒𝑠𝑢𝑙𝑡 [𝑖]+ = 1;
𝑠𝑖𝑛𝑔𝑙𝑒_𝑡𝑒𝑠𝑡 [𝑖]+ = 1;

end
end

end
end

Figure 8. All unique output indices for register 𝑠82 are combined. The table illustrates the differentials of these combinations for each target
register in 𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11 (all values equal to 100 are colored in green).

Figure 11 shows the number of times where the differentials 𝛿𝑖 = 𝛿 𝑗 = 1 for each register in 𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11.
The unique combination of output indices listed here is for target register 𝑠80. As Figure 11 shows, using only
the combined output indices, it is impossible to determine whether 𝑠80 is the faulty register, as the combined
output indices are equal to one for both 𝑠80 and 𝑠87. However, applying this approach to all sixteen registers

http://dx.doi.org/10.20517/jsss.2023.42


Page 75 Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42

Figure 9. All unique output indices for register 𝑠80 are combined. The table illustrates the differentials of these combinations for each target
register in 𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11 Differential combinations with all values equal to 100 are colored in green, and combinations with all values larger
than 0 and less than 100 are colored in red.

Figure 10. Number of counts for which all the combinations of unique differentials are one for each register in 𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11 in the 100
random tests. The unique combination of output indices listed here is for target register 𝑠81. Differential combinations with all values equal
to 100 are highlighted in green, and combinations with all values larger than 0 and less than 100 are highlighted in red.

in 𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11, we may infer the condition for identifying the target register 𝑠80 when all the unique out-
put differentials of 𝑠80 are one while at least one of the unique output differentials of 𝑠87 is zero. Therefore,
the condition for the injected fault to be located at 𝑠80 is given by (𝛿40, 𝛿72, 𝛿104, 𝛿114, 𝛿134, 𝛿146, 𝛿162, 𝛿168) ≠
(1, 1, 1, 1, 1, 1, 1, 1), i.e., excluding the condition for 𝑠87, and (𝛿44 = 𝛿102 = 𝛿114 = 𝛿118 = 𝛿134 = 𝛿146 = 𝛿150 =
𝛿166 = 1), where 𝛿𝑖 represents the 𝑖𝑡ℎ output index.

After conducting the above approach to all the registers in the last six two-byte arrays, the injected faulty
target can be located for the majority of the registers. However, there still exists a situation where a few target
registers cannot be determined due to insufficient conditions. Then, the probability of successfully determining
the remaining faulty register is calculated based on the experiment results of the combined output indices, as

http://dx.doi.org/10.20517/jsss.2023.42


Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42 Page 76

Figure 11. Number of counts for which all the combinations of unique differentials are one for each register in 𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11 in the 100
random tests. The unique combination of output indices listed here is for target register 𝑠80. Differential combinations with all values equal
to 100 are highlighted in green, and combinations with all values greater than 0 and less than 100 are highlighted in red.

given in

𝑃(𝑠𝑖) =
𝑚

𝑚 + 𝑛
× 100, for 0 ≤ 𝑖 ≤ 127, (17)

where 𝑃(𝑠𝑖) is the probability of determining the faulty register 𝑠𝑖 , and 𝑚 and 𝑛 stand for the number of times
the faulty register and other registers equal one for the combined output indices in the same test round. For
these experiments, we used the threshold of 100 random tests similar to the threshold value used in previous
works. A larger threshold value enables us to estimate the probability more precisely; however, this also slows
down the experimental process. To identify the fault target, we have included all the unique output signatures
for a given target register. Hence, using the 100 tests to identify the target register is reasonable, given that
all the respective output indices resulting in a differential of 1 in the same round test are negligible. In our
experiments, if the probability of locating the fault is higher than 95%, then we consider that the fault target
can be determined with a high probability. By implementing these approaches to all eight two-byte arrays in
the LFSR, we can determine the required conditions to confirm which target registers in LFSR are injected
with a fault. The details of the required keystreams to be observed and the conditions to be satisfied are listed
in tables in Appendix A.

Summarizing required conditions to confirm the effect of random fault
Themethod employed in this work reduces the number of output indices that need to be observed to identify
the target register in the LFSR. For example, based on earlier observations, the output differentials required to
be observed for identifying the fault targets in 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1 are 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 64, 68, 82,
84, 86, 92, 94, and 96. Applying this method to all the eight two-byte arrays, we get the output indices required
for the entire LFSR. The total number of required keystream bits for every two-byte array is calculated based
on the tables in Appendix A. Table 6 shows the number of keystream bits that need to be observed in each
two-byte array to confirm whether the register is affected by the injected fault.

Inject a fault within four consecutive bytes
To further relax the moderate control precision, instead of focusing on two consecutive bytes, we also investi-
gated the injection of a random fault that affects a randomly chosen single register from a collection of thirty-
two registers, i.e., four consecutive bytes: 𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1&𝑆𝑏𝑦𝑡𝑒2&𝑆𝑏𝑦𝑡𝑒3, · · · , 𝑆𝑏𝑦𝑡𝑒12&𝑆𝑏𝑦𝑡𝑒13&𝑆𝑏𝑦𝑡𝑒14&𝑆𝑏𝑦𝑡𝑒15.
Similar to the experiments in the prior sections that have been carried out on the eight two-byte arrays, a series
of experiments are implemented on the four four-byte arrays, including:

1. Confirming the required single output indices, to eliminate the duplicated output indices in four bytes to

http://dx.doi.org/10.20517/jsss.2023.42
https://oaepublishstorage.blob.core.windows.net/1d76cf69-9097-4ecd-8b02-88c57443cc8f/jsss4042-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/1d76cf69-9097-4ecd-8b02-88c57443cc8f/jsss4042-SupplementaryMaterials.pdf


Page 77 Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42

Table 6. List of keystream indices required for the attack and the number of output indices for two-byte arrays

Two-byte Output indices

𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1

(18 indices)
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 64, 68, 82, 84, 86, 92, 94, 96

𝑆𝑏𝑦𝑡𝑒2&𝑆𝑏𝑦𝑡𝑒3

(21 indices)
44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 80, 82, 84, 98, 100, 108, 110, 112

𝑆𝑏𝑦𝑡𝑒4&𝑆𝑏𝑦𝑡𝑒5

(38 indices)
38, 40, 42, 60, 62, 66, 67, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118,
120, 122, 130, 132, 134, 136, 138

𝑆𝑏𝑦𝑡𝑒6&𝑆𝑏𝑦𝑡𝑒7

(44 indices)
48, 50, 52, 54, 56, 58, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 112, 114, 116, 118, 120, 122, 124, 126,
128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154

𝑆𝑏𝑦𝑡𝑒8&𝑆𝑏𝑦𝑡𝑒9

(45 indices)
34, 36, 38, 40, 42, 60, 62, 64, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 103, 104, 106, 108, 110, 112, 114, 116, 120, 122, 124,
126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 152, 154, 156, 158, 160

𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11

(71 indices)
0, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 98, 100, 102,
104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156,
158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180

𝑆𝑏𝑦𝑡𝑒12&𝑆𝑏𝑦𝑡𝑒13

(76 indices)
2, 4, 6, 8, 10, 12, 14, 16, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 92, 94, 96,
98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 154, 156, 158, 160, 162, 164,
166, 168, 170, 172, 174, 176, 182, 184, 186, 188, 190, 192, 194, 196

𝑆𝑏𝑦𝑡𝑒14&𝑆𝑏𝑦𝑡𝑒15

(75 indices)
18, 20, 22, 24, 26, 28, 30, 32, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 108,
110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 170, 172, 174, 176, 178,
180, 182, 184, 186, 188, 190, 192, 198, 200, 202, 204, 206, 208, 210, 212

avoid ambiguous results;
2. Confirming the required pairs of output indices, where duplicated pairs will be removed to further deter-

mine the fault location;
3. Determining the required combinations of output indices to confirm the effect of the random injected fault.

To further investigate the conditions used to confirm all the registers in the four-byte arrays, a combination
of all the unique output indices is used instead of pairs. The probabilistic approach is used to identify the
fault target registers that cannot be determined using deterministic signatures.

Applying this method to all the four-byte arrays, we obtained the total output indices required to be observed
for identifying the fault targets. The probability is calculated for the target registers that cannot be directly
determined. If the probability is greater than 95%, we consider the inaccuracy to be negligible, and the target
register can be determined in such a case with high probability. If the probability is less than 95%, the prob-
ability is used to represent the chances of targeting the register. Table 7 shows the output indices required to
be observed and the number of output indices for each four-byte array. The complete tables of the required
keystream bits to be observed and the conditions to be satisfied for fault injection for the four-byte precision
model are listed in tables in Appendix B.

Based on the experimental results, 96 target registers can be determined using the deterministic method, and
the rest 32 can be probabilistically represented. Hence, the faults injected into the LFSR can be determined,
and we conclude that a fault attack on Grain-128AED can also be applied with the four-byte moderate control
model.

CONCLUSION
In this work, we extended the DFA on Grain-128AEAD with two relaxed fault attack models: a two-byte
moderate control model and a four-byte moderate control model. Unlike the previous work, instead of every
single byte, the two-byte model focuses on every two consecutive bytes, and the four-byte model focuses on
every four consecutive bytes. The results of these attacks are promising and suggest that moderate control
models are feasible to identify the majority of the target registers with a high probability. The models used in
this paper are more practical to implement as they have more relaxed assumptions. The previous experimental

http://dx.doi.org/10.20517/jsss.2023.42
https://oaepublishstorage.blob.core.windows.net/1d76cf69-9097-4ecd-8b02-88c57443cc8f/jsss4042-SupplementaryMaterials.pdf


Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42 Page 78

Table 7. List of keystream indices required for the attack and the number of output indices for each four-byte array

Four-byte Output indices

𝑆𝑏𝑦𝑡𝑒0&𝑆𝑏𝑦𝑡𝑒1 &𝑆𝑏𝑦𝑡𝑒2&𝑆𝑏𝑦𝑡𝑒3

(38 indices)
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84,
86, 88, 90, 92, 94, 96, 98, 100, 104, 106, 110, 112

𝑆𝑏𝑦𝑡𝑒4&𝑆𝑏𝑦𝑡𝑒5 &𝑆𝑏𝑦𝑡𝑒6&𝑆𝑏𝑦𝑡𝑒7

(59 indices)
38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88,
90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134,
136, 138, 140, 142, 144, 146, 148, 150, 152, 154

𝑆𝑏𝑦𝑡𝑒8&𝑆𝑏𝑦𝑡𝑒9 &𝑆𝑏𝑦𝑡𝑒10&𝑆𝑏𝑦𝑡𝑒11

(75 indices)
0, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84,
86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130,
132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172,
174, 176, 178, 180

𝑆𝑏𝑦𝑡𝑒12&𝑆𝑏𝑦𝑡𝑒13 &𝑆𝑏𝑦𝑡𝑒14&𝑆𝑏𝑦𝑡𝑒15

(107 indices)
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56,
58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106,
108, 110, 112, 114, 116, 118, 120, 122, 123, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148,
150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190,
192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212

results show that Grain-128AEAD is vulnerable to a state recovery attack if an adversary can successfully
inject fault in the LFSR registers–therefore, the results reported in this work can be used to perform a
fault-based state recovery attack on Grain-128AEAD with a more relaxed fault model.

We note that the fault model used in this work may require more keystream bits compared to the single-byte
moderate control; however, the two models used in this work have a more relaxed assumption and, hence,
are more practical in implementation. It is worth noting that the designers of Grain-128AEAD did not claim
security against fault attacks, so the results reported in this article do not violate their security claims. These
findings highlight the importance of implementing proper physical protections to prevent fault attacks on
Grain-128AEAD.

We also note that when the control is relaxed even further to no control, it appears infeasible to recover any
bits, suggesting that additional investigation is needed. Therefore, future research could focus on applying
moderate control models to explore the feasibility of differential fault attacks using no control models. These
experiments could be conducted using a probabilistic approach, such as determining the likelihood that a
register is affected by fault injection based on output differentials. Additionally, since our experiments could
only recover the initial states of the cipher, future work could focus on investigating approaches for recovering
the secret key.

DECLARATIONS
Authors’ contributions
Made substantial contributions to the conception and design of the study and performed data analysis and
interpretation: Fang T, Salam I, Yau WC

Availability of data and materials
Not applicable.

Financial support and sponsorship
This work is supported by the Xiamen University Malaysia Research Fund under Grant XMUMRF/2022-
C9/IECE/0032.

Conflicts of interest
All authors declared that there are no conflicts of interest.

http://dx.doi.org/10.20517/jsss.2023.42


Page 79 Fang et al. J Surveill Secur Saf 2024;5:62-79 I http://dx.doi.org/10.20517/jsss.2023.42

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author(s) 2024.

REFERENCES
1. NIST Lightweight Cryptography Project. Available from: https://csrc.nist.gov/Projects/lightweight-cryptography.
2. Hell M, Johansson T, Meier W, Sönnerup J, Yoshida H. An AEAD variant of the grain stream cipher. In: Carlet C, Guilley S, Nitaj A,

Souidi EM, editors. Codes, Cryptology and Information Security. Cham: Springer International Publishing; 2019. pp. 55–71. DOI
3. HellM, Johansson T,MaximovA,MeierW, Yoshida H. Grain-128AEADv2: strengthening the initialization against key reconstruction. In:

Conti M, Stevens M, Krenn S, editors. Cryptology and Network Security. Cham: Springer International Publishing; 2021. pp. 24–41. DOI
4. Salam I, Ooi TH, Xue L, Yau WC, Pieprzyk J, et al. Random differential fault attacks on the lightweight authenticated encryption stream

cipher Grain-128AEAD. IEEE Access 2021;9:72568–86. DOI
5. Selmke B, Heyszl J, Sigl G. Attack on a DFA protected AES by simultaneous laser fault injections. In: 2016Workshop on Fault Diagnosis

and Tolerance in Cryptography (FDTC). IEEE; 2016. pp. 36–46. DOI
6. Trichina E, Korkikyan R. Multi fault laser attacks on protected CRT-RSA. In: 2010 Workshop on Fault Diagnosis and Tolerance in

Cryptography. IEEE; 2010. pp. 75–86. DOI
7. Skorobogatov S. Optical fault masking attacks. In: 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography. IEEE; 2010. pp.

23–29. DOI
8. Breier J, Hou X. How practical are fault injection attacks, really? IEEE Access 2022;10:113122–30. DOI
9. Hell M, Johansson T, Meier W. Grain: a stream cipher for constrained environments. Int J Wirel Mob Comput 2007;2:86–93. DOI
10. HellM, Johansson T,MaximovA,MeierW. A stream cipher proposal: Grain-128. In: 2006 IEEE International Symposium on Information

Theory. IEEE; 2006. pp. 1614–18. DOI
11. Ågren M, Hell M, Johansson T, Meier W. Grain-128a: a new version of Grain-128 with optional authentication. Int J Wirel Mob Comput

2011;5:48–59. DOI
12. Hell M, Johansson T, Maximov A, Meier W, Sönnerup J, et al. Grain-128AEADv2-A lightweight AEAD stream cipher. Available

from: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-s
pec-final.pdf.

13. Biham E, Shamir A. Differential fault analysis of secret key cryptosystems. In: Advances in Cryptology—CRYPTO’97: 17th Annual
International Cryptology Conference Santa Barbara, California, USA August 17–21, 1997 Proceedings 17. Springer; 1997. pp. 513–
25. DOI

14. Dey P, Rohit RS, Sarkar S, Adhikari A. Differential fault analysis on Tiaoxin and AEGIS family of ciphers. In: International Symposium
on Security in Computing and Communication. Springer; 2016. pp. 74–86. DOI

15. Salam I, Mahri HQA, Simpson L, Bartlett H, Dawson E, et al. Fault attacks on Tiaoxin-346. In: Proceedings of the Australasian Computer
Science Week Multiconference. Association for Computing Machinery; 2018. pp. 1–9. DOI

16. Bartlett H, Dawson E, Qahur Al Mahri H, Salam MI, Simpson L, et al. Random fault attacks on a class of stream ciphers. Secur Commun
Netw 2019;2019. DOI

17. Wong KKH, Bartlett H, Simpson L, Dawson E. Differential random fault attacks on certain CAESAR stream ciphers. In: International
Conference on Information Security and Cryptology. Springer; 2019. pp. 297–315. DOI

18. Dey P, Rohit RS, Adhikari A. Full key recovery of ACORN with a single fault. J Inf Secur Appl 2016;29:57–64. DOI
19. Salam I, Law KY, Xue L, Yau WC. Differential fault based key recovery attacks on TRIAD. In: International Conference on Information

Security and Cryptology. Springer; 2020. pp. 273–87. DOI
20. Karmakar S, Roy Chowdhury D. Fault analysis of Grain-128 by targeting NFSR. In: Progress in Cryptology–AFRICACRYPT 2011: 4th

International Conference on Cryptology in Africa, Dakar, Senegal, July 5-7, 2011. Proceedings 4. Springer; 2011. pp. 298–315. DOI
21. Sarkar S, Banik S, Maitra S. Differential fault attack against grain family with very few faults and minimal assumptions. IEEE Trans

Comput 2014;64:1647–57. DOI
22. Banik S, Maitra S, Sarkar S. A differential fault attack on the grain family under reasonable assumptions. In: Progress in Cryptology-

INDOCRYPT 2012: 13th International Conference on Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings 13.
Springer; 2012. pp. 191–208. DOI

23. Dey P, Chakraborty A, Adhikari A, Mukhopadhyay D. Improved practical differential fault analysis of Grain-128. In: 2015 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE; 2015. pp. 459–64. DOI

24. Baksi A, Bhasin S, Breier J, Jap D, Saha D. A Survey on Fault Attacks on Symmetric Key Cryptosystems. ACMComput Surv 2023;55:1-34.
DOI

http://dx.doi.org/10.20517/jsss.2023.42
https://csrc.nist.gov/Projects/lightweight-cryptography
http://dx.doi.org/10.1007/978-3-030-16458-4_5
http://dx.doi.org/10.1007/978-3-030-92548-2_2
http://dx.doi.org/10.1109/ACCESS.2021.3078845
http://dx.doi.org/10.1109/FDTC.2016.16
http://dx.doi.org/10.1109/FDTC.2010.14
http://dx.doi.org/10.1109/FDTC.2010.18
http://dx.doi.org/10.1109/ACCESS.2022.3217212
http://dx.doi.org/10.1504/IJWMC.2007.013798
http://dx.doi.org/10.1109/ISIT.2006.261549
http://dx.doi.org/10.1504/IJWMC.2011.044106
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/978-981-10-2738-3_7
http://dx.doi.org/10.1145/3167918.3167940
http://dx.doi.org/10.1155/2019/1680263
http://dx.doi.org/10.1007/978-3-030-40921-0_18
http://dx.doi.org/10.1016/j.jisa.2016.03.003
http://dx.doi.org/10.1007/978-3-030-68890-5_15
http://dx.doi.org/10.1007/978-3-642-21969-6_19
http://dx.doi.org/10.1109/TC.2014.2339854
http://dx.doi.org/10.1007/978-3-642-34931-7_12
http://dx.doi.org/10.7873/DATE.2015.0921
http://dx.doi.org/10.1145/3530054

	Introduction
	Grain128-AEAD Specification
	Fault Attack
	Existing fault attacks on Grain128-AEAD
	Bit-flipping fault attack
	Probabilistic random fault attack
	Deterministic random fault attack


	Improved Fault Attacks on Grain128-AEAD
	Inject a fault within two consecutive bytes
	Determining required single output index to confirm the effect of random fault
	Determining required pairs of keystream indices to confirm the effect of random fault
	Determining required conditions to confirm the effect of random fault
	Determining required combinations of output indices to confirm the effect of random fault
	Summarizing required conditions to confirm the effect of random fault

	Inject a fault within four consecutive bytes

	Conclusion
	Declarations
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright


