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Abstract
In this work, an electrolytic process was introduced for coupled regeneration of potassium carbonate (K2CO3) 
solution and water electrolysis by using an anion exchange membrane cell. The process made the CO2 separation 
from O2 much easier with respect to the existing cationic exchange membrane process. The solution of K2CO3 was 
used in the cathode chamber to simulate the solution after absorbing CO2. The solution of sulfuric acid (0.1 mol/L 
H2SO4) was charged in the anode chamber. The feasibility of the process was discussed. The effects of various 
operation parameters, including temperature, current density, and electrolysis time, were studied. The results 
indicate that both the yield rate of CO2 and the current efficiency increase initially and decrease afterward with 
temperature. The yield rate of CO2 increases while the current efficiency decreases with the current density. A low 
current density can reduce the energy consumption for producing the same amount of CO2. The processes using 
anion exchange membrane electrolysis can regenerate the absorbent solution to achieve 89% current efficiency, 
and the simultaneous production of three pure gases, CO2, H2, and O2, makes this method promising.
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INTRODUCTION
In the past 40 years, the global climate and environment have been deteriorating, and the temperature has 
been rising. The use of fossil energy produces a large amount of carbon dioxide (CO2), which makes the 
total amount of CO2 in the atmosphere continue to rise, resulting in the greenhouse effect, rising sea levels, 
and frequent extreme weather. In order to improve its status, China has proposed a policy to achieve a 
carbon peak by 2030 and carbon neutrality by 2060. In 2020, carbon emissions in China reached 9.9 billion 
tons, of which CO2 emissions from industrial flue gas accounted for the main part.

Pure CO2 is an important chemical raw material, and its separation and purification in flue gas is the 
premise of its resource utilization. Some processes have been investigated and developed for separation and 
purification of CO2, such as physical and chemical absorption[1-6], membrane separation[7-10], chemical 
looping[11-13], and cryogenic separation[14].

Chemical absorption is one of the most widely used methods in comparison with other post-combustion 
CO2 absorption processes[15]. Among those non-organic-based chemical solvents, including potassium 
carbonate (K2CO3), sodium carbonate, and aqueous ammonia, K2CO3 is the most effective, economical, and 
traditional solvent[16]. The hot aqueous solution of K2CO3 has been widely used in the process of removing 
CO2 such as natural gas sweetening or the production of pure hydrogen for ammonia synthesis[17]. CO2 is 
separated from the flue gas by chemical reactions between CO2 and K2CO3 solution to produce potassium 
bicarbonate (KHCO3). The absorbent is regenerated in subsequent steps, and CO2 is desorbed by low 
pressure or high temperature.

The hot K2CO3 process (Benfield process) requires a considerable amount of heat for regeneration[18]. 
Martin and Kubic[19] developed an innovative process called Green Freedom for the capture and recovery of 
atmospheric CO2 through ion-exchange-membrane electrolysis. In the new process, the recovery of 
captured CO2 is realized by electrolytic stripping. The process was developed to recover CO2 from rich 
K2CO3 solutions, and it drastically reduced the energy needed for CO2 stripping and regeneration of the 
absorbent solution. In addition, Zhao et al. investigated the mechanism and energy consumption for this 
process[20]. The electrolysis process is conducted in which CO2 is released in three steps as the following: (1) 
No CO2 release step- Reaction 1 takes place; (2) Enhanced CO2 release step- Reaction 2 occurs to produce 
CO2; (3) Steady CO2 release step- CO2 is released from this step through Reaction 3.

They concluded that energy requirements can decrease by around 16.6% for electrolytic regeneration 
processes and 25.8% for the total CO2 capture and compression process using electrolytic regeneration.

However, the present electrolysis process can only obtain a mixture of CO2 (~70%) and O2 in the anode 
chamber[16,19,20]. It is necessary to separate them by additional processes. In this paper, the authors introduced 
a modified electrolytic regeneration process by which three pure gases, CO2, O2, and H2, are produced. Our 
process uses an anionic exchange membrane as compared to a cationic exchange membrane, as reported by 
other researchers[19,20]. Because of the modification, CO2 and O2 are produced in the anode compartment, yet 
at two separate positions (membrane and electrode surfaces, respectively), thus making the CO2 separation 
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Figure 1. Chemical absorption system with the modified electrolytic regeneration process.

from O2 much easier with respect to the cationic exchange membrane process. Figure 1 shows a chemical 
absorption system with the modified electrolytic regeneration process. The CO2-rich solution is pumped 
into the electrolytic regenerator, in which desorption of CO2 occurs with regeneration of the absorbent 
solution. The hydrogen as a by-product produced in the process and CO2 can be done via catalytic reactions 
to form methanol[21]. The electricity used in this process comes from clean energy.

In the paper, the regeneration mechanism of K2CO3 solution after absorption of CO2 using the modified 
ion-exchange membrane electrolysis process and the effects of various operation parameters, including 
temperature, current density, and electrolysis time, have been studied.

METHODS
The solution of K2CO3 purchased with a purity of 99% (K2CO3) was used in the cathode chamber to simulate 
the solution after absorbing CO2. The solution of sulfuric acid (0.1 mol/L H2SO4) was charged in the anode 
chamber. The solution of 200 mL was used in the experiments. The cells were separated by the anion 
exchange membrane (Huamotech AEM8040). Titanium plate and Titanium plate with IrO2 coating were 
used as the cathode and the anode, respectively. The electrolysis reactions were carried out at constant 
current density with an electrode area of 20 cm2. The whole cell was placed in a water bath to change the 
experimental temperature. The conductivity of the electrolytic solution was monitored by using a 
conductivity meter. The concentrations of K2CO3 and KOH in the electrolytic solution were determined by 
acid-base titration methods. The concentration changes in the electrolyte solutions were monitored by 
drawing samples at regular intervals and analyzing them by titration, and they were used to calculate the 
yield of CO2. The yield rate of CO2 and the current efficiency were calculated by Eqs. (4) and (5), 
respectively.
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Where w (mL/h) is the yield rate of CO2, Ct - Ct+1 (mol/L) the concentration changes of CO3
2- at the interval 

of 1 h, V (L) the solution volume, 22.4 (L/mol) the molar volume of the gas, η the current efficiency, j 
(A/cm2) the current density, S (cm2) electrode area, z the number of electrons transferred and z = 2 in this 
work, and F the Faraday constant.

The energy requirement in the bench scale for producing CO2 per unit volume was calculated as Eq. (6).

Where W (kW·h/m3) is the energy requirement in the bench scale for producing CO2 per unit volume, I (A) 
represents the electrolytic current, and U (V) signifies the average cell voltage after the electrolytic process is 
stabilized.

RESULTS AND DISCUSSION
Regeneration mechanism
Figure 2 shows an anion exchange membrane cell proposed in this work for electrolytic regeneration of 
KOH. The sulfuric acid (H2SO4) solution was charged in the anode chamber instead of the absorbent 
solution. Carbonate ions were transferred into the anode chamber by the AEM and reacted with H+ 
according to Eq. (7). CO2 was, thus, produced on the surface of the AEM in the anode chamber. The 
consumed H+ was replenished by water electrolysis, and the simultaneous production of O2, according to 
Eq. (8), was on the surface of the anode. A partition could be added between the anode and the AEM to 
avoid the mixture of CO2 and O2. In the cathode chamber, H2 was produced from the water reduction 
reaction, and the absorbent KOH solvent was regenerated simultaneously according to Eqs. (9)-(11). The 
overall reaction of the cell can be summarized as Eq. (12).

It is worth noting that OH- in the cathode chamber was also able to transfer into the anode chamber by the 
AEM and reacted with H+ to produce H2O, which is the main reason for the decrease of the current 
efficiency.

Stability of the electrolytic regeneration process
The changes of cell voltage, yield rate of CO2, and current efficiency with electrolysis time were investigated. 
Figure 3 shows the effect of electrolysis time on the cell voltage. The cell voltage increases with the current 
density, but the increase is disproportionate. The almost constant cell voltage throughout the electrolysis 
process indicated that the process was stable.
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Figure 2. AEM cell for electrolytic regeneration of KOH with simultaneous H2, O2, and CO2 generation.

Figure 3. Effect of electrolysis time on the cell voltage.

Figure 4 shows the effect of electrolysis time on the yield rate of CO2. The production rate of CO2 
dramatically decreases in the initial 2 h of electrolysis and tends to be stable in the following 3 h. The change 
of current efficiency with electrolysis time is shown in Figure 5. The current efficiencies are larger than 
100% in the initial 2 h and tend to be stable in the following 3 h. In the initial stage, a large number of CO3

2- 
exchange with AEM surface groups. The concentration of CO3

2- in solution is thus reduced, but the 
exchange process is not the effect of the current.

Effect of temperature
It requires 2 h for the system to be stabilized, as mentioned above. The average values of yield rates of CO2 
and current efficiency were calculated by the data obtained from the 3rd to 5th h. Figure 6 shows the effect 
of temperature on yield rates of CO2 and current efficiency. Both the yield rate of CO2 and the current 
efficiency increase initially and decrease afterward with temperature. The initial upward stage is due to the 
increasing conductivity of the solution with temperature [Figure 7]. However, OH- is easier than CO3

2- to 
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Figure 4. Effect of electrolysis time on the yield rate of CO2.

Figure 5. Effect of electrolysis time on current efficiency.

Figure 6. Effect of temperature on yield rates of CO2 and current efficiency.
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Figure 7. Effect of temperature on the conductivity of the solutions.

cross the AEM, resulting in a decreased trend with a further increase in temperature. The values of the yield 
rate of CO2 and the current efficiency reached 129.7 mL/h and 77.6% at the conditions of 30 °C and 
0.02 A/cm2, respectively.

Effect of current density and CO3
2- initial concentration

Figure 8 shows the synergistic influence of current density and CO3
2- initial concentration on yield rates of 

CO2 and current efficiency. The larger yield rate of CO2 was obtained in a higher current density in 
Figure 8A, while the current efficiency has an opposite trend [Figure 8B]. The current efficiency is larger in 
a lower current density. The reason is that a larger number of OH- ions are produced in a higher current 
density or a higher CO3

2- initial concentration, resulting in a decrease of the current efficiency. The current 
efficiency reached 89% at the current density of 0.01 A/cm2 and the CO3

2- initial concentration of 0.7 mol/L.

Energy consumption
Figure 9 shows the effects of current density and CO3

2- initial concentration on energy consumption. The 
energy consumption increases with current density. A low current density can reduce the energy 
consumption.

In conclusion, (1) the processes using membrane electrolysis can regenerate the absorbent solution to 
achieve 89% current efficiency, and the simultaneous production of H2 makes this method promising; (2) 
CO2 was produced on the surface of the AEM in the anode chamber, while O2 was produced on the surface 
of the anode. The mixture of CO2 and O2 can be avoided by adding a partition between the anode and the 
AEM; (3) The effects of various operation parameters, including the temperature, the current density, and 
CO3

2- initial concentration, have been studied. Both the yield rate of CO2 and the current efficiency increase 
initially and decrease afterward with temperature. The yield rate of CO2 increases while the current 
efficiency decreases with the current density. A low current density can reduce the energy consumption for 
producing the same amount of CO2.
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Figure 8. Effects of current density and CO3
2- initial concentration on (A) yield rates of CO2 and (B) current efficiency.

Figure 9. Effects of current density and CO3
2- initial concentration on energy consumption.
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