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Abstract
The reduced-activation high-entropy alloys (RAHEAs) have promising applications in advanced nuclear systems 
due to their low activation, excellent mechanical properties and radiation resistance. However, compared to the 
conventional high-entropy alloys (HEAs), the relatively small datasets of RAHEAs pose challenges for alloy design 
by using conventional machine learning (ML) methods. In this work, we proposed a framework by incorporating 
symbolic regression (SR) and domain adaptation to improve the accuracy of property prediction based on the small 
datasets of RAHEAs. The conventional HEA datasets and RAHEA datasets were classified as source and target 
domains, respectively. SR was used to generate features from element-based features in the source domains. The 
domain-invariant features related to hardness were captured and used to construct the ML model, which 
significantly improved the prediction accuracy for both HEAs and RAHEAs. The normalized root mean square error 
decreases by 24% for HEAs and 30% for RAHEAs compared to that of the models trained with element-based 
features. The proposed framework can achieve accurate and robust prediction on small datasets with interpretable 
domain-invariant features. This research paves the way for efficient material design under small dataset scenarios.
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INTRODUCTION
High-entropy alloys (HEAs)[1] are a new series of metallic materials of excellent mechanical[2,3], high 
temperature[4], and irradiation properties[5], making them promising candidate structural materials for 
nuclear applications. Unlike conventional alloys, HEAs consist of multi-principal components, with 
compositions ranging from 5% to 35% by atomic fraction, which introduced their unique core effects[6]. 
HEAs offer a broad compositional space for design, which makes the trial-and-error method almost 
impossible. Recently, machine learning (ML) has been proven to be an effective approach for structure and 
property prediction[7-12], thereby accelerating HEA design. The current HEA datasets usually contain 
hundreds of samples[13,14], with high-dimension features[8,9,15]. These characteristics lead to sparse and 
imbalanced data distribution, ultimately affecting the model performance. Besides, typical HEAs contain 
neutron activation elements, such as Co and Nb, which must be strictly controlled for nuclear fusion 
applications[16]. Reduced-activation HEAs (RAHEAs)[17-19] were developed with these element constraints. 
Furthermore, compositional differences and limited research have resulted in small datasets, posing a 
challenge on RAHEA design.

The challenge can be addressed from data, model and algorithmic perspectives[20], which requires prior 
knowledge for learning or searching the best model. Several strategies have been employed to tackle the 
problem in materials science, such as transfer learning (TL), which is one of the mainstream methods[21]. TL 
acquires prior knowledge from a source domain and transfers the knowledge into the target domain (i.e., 
the small dataset) for the improvement of ML model performance[22]. A TL problem can be solved from 
instance-, feature-, parameter-, and relation-based methods[23]. Recent applications of TL in materials 
science[24-26] have shown the potential of TL to achieve good accuracy under small data schemes. When 
employing TL on small datasets, the dataset shift[27] between the source and the target domain needs to be 
carefully considered. Li et al. reported that models trained on Materials Project 2018 would fail to predict 
novel materials on Materials Projects 2021 due to the dataset shift[28]. In the field of computer science, a 
series of works were conducted to solve the dataset shifts through domain generalization[29] or 
adaptation[30-32]. However, there are only few applications of domain adaptation in materials science. Goetz 
et al. utilized unsupervised domain adaptation with an adversarial network for microstructure image 
classification[33]. Hu et al. conducted a comprehensive benchmark of the performance enhancement of ML 
models augmented by various domain adaptation methods, illustrating the potential of domain adaptation, 
as well as the demand of new methods to capture the invariant relationships avoiding dataset shift across 
domains[34].

A critical issue in feature-based domain adaptation is identifying domain-invariant features, ensuring good 
generalization ability of the model[35,36]. Features adopted for material property prediction in previous studies 
are usually simple statistical combinations of composition and corresponding element properties, capturing 
part of the feature-property relationship. Therefore, several typical feature-based domain methods[37-39] may 
be inappropriate, as they require finding a shared feature subspace among existing features. In this context, 
exploring complex nonlinear relationships through feature augmentation and transformation becomes 
crucial for capturing the stochastic influencing factors of material properties. Genetic programming 
(GP)[40], as a powerful tool for feature extraction, has gained attention in recent years for its ability to 
generate nonlinear feature combinations with numerical operators, enabling the discovery of interpretable 
and highly correlated features from limited data, enhancing predictive accuracy and intensifying the 
understanding of material behavior[41-43]. In the field of materials science, Lee et al. proposed a synergistic 
combination between conventional ML model and GP-based symbolic regression (SR) model with physical-
based insights, successfully establishing a robust and reliable framework for out-of-distribution prediction 
of yield strength[44]. Feng et al. employed SR to discover new features for the fatigue life of T91 and 316SS 
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steel, demonstrating a strong correlation with fatigue life and improved performance of ML algorithms[45].

Motivated by these considerations, we propose a framework that integrates SR and domain adaptation to 
improve the accuracy of material property predictions on small datasets, specifically targeting RAHEAs. 
Experimental data on conventional HEAs and RAHEAs were collected into two distinct datasets. The HEA 
dataset served as a source domain, while the RAHEA dataset was treated as a target domain. Element-based 
features were generated and selected by the framework to create the initial feature set for SR exploration. 
These generated features were evaluated to identify the domain-invariant features for adaptation. Finally, 
ML models were constructed based on various feature sets to assess and compare the performance 
enhancement of the models, illustrating the effectiveness of domain adaptation. The proposed framework 
can provide a consistent and effective strategy for improving the accuracy of property predictions on small 
datasets.

MATERIALS AND METHODS
Introduction to the framework
Figure 1 illustrates the workflow of the proposed framework. In the first step, we labeled the HEA and 
RAHEA datasets as source domain S and target domain T, respectively. Due to the insufficient number of 
samples in the target domain, virtual samples were generated near the compositional space for each 
RAHEA, as shown in Table 1, to augment the dataset for the discriminator. In the second step, element-
based features were generated and selected, to establish an initial feature set for SR exploration and 
selection. In the third step, the feature generators based on SR were employed to explore feature 
combinations within the initial feature set to generate new features. In the fourth step, the generated 
features were screened by the discriminator to obtain domain-invariant features for adaptation. Finally, the 
enhancement of prediction accuracy from the invariant features was examined using a ML prediction model 
trained on the HEA dataset.

Experimental data collection and preprocessing
Data collection and augmentation
The raw data for this study, including the hardness values and corresponding compositions of HEAs and 
RAHEAs, were collected from published literature[9,12,14,18,19,46-50]. The dataset encompasses eight transition 
metal elements (Co, Cr, Cu, Fe, Ni, Mn, Ti, and V), six refractory metal elements (Hf, Mo, Nb, Ta, W, and 
Zr), and two additional elements (Al and Sn). Data cleaning was applied to remove any abnormal values 
and redundant samples. Considering the impact of the preparation process, only the hardness data for as-
cast alloys were adopted. The final dataset comprised 460 as-cast HEAs and nine RAHEAs, with the details 
of the nine RAHEAs listed in Table 1.

To mitigate the impact of the imbalanced data size between the source and target domains for the 
discriminator, virtual samples were generated near the composition of each RAHEA with an atom fraction 
interval of 0.05. For each real RAHEA, 50 virtual RAHEAs were generated, resulting in an augmented target 
dataset that contains 459 samples (nine real samples and 450 virtual samples without hardness).

Generation of element-based features
The generation of features derived from elemental properties is emphasized as a crucial step to facilitate 
subsequent feature selection and exploration. As listed in Supplementary Table 1, 22 types of elemental 
properties that may affect the hardness were extracted from the relevant database[51]. These include the 
atomic properties (Z, Ra, Rc, VEC, χp, χar, Fw, I1), the thermodynamic properties (Tm, Hfus, Hvap, Hatm, S0, Cp, K, 
Lt) and elastic properties (Cij, B, E, G, v). There are 16 elements considered for the compositions of HEAs 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4071-SupplementaryMaterials.pdf
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Table 1. Compositions (in atom fraction) and hardness of 9 RAHEAs

No. Cr Fe Hf Mn Ta Ti V W Zr HV Ref.

1 0.3 0.35 0 0.05 0 0 0.15 0.15 0 672 [12]

2 0.3 0.3 0 0.05 0 0 0.15 0.2 0 665 [12]

3 0.3 0.35 0 0.1 0 0.05 0.2 0 0 556 [12]

4 0.05 0.35 0 0.15 0 0.1 0.35 0 0 542 [12]

5 0.2 0.2 0 0.2 0 0.2 0.2 0 0 713 [47]

6 0 0 0 0 0.2 0.2 0.2 0.2 0.2 827 [48]

7 0 0 0.2 0 0.2 0.2 0.2 0 0.2 622 [48]

8 0 0 0 0 0.25 0.25 0.25 0 0.25 756 [19]

9 0.25 0 0 0 0.25 0.25 0.25 0 0 670 [19]

RAHEAs: Reduced-activation high-entropy alloys.

Figure 1. Schematic illustration of the proposed framework.

and RAHEAs in both datasets.

Features were generated based on the elemental properties and corresponding concentrations, using four 
expressions outlined below: the mean value (MX), the variance value (VX), the deviation value (FX) and the 
local mismatch value (DX) of related elemental properties. Besides, Three empirical descriptors were also 
collected in this study, which may relate to the hardness of HEAs according to the literature, including the 
enthalpy of mixing (Hmix)[52], the entropy of mixing (Smix)[52], and six powers of the work function (w6)[53]. The 
equations for numerical expression and empirical descriptors are provided in the Supplementary Materials.

Feature preprocessing and selection
A comprehensive approach for generating and selecting these features was proposed in this section, aimed 
at developing an effective initial feature set for subsequent SR exploration. Firstly, all features were 
normalized using a Z-score scaler, which is robust against outliers. Secondly, the Pearson correlation 
coefficient (PCC) was implemented to measure the correlation between a feature and hardness or another 
feature, as given in

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4071-SupplementaryMaterials.pdf
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A higher absolute value of the PCC usually indicates a stronger linear correlation, which can help select 
hardness-related features and drop redundant ones.

The original features generated in Section “Generation of element-based features” were selected using a 
three-step approach that included correlation and variance threshold selection. In the first step, correlation 
between features and hardness was evaluated by PCC. Those features with low correlation to the target 
performance (|PCC| < 0.4) were removed, as they are unlikely to provide valuable information to the model. 
In the second step, the variance of the remaining features from the first step was calculated and sorted in 
descending order. The bottom 15% of the features based on variance were eliminated, while the most 
informative features with sufficient variability were selected. In the third step, the correlation among 
selected features was checked. Features with high correlation coefficients (|PCC| > 0.85) to other features 
were removed to improve the model performance.

Feature-based domain adaptation using SR
Feature generation
To reveal the explicit mathematical relationship between element properties and hardness, and discover the 
domain-invariant features between the source and target domain, SR was employed with iterative search 
manner to reduce the randomness from the algorithm[41,54]. Figure 2A illustrates the flowchart of the SR, 
where the genetic algorithm controls the combination of features through algebraic operators to form the 
initial population. Each individual in the population corresponds to an expression. During the genetic 
algorithm search, the performance of each expression is evaluated based on a fitness function, allowing for 
the selection of the best expressions from each generation. These expressions undergo crossover and 
mutation to enhance diversity, generating new individuals (expressions) for the next generation, as shown 
in Figure 2B. The purpose of crossover and mutation is to prevent optimized expressions from becoming 
trapped in local optima. When the optimization meets the termination criteria, SR stops and outputs the 
optimal expression.

The types of operators used in SR, along with parameters such as mutation rate, crossover rate, and 
population size, are crucial for its effectiveness. As shown in Supplementary Table 2, the population size is 
set to 500 to ensure enough features for evaluation, while generations were limited to 50 to control runtime. 
A Hall of Fame retained the 50 best features, preserving excellent solutions, and ten features were selected 
from the generator to focus on the most promising options. The function set employed various 
mathematical operators (add, substrate, multiply, divide, inverse, logarithmic, exponential, maximum, 
minimum, square root) to construct expressions. The crossover probability determined the frequency of 
feature combinations, while the subtree mutation probability and hoist mutation probability ensured 
population diversity. The point mutation probability guarantees that the total mutation probability sums to 
1. Additionally, the depth of expression trees was limited to 2 to 5, balancing complexity and 
interpretability. The parsimony coefficient was set to 0.001, promoting simpler, more generalizable models. 
This configuration optimizes the efficiency and effectiveness of the SR process.

Domain-invariant feature screening
A two-step method was developed to screen for the domain-invariant features. In the first step, the optimal 
SR feature generator was selected based on loss minimization across iteratively running generators. Each 
generator produced ten new feature expressions for further selection and exploration. The procedure 
involves building a regression model using the features provided by each generator to predict the target 

(1)

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4071-SupplementaryMaterials.pdf
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Figure 2. Schematic illustration of SR-based domain adaptation. (A) SR algorithm; (B) Feature selection and adaptation. SR: Symbolic 
regression.

property (hardness) and calculate the loss for generator selection. In the second step, we utilized the feature 
expressions from the best generator to create new features in both the source and target domains. Each new 
feature was labeled “S” or “T”, indicating whether the sample originates from the source or target domain. 
These features are then evaluated using a classifier that serves as a discriminator[30]. The features with the 
lowest classification accuracy are identified as domain-invariant features.

ML based-hardness prediction models
ML algorithms
Several ML algorithms were employed to evaluate the performance based on the selected features. These 
algorithms included decision tree regression (DTR), extremely randomized tree regression (ETR), gradient 
boosting regression (GBR), K-nearest neighbor regression (KNR), random forest regression (RFR), ridge 
regression (Ridge), and support vector regression (SVR). This comprehensive evaluation allowed us to 
identify the most effective algorithm for the HEA dataset. To construct the ML prediction model, 
GridSearchCV[55] was utilized to streamline the hyperparameter tuning process with ten-fold cross-
validation, which can explore all possible hyperparameter combinations and help reduce the risk of 
overfitting.

Evaluation of ML models
The performance of each algorithm was assessed using multiple metrics, specifically the coefficient of 
determination (R2), normalized root mean squared error (NRMSE), and mean relative error (MRE). The 
best model for each algorithm was determined based on a comprehensive assessment of the R2, NRMSE, 
and MRE metrics, using

where  represent the number of samples, predicted value, experimental value of the i-th sample, 
and the mean experimental value of samples in the training, the testing sets or the RAHEA datasets, 
respectively.

(2)

(3)

(4)

n, yi, yi, y 
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Shapley additive explanations
Shapley additive explanations (SHAP)[56] were employed to interpret ML models and evaluate the 
contributions of features for each sample, as expressed by

where F refers to the set of all features adopted in the model, G indicates a feature subset of F, and nF and nG 
are the numbers of features in the two sets, respectively. The SHAP value can be either negative or positive, 
indicating different contributions to the predicted property. The mean absolute SHAP values and the 
corresponding sampled SHAP values for each feature were employed to assess the mean contribution of 
each specified feature.

Code implementation
The code implementation was based on a Python 3.10.6 environment with a Jupyter Notebook. Basic 
Python libraries such as scikit-learn[57], gplearn, Numpy[58], Scipy[59] and Pandas[60] were employed in this 
work.

RESULTS AND DISCUSSION
Feature-based domain adaptation for small dataset
Discovery of domain-invariant features with the framework
Both source and target datasets consisted of 88 original features based on the combinations of elemental 
properties and compositions, and three additional empirical descriptors. The source dataset was split into 
training and testing sets using the holdout method, while with the testing set comprising 10% of the source 
dataset. Correlation and variance threshold methods were applied on the training set to eliminate redundant 
features, as described in Section “Feature preprocessing and selection”. After applying these methods, 13 
features remained in the training set were used to search for SR-generated domain-invariant features 
(Noted as GPFs). Figure 3 shows the correlation heatmap among initial features and GPFs. The map shows 
that most of the initial features are not or only slightly correlated with each other, while three GPFs are 
highly correlated.

As shown in Supplementary Table 2, three operator sets were used to explore domain-invariant features 
using the proposed framework. The three domain-invariant features generated and screened by these 
operator sets were designated as GPF1, GPF2, and GPF3, respectively. A Ridge was chosen to evaluate the 
NRMSE loss for the optimal selection of SR generators. A 10-fold cross-validation method was applied on 
the training set for SR feature generation. For each fold in training, ten SR generators were initialized to 
mitigate the impact of randomness. NRMSE metrics were calculated on both training and testing sets to 
assess the overfitting trend of the model. The final generator was chosen based on error minimization 
without overfitting, which ensures the ten features created by the generator have good generalization ability 
on unseen data. As shown in Supplementary Figure 1, three SR feature generators were selected with test 
NRMSE metrics of 0.197, 0.205 and 0.160, respectively. GPF1, GPF2 and GPF3 were extracted separately 
from these best SR feature generators. A logistic regression classifier was implemented as the discriminator 
for feature extraction, and the accuracy was calculated as the ratio of correct classifications to total 

(5)

classifications: Acc = TP+TN+FP, where TP, TN, FP, and FN refer to true positive, true negative, false 

positive and false negative samples, respectively. The discriminator combined all data from the source 
domain and the target domain (including virtual samples) to perform cross-validation and calculate the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4071-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4071-SupplementaryMaterials.pdf
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Figure 3. Correlation heatmap among features from initial feature sets and GPF1-3, with blue indicating negative correlations, red 
indicating positive correlations, and deeper colors representing stronger correlations.

average accuracy. The lower the average accuracy, the better the effect of domain adaptation. The accuracy 
scores of selected GPF1, GPF2 and GPF3 are 0.53, 0.53 and 0.49, respectively.

Figure 4 illustrates the correlation between the initial features, GPFs, and target performance, as well as the 
similarity in feature distribution between the source and target domains. The maximum mean discrepancy 
(MMD)[61] was employed to measure the similarity between the two distributions. Figure 4C analyzes the 
distribution similarity across domains based on MMD for the initial features. A low MMD value usually 
indicates good similarity in feature distribution across domains. Features with smaller MMD values, such as 
Dc12, Mc12 and VE, exhibit smaller changes in PCC according to Figure 4A and B. This suggests that these 
features are more effective in capturing the underlying feature-hardness relationship, rather than being 
affected by specific data distributions. In contrast, features with large MMD values, such as FI1 and Dρ, 
exhibit significant changes in PCC regarding hardness between Figure 4A and B, shifting from positive to 
negative correlations. This indicates that these features may have been selected using conventional feature 
screening methods based on specific data distributions. Figure 4D-F displays the generated GPFs. We 
observed that the MMD values of the three GPFs are significantly lower than those of the initial features, 
indicating good distribution consistency across domains. The PCC change of three GPFs from the source 
domain to the target domain are 0.02, 0.28, and 0.10, respectively. Considering both the PCC change and 
MMD, GPF1 seems to be closer to the “ideal” domain-invariant feature, that is, maintaining a high target 
performance correlation under different data distributions.
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Figure 4. Analysis of the relationship between features and target performance in the source and target domains. (A) and (B) display the 
PCC between features and target performance across the source and target domains; (C) illustrates the MMD of features in both 
domains; (D-F) present scatter plots of the generated GPF1, GPF2, and GPF3 with standardization against target performance, along with 
their respective PCC and MMD values. PCC: Pearson correlation coefficient; MMD: maximum mean discrepancy.

Explanation of the domain-invariant features
Based on the mathematical expressions of the three GPFs listed in Table 2, we can identify their similarities 
and differences, which aids in understanding the physical insights of the domain-invariant features. The 
same components utilized in three GPFs include DRa and Mv, which reflect the local mismatch of atomic 
radius, mean Poisson’s ratio, reflecting the contribution from lattice distortion and shear response. The local 
mismatch of atomic radius DRa highlights the lattice distortion effect in HEAs, recognized as a core factor 
and a significant contributor to hardness due to solid solution strengthening[6,10]. HEAs and RAHEAs that 
exhibit a higher shear response during Vickers hardness testing tend to demonstrate greater hardness, as 
indicated by Mc12 in both GPF1 and GPF2.

The primary distinction between GPF1 and GPF2 lies in the incorporation of a maximum operator, which 
results in significant deviations in the cross-domain PCC between the two GPFs. The local mismatch of 
electronegativity Dχar was proposed by Wen et al., as a hardness descriptor from the perspective of the solid 
solution strengthening[10]. However, Dχar does not effectively describe the solid solution strengthening in 
FCC HEAs due to its low sensitivity. By employing a maximum operator, GPF1 captures the contributions 
of Dχar while mitigates its limitations in FCC HEAs. Additionally, a high local mismatch in density may 
indicate the incorporation of lightweight elements such as Al and Ti, which are associated with phase 
transformations in HEAs and contribute to hardness through the solid solution strengthening[62,63]. The high 
ionization energy mismatch DI1 shows the mixing between elements with high ionization energy (Al, V, Zr, 
Nb, Cr) and low ionization energy (Fe, Co, W, Cu), reflecting the alloying effect. The fusion enthalpy Hfus is 
related to the crystal structure and bond energy, the high variance of Hfus reflects the alloying of refractory 
elements and transition metal elements.
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Table 2. Mathematical expressions of screened domain-invariant features

Feature Expression

GPF1 2DRa + Mv + Mc12 + DI1 + VHfus + max[(DRa + DI1), Dχar, Fρ]

GPF2 2DRa + Mv + Mc12 + DI1 + VHfus + Fρ

In summary, several influencing factors can be identified from the screened domain-invariant features: (1) 
Differences in crystal structure, reflected by Fρ, VHfus and DI1; (2) Bond strength, indicated by VHfus and DI1; 
(3) Solid solution strengthening due to DRa; (4) Additional solid solution strengthening factors Dχar along 
with features indicating strong alloying effects. The domain-invariant features screened in this study exhibit 
a comprehensive view of hardness contributors by nonlinear mathematical combinations. The influence of 
these domain-invariant features on performance of ML models is also a key issue for further discussion.

Construction of hardness prediction models
Based on generated domain-invariant features, we investigated three distinct feature sets: models that rely 
solely on initial features (NoGPF), models that utilize only GPFs (referred to as GPFOnly), and models that 
incorporate both feature sets (GPFCombined). This comparison aimed to evaluate the impact of GPFs on 
the performance of ML models across both the source and target domains.

All three sets of feature sets in the source domain were used for data partitioning using the holdout method, 
reserving 10% of the samples for model testing, and the remaining 90% of the samples were used using ten-
fold cross-validation combined with hyperparameter optimization to evaluate the performance of all seven 
ML algorithms presented in Section “ML based-hardness prediction models” for constructing hardness 
prediction models. The hyperparameters used by each algorithm to build the model were searched using 
GridSearchCV[55], and the range of each parameter search is listed in Supplementary Table 3. During the 
algorithm evaluation process, we cycled through ten holdouts and recorded the performance of each 
algorithm in building the model to calculate the average performance for robust evaluation.

The box plots were used to clearly illustrate the central tendencies and variabilities of the performance of 
each ML algorithm. Each box in the plot represents the interquartile range, encompassing the data from the 
25th to the 75th percentile, while the additional dots indicate the outliers. According to Figure 5 and 
Table 3, the GPFOnly-trained models demonstrate the best test performance, highlighting the contribution 
of GPFs to improvements in prediction accuracy. A detailed analysis of the NRMSE metrics for all ML 
models utilizing three feature sets is provided, along with associated P-values from Wilcoxon tests[64], to 
indicate the statistical significance (P-value < 0.05) of the improvements. GPFonly-trained models show a 
significant average performance improvement of 24% compared to NoGPF-trained models. Specifically, the 
DTR and RFR algorithms achieved a notable 39% improvement (P-value = 0.002), while KNR reached a 32% 
improvement (P-value = 0.002). In contrast, the GPFCombined-trained models result in only a 9% average 
improvement without statistical significance, indicating that this combination of features does not enhance 
performance as effectively as the GPFonly set. The performance of GPFCombined-trained models is not as 
strong as GPFonly-trained models, which may be attributed to the excessive redundancy introduced by 
combining GPFs with the initial feature set.

Among the GPFonly-trained models, DTR and RFR exhibit the lowest errors, with NRMSE values of 0.13 ± 
0.01 and 0.09 ± 0.01, respectively. Their performances on NoGPF are 0.21 ± 0.06 and 0.15 ± 0.03, reflecting 
significant improvements after incorporating GPF features. Regarding the improvement among different 
algorithms, the 39% enhancement observed for DTR and RFR can be attributed to their ability to effectively 
capture complex nonlinear relationships. The 32% improvement seen with KNR suggests that the 

GPF3 DRa + Mv +    VHfus +    2Dχar - Dc12 +   Dχar + VHfus -2Fρ

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4071-SupplementaryMaterials.pdf
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Table 3. Comparison of performance improvement and corresponding statistical significance of NRMSE metrics across feature sets

Algorithm NoGPF GPFOnly Improvement P-value GPFCombined Improvement P-value

DTR 0.21 ± 0.06 0.13 ± 0.01 39% 0.002 0.19 ± 0.02 11% 0.193

ETR 0.14 ± 0.03 0.13 ± 0.01 8% 0.037 0.16 ± 0.02 14% 0.004

GBR 0.14 ± 0.03 0.10 ± 0.03 29% 0.065 0.14 ± 0.02 2% 0.846

KNR 0.16 ± 0.03 0.11 ± 0.01 32% 0.002 0.14 ± 0.02 8% 0.084

Ridge 0.21 ± 0.02 0.19 ± 0.02 10% 0.004 0.19 ± 0.02 9% 0.004

RFR 0.15 ± 0.03 0.09 ± 0.01 39% 0.002 0.14 ± 0.02 6% 0.322

SVR 0.21 ± 0.02 0.19 ± 0.03 10% 0.037 0.19 ± 0.02 10% 0.002

Average 0.17 ± 0.03 0.13 ± 0.02 24% 0.021 0.16 ± 0.02 9% 0.208

NRMSE: Normalized root mean squared error; DTR: decision tree regression; ETR: extremely randomized tree regression; GBR: gradient boosting 
regression; KNR: K-nearest neighbor regression; Ridge: ridge regression; RFR: random forest regression; SVR: support vector regression.

Figure 5. Comparison of testing R2, NRMSE and MRE among different ML algorithms from varying feature sets: (A-C) NoGPF; (D-F) 
GPFOnly; and (G-I) GPFCombined. The results came from ten times of holdouts. R2: The coefficient of determination; NRMSE: 
normalized root mean squared error; MRE: mean relative error; ML: machine learning.
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introduced features enhance prediction accuracy among neighboring samples.

Conversely, ETR and SVR exhibit smaller improvements of 8% and 10%, respectively, which may indicate 
lower sensitivity to changes in features. Lastly, ridge demonstrates only a 10% improvement, suggesting a 
reduced dependence on feature selection and a more limited capacity for handling complex data. Overall, 
the impact of GPFs varies across DTR, RFR, and KNR, demonstrating more significant performance 
enhancements, while Ridge models present relatively modest improvements. Based on the comprehensive 
analysis on the test performance on the HEA dataset, the RFR was selected to construct a model using the 
GPFonly, while ETR was selected to construct a reference model with NoGPF. The optimized 
hyperparameters of both ML models were listed in Supplementary Table 4.

Model transfer for RAHEA predictions
Unlike the model- or instance-based TL, we directly transferred the trained ML models discussed in Section 
“Construction of hardness prediction models” on RAHEAs for hardness prediction without a fine-tuning 
step[22], as the source and target domain have already been adapted. To quantify the improvement in 
prediction accuracy on RAHEAs, both ML models trained by NoGPF and GPFonly feature sets were 
employed for hardness prediction.

Figure 6 illustrates the predicted versus experimental values of samples from the testing sets of both the 
source and target domains, evaluated using two models trained on different feature sets. In Figure 6A, the 
prediction points for the testing set closely align with the line x = y (represented by the dashed lines). In 
contrast, the predictions for the target domain deviate from this line, resulting in a rapid increase of NRMSE 
from 0.09 to 0.29, indicating a dataset shift due to the absence of domain adaptation (NoGPF). Figure 6B 
shows that while the predictions from the GPFOnly on the source domain are not as close to the dashed line 
as those in Figure 6A, both source and target domain predictions are evenly distributed near it. The NRMSE 
slightly increased from 0.16 to 0.19, demonstrating the robustness of the model enhanced by GPFs.

We performed a Wilcoxon test to statistically evaluate the performance improvement. The model was 
randomly excluded ten times with the same hyperparameters, generating predictions for both the source 
and target domains. The average NRMSE for the NoGPF-trained model on the target domain is 0.27 ± 0.02, 
while the GPFOnly-trained model achieves 0.19 ± 0.01. This represents a 30% reduction in average NRMSE 
(P-value = 0.004), indicating that GPFOnly significantly enhances model robustness.

Furthermore, SHAP analysis was conducted on both ML models to reveal the feature contribution and 
model decision. Figure 7A and B presents the mean absolute SHAP value of each initial element-based 
feature on both source and target domains, and Figure 7C illustrates the deviation of mean absolute SHAP 
values between the two domains. Similarly, Figure 7D and E shows that of each GPF in both domains. As 
shown in Figure 7B, the top three contributors, DRa, VHfus, DI1, are identified in both GPF1 and GPF2. 
Additionally, features with moderate contributions, such as Dχar, Mv and Mc12, are included in GPF1, which 
may help explain the significance of domain invariance from the perspective of feature contributions. 
Regarding the deviation between two domains in Figure 7C and F, the contributions of Dχar, VHfus and Fρ 
vary significantly, as they appear in both GPF1 and GPF3. The maximum value operator applied on Dχar 
and Fρ in GPF1 tends to reduce sensitivity to large changes in the importance of domain-invariant feature 
selection within the feature-based domain adaptation framework.

CONCLUSIONS
In this work, we developed a framework that integrates SR and domain adaptation to enhance the accuracy 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4071-SupplementaryMaterials.pdf
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Figure 6. The predicted vs. experimental values of samples from the testing set and the RAHEA dataset using (A) No-GPF trained 
model and (B) GPFOnly-trained model. RAHEA: Reduced-activation high-entropy alloy.

Figure 7. SHAP analysis of NoGPF and GPFOnly-trained model on both source and target domains. (A-C) Mean absolute SHAP value of 
each feature in NoGPF-trained model on the (A) source and (B) target, with (C) the deviation between two domains; (D-F) Mean 
absolute SHAP value of each feature in GPFOnly-trained model on the (D) source and (E) target, with (F) the deviation between two 
domains. SHAP: Shapley additive explanations.

of material property predictions on small datasets. The key conclusions and future expectations are 
summarized as follows:

(1) The framework effectively captured domain-invariant features related to hardness in both conventional 
HEAs and RAHEAs. The domain-invariant features reveal the physical insights for hardness in terms of 
crystal structure, bonding, and strengthening mechanisms.
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(2) The accuracy of hardness predictions for both HEAs and RAHEAs was significantly improved, with 
NRMSE reduced by 24% for HEAs and 30% for RAHEAs compared to that of models trained with element-
based features.

(3) SHAP analysis shows that the model performance by using the domain-invariant features is stable across 
various composition spaces.

The proposed framework can achieve robust and accurate ML prediction by extracting domain-invariant 
features, demonstrating its extendibility in various material designs with small datasets.
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