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Abstract
Aim: Choline is a universal methyl group donor, playing an essential role in DNA methylation, signaling pathways, 
and the transport and metabolism of lipids. The primary source of choline intake is diet, and chronic deficiency has 
been associated with dementia, cardiovascular disease, and liver disease. Choline bioavailability can be diminished 
by gut microbes that express choline trimethylamine-lyase (cutC), an enzyme that converts choline into 
trimethylamine (TMA), a precursor for TMA N-oxide (TMAO), which is associated with an increased risk of 
cardiovascular diseases. Gut microbiota modulation can be achieved by prebiotics such as galactooligosaccharides, 
inulin, and fructooligosaccharides. The aim of our study is to use choline with prebiotics to modulate the gut 
microbiota to enhance choline bioavailability and minimize TMA production.

Methods: We employed an ex vivo microcosm system consisting of healthy human stool samples with choline and 
different prebiotics and measured TMA and choline levels by targeted metabolomics. Shotgun metagenomic 
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profiling was also performed to investigate alternation in gut microbiota composition during choline and prebiotic 
interventions.

Results: Our study showed that choline to TMA conversion is dependent on a choline derivative and 
supplementing galactooligosaccharides (GOS) reduces this conversion. Choline to TMA conversion was 
associated with enriched microbiota from the genus Dialister, whereas GOS supplementation led to an increase in 
Blautia and a reduction in Clostridia populations. Loss of Clostridia also reduced a subset of Clostridium species, 
Clostridium citroniae, known to encode the cutC gene. The abundance of Dialister enhanced the chorismate 
biosynthesis pathway, while a reduction in Clostridium supported tryptophan and methionine pathways.

Conclusion: This study is the first to identify the combination of choline and GOS supplementation as a potential 
strategy to modulate gut microbiota and its metabolites in order to improve disease etiology.

Keywords: Choline, trimethylamine lyase, prebiotics, gut, Clostridium, chorismate, tryptophan

INTRODUCTION
Choline is an important nutrient integral to human metabolism and immensely impacts overall health. 
Found in both plant and animal tissues, choline intake is largely dependent on dietary sources[1]. Dietary 
choline is available in free form or as derivatives such as phosphocholine (PC), glycerophosphocholine 
(GPC), sphingomyelin (SM), or phosphatidylcholine (PtdCho)[2]. These forms of choline are vital for 
numerous biological processes, including neurotransmitter synthesis, cell membrane signalling, lipid 
transport, and methyl-group metabolism[3] .

Recent reviews assessing dietary choline in European and non-European populations revealed inadequate 
choline intake among adults[4]. The pathological implications of a choline-deficient diet are significant, 
particularly given choline's role as a methyl donor. A reduced choline pool can impair the methylation of 
homocysteine to methionine, leading to elevated plasma homocysteine levels, which are associated with an 
increased risk of cardiovascular diseases, atherosclerosis, and stroke[5]. Additionally, methionine is 
converted into S-adenosylmethionine (SAM) by methionine adenosyltransferase, serving as a key 
methylating agent in various enzymatic methylation reactions throughout the body[6]. Prolonged choline 
deficiency can precipitate various pathological conditions, including muscle damage, liver damage, and 
non-alcoholic fatty liver disease[7].

The intestinal microbiota play a pivotal role in nutrient harvesting and its modifying bioavailability. 
Trimethylamine (TMA) production is a key microbial process influenced by diet, with implications for 
health. It primarily arises from the microbial metabolism of dietary precursors like choline, L-carnitine, and 
betaine, found in red meat, eggs, dairy, fish, and certain plant-based foods like spinach and beets[8]. The gut 
bacteria can metabolize choline into TMA, which can then be converted to trimethylamine-N-oxide 
(TMAO) in the liver by flavin-containing monooxygenases (FMOs)[9,10]. Human studies have established 
that TMAO levels in serum are positively correlated with impaired renal function[11], colorectal cancer[12], 
and cardiovascular disease (CVD)[13]. Although there are some cohort-specific studies that failed to find an 
association between TMAO levels and CVD[14], an animal study showing choline and betaine to promote 
atherosclerosis is very convincing.

Desulfovibrio desulfuricans, a common choline-degrading bacteria, is known to encode choline 
trimethylamine-lyase (cutC), a glycyl radical enzyme[15], and its activating enzyme (cutD). These enzymes 
are involved in the conversion of choline to TMA[16]. The cutC/cutD gene cluster is prevalent within the gut 
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microbiota and is found in bacteria belonging to the phyla Actinobacteria, Proteobacteria, and 
Firmicutes[17]. Gut colonization of TMA-producing bacteria can lower serum choline levels and increase 
Lachnoclostridium and Clostridium - key cutC-containing genera that have been observed in atherosclerosis 
patients compared to healthy individuals[18]. Reducing microbial conversion of choline to TMA is crucial for 
improving choline bioavailability while limiting TMA production. Studies suggest that free choline is more 
readily utilized by choline-metabolizing bacteria than choline-containing derivatives like 
phosphatidylcholine, indicating that the conversion rate may depend on the choline compound’s 
structure[19]. Therefore, evaluating the conversion rate of different choline-containing molecules by the gut 
microbiota could be instrumental in developing nutritional strategies to enhance choline intake while 
minimizing TMA production. Alternatively, modulating the gut microbiota through dietary fiber intake, 
particularly by promoting beneficial bacteria such as Bifidobacterium[20], may help reduce TMA 
production[21]. Prebiotics such as galactooligosaccharides (GOS), inulin, and fructooligosaccharides (FOS) 
support gut health by fostering a balanced microbiome[22] and regulating TMA production. They enhance 
the growth of beneficial bacteria while suppressing TMA-producing species such as Escherichia coli and 
Clostridium sporogenes[23]. High-fiber, prebiotic-rich diets, common in Mediterranean and other plant-based 
dietary patterns, contribute to lower TMAO levels compared to Western diets[24]. Given the microbiota’s 
influence on choline metabolism, prebiotics may help limit its conversion to TMA, a precursor to TMAO, 
which is associated with cardiovascular disease. Our study investigates various choline derivatives as 
substrates for TMA production, assesses the effectiveness of different prebiotics in reducing choline 
conversion to TMA, and evaluates their impact on gut microbiota composition and function. Our findings 
underscore the crucial role of prebiotics in shaping microbial communities and their metabolites through 
choline metabolism, potentially offering health benefits, particularly in cardiovascular disease prevention.

METHODS
Study participants and sample collection
A total of 28 participants aged 45-65 years were recruited for this study [Supplementary Table 1]. Inclusion 
criteria include body mass index (BMI) < 27.5, non-smoker, and antibiotic use within the three months 
prior to sampling. Exclusion criteria were individuals with diabetes, psychiatric disorders (e.g., major 
depression), neurological disorders, life-threatening diseases (e.g., cardiovascular diseases), and 
gastrointestinal diseases. The participant recruitment and sample collection were approved by the Nanyang 
Technological University Institutional Review Board (IRB-2018-08-022). Two days before stool collection, 
participants had to abstain from caffeine-containing substances and vigorous physical activities. Each 
participant provided a stool sample in an air-tight container, which was immediately processed (within an 
hour after defecation) in an anaerobic chamber. Approximately 20 g stool samples were transferred into 
sterile cryovials, frozen, and stored at -80 °C with the CO2 sachet.

Human stool ex vivo system and metabolite assay
The ex vivo system was set up by preparing a 20% (w/v) human fecal slurry from individual subjects each, 
with 100 mL Wilkins-Chalgren (WC) anaerobic broth (Thermo Fisher) in an anaerobic chamber (Coy 
Laboratories, atmosphere of 95% nitrogen and 5% hydrogen). Homogenized 20% fecal slurry was dispensed 
into 15 mL Falcon tubes and mixed with an equal volume of WC broth containing 3mM of a single choline 
derivative: choline chloride (C5H14CINO), glycerophosphocholine (C8H20NO6P), Phosphocholine (C5H15NO4

P+) (Sigma-Aldrich), L-α-Phosphatidylcholine (C42H80NO8P) (Sigma-Aldrich), and egg sphingomyelin (C39

H79N2O6P) (AvantiA). WC broth without choline derivatives was added to control tubes. Then, the Falcon 
tubes were transferred into a 2.5 L Oxoid anaeroJar (Thermo Fisher) with an AnaeroGen Compact paper 
sachet (Thermo Fisher) to maintain the anaerobic condition and incubated on a rotator at 180 r.p.m for 24 
h at 37 °C. All the experiments were carried out in technical triplicates. At each time point (0, 4, 8, and 24 
h), samples were collected from the falcon tube inside the anaerobic chamber for NMR analysis and for 
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reverse transcription polymerase chain reaction (RT-PCR) (0 and 8 h), and stored at -80 °C until further 
experiments. For prebiotic experiments, WC broth for the homogenized fecal slurry was added with 1% (w/
v) prebiotics of either GOS (Oligomate 55NP, Yakult Pharmaceutical Industry Co., Ltd), FOS (Sigma-
Aldrich), or inulin (Sigma-Aldrich). The subsequent procedure was followed as mentioned above. Each 
sample came from an individual subject. Samples were not pooled for any study.

Culture and optical density measurement of desulfovibrio desulfuricans
Desulfovibrio desulfuricans ATCC 27774 was cultured in Tryptic Soy Medium (TSM, Merck, Singapore) 
supplemented with 5% defibrinated Sheep Blood (SB, Thermo Fischer Microbiology, Singapore) and 
incubated in an anaerobic chamber (BACTRON, US) at 37 °C for 96 h. After 96 h, the Desulfovibrio 
desulfuricans culture was inoculated into fresh TSM + SB medium and incubated for an additional 24 h. 
This overnight Desulfovibrio desulfuricans growth culture was inoculated into TSM + SB media and divided 
into four portions as (1) control; (2) with 3mM Choline Chloride (Sigma Aldrich, Singapore); (3) with 1% 
GOS (Yakult Pharmaceuticals, Japan); and (4) with 1% GOS + 3mM Choline Chloride, and incubated in an 
anaerobic chamber. After 72 h, the Desulfovibrio desulfuricans cultures were processed for nuclear magnetic 
resonance (NMR) and RT-PCR analysis. All treatment groups were carried out in technical triplicates. The 
Desulfovibrio desulfuricans culture was retrieved from an anaerobic chamber and 200 uL was used for 
OD600nm measurement using a 96-well ELISA plate reader. The absorbance values were normalized 
against blank (Tryptic Soy medium without added Defibrinated Sheep Blood).

Quantification of metabolites using 1H-NMR
Microtubes containing ex vivo fermentation human stool samples from individual subjects were centrifuged 
at 16000 g, 4 °C for 10 min, after which 500 uL of supernatant were collected and added into 50 µL PB 
(150 µM K2HPO4 and NaH2PO4, 200 µM NaN3 99.9% D2O) containing internal standard Trimethylsilyl 
propanoic acid 0.1% m/v for NMR analysis. The NMR spectra were recorded on a 600 mHz Ascend NMR 
spectrometer (Bruker) equipped with a 5mm BBI Z-Gradient high-resolution probe. Samples were kept at 
5 °C  in the SampleJet autosampler, and the probe temperature was set at 300 K during the acquisition. A 
standard one-dimensional pulse sequence Noesypr1d was used with a 90-pulse length of approximately 11 
μs (-11.03 dbW) on Bruker spectrometer. For each sample, the spectral width was 20ppm and 32 transients 
were collected into 65,536 data points. Receive gain was automatically determined. Water suppression was 
achieved with weak irradiation during the recycle delay (4 s) and mixing time (10 ms). An exponential 
window function with a line broadening factor of 0.3 Hz was applied to all the free induction decays before 
Fourier transformation. TopSpin (v4.0.9, Bruker) was used for spectra processing. The phase and baseline 
were corrected manually, and the chemical shift of TSP was calibrated at 0.00 ppm. The TMA peak (δ 2.86 
to δ 2.90) was integrated from the normalized NMR spectra. Relative concentrations of TMA (Ci-C0)/C0 
were calculated.

Quantification of cutC cDNA and DNA copy from human stool and Desulfovibrio desulfuricans 
samples
RNA was extracted from fecal samples using the Stool Total RNA Purification Kit (Norgen), following the 
manufacturer’s instructions. Extracted RNA was treated with Rnase-free-DNase1 (Thermo Fisher) and 
reverse-transcribed to cDNA using ReverTra Ace-α- (Toyobo). PCR was then performed using endogenous 
16s rRNA as an internal control for relative quantification. The oligonucleotide primer sequences used for 
PCR were as follows: cutC  forward 5’-TTYGCIGGITAYCARCCNTT-3’ and reverse 5’-
TGNGGYTCIACRCAICCCAT-3’ and 16s rRNA forward 5’AGRGTTHGATYMTGGCTCAG-3’ and 
reverse 5’-TGCTGCCTCCCGTAGGAGT-3’ (Integrated DNA Technologies). Cultures of D. desulfuricans 
were centrifuged and the resulting bacterial pellets were processed using the GenEluteTM Bacterial Genomic 
DNA kit (Sigma Aldrich, Singapore) as per the manufacturer’s instructions. DNA quantified for cutC gene 
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copy number via quantitative PCR using a standard curve from serially diluted plasmid pET-28a-cutC[25]. 
The abundance of cutC gene copy number was expressed as a percentage relative to the 16s rRNA gene copy 
number. The oligonucleotide primer sequences used for PCR were the same as above.

Shotgun metagenomic sequencing and microbiome analysis
Shotgun metagenomic sequencing of human stool samples from a single individual subject was conducted 
by BGI (Shenzhen, China), with subsequent bioinformatics and biostatistics analyses carried out in-house. 
Sample details are as follows - Individual subjects were divided into following groups, (a) control, AEF02, 
AEF03, AEM05, AHF01, AHF04, AHM01, AHMO6A; (b) choline, AEF02-Choline, AEF02-GPC, AEF02- 
PC, AHF01-Choline, AHF01-GPC, AHF01-PC, AHM01-Choline; and (c) choline + GOS, AEF02G-Choline, 
AEF02G-GPC, AEF02G-PC, AHF01G-Choline, AHF01G-GPC, AHF01G-PC, AHM01G-Choline. A total of 
21 samples from 11 individual subjects were sequenced. Quality assessment of the raw sequencing reads was 
conducted using FastQC[26], followed by adaptor and read quality trimming with BBDuk[27]. Sequence 
decontamination was performed using Homo sapiens NCBI GRCh38 reference genome with Bowtie2[28]. 
Taxonomic and functional annotations were obtained with Metaphlan[29] and HUMAnN 3.9[30], respectively. 
The reads were annotated to genes (Uniref90) and pathways using HUMAnN 3.9. Statistical analysis was 
performed using MaAsLin2[31] after normalizing sequence reads to relative abundance.  Data visualization, 
as well as alpha and beta diversity analysis and principal component analysis, was performed using R 
version 4.3.1[32] and the MicrobiomeAnalyst software[33]. Taxonomy correlation network analysis was 
performed using NetCoMi[34] in R version 4.3.1. For single network analysis, the netconstruct function was 
used with the following parameters: measure = “pearson”, filtTax = “highestFreq”, filtTaxPar = list 
(highestFreq = 50), zeroMethod = “pseudo”, zeroPar = list (pseudocount = 0.5), normMethod = “clr”, 
sparsMethod = “threshold”, thresh = 0.8). Only taxa that passed a t-test with a significance level of 0.05 were 
visualized in the network. The fast greedy clustering method was used to illustrate the community structure.

Statistical analysis
All sample metabolite levels and cutC gene copy number data were analyzed using Student’s t-test in 
GraphPad Prism v9. All data had a minimum of three biological replicates and three technical replicates. 
Microbiome abundance was expressed as the standard deviation (SD), while variability in transcript and 
gene copy numbers was expressed as the standard error of the mean (SEM), with P value < 0.05 considered 
statistically significant.

RESULTS
Microbial TMA production is substrate-specific
To investigate the conversion of TMA from choline and its derivatives across gender and age, an ex vivo 
anaerobic fermentation of human stool obtained from young (45-55 y, Figure 1A and B) and elderly (> 55 y, 
Figure 1C and D) subjects from both genders with different choline derivatives were analyzed. Choline 
(Cho), GPC, and PC showed higher rates of TMA conversion, whereas phosphatidylcholine (Pcho) and SM 
exhibited slower conversion rates [Figure 1A-D]. A comparative analysis of relative TMA levels at 24 h 
revealed age-related differences in response to various choline substrates. Specifically, female subjects in the 
younger group exhibited significantly lower TMA levels than their elderly counterparts across choline, GPC, 
PC, and PCho [Supplementary Figure 1A]. In contrast, among males, this significant age-related difference 
was observed only with choline [Supplementary Figure 1B].

Choline-mediated increase in TMA was significantly reduced by GOS
To investigate the effect of the prebiotic supplement on the microbial conversion of choline derivatives to 
TMA, the stool samples from participants were incubated with TMA-producing choline derivatives 
(choline, PC, and GPC) in different prebiotics-supplemented media, namely GOS, FOS, and inulin. A time 
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Figure 1. Microbial TMA production is substrate-specific. In-vitro anaerobic fermentation of human stool with different choline 
derivatives was performed, and relative TMA levels were measured by NMR analysis. Trendlines illustrating the TMA conversion levels 
of different substrates at time points 0 h, 4 h, 8 h, and 24 h across (A) young female (n = 4); (B) young male (n = 5); (C) elderly female (
n = 4); and (D) elderly male subjects (n = 5) were plotted. Choline (Cho) and its derivatives Glycerophosphocholine (GPC), Phosphoric 
choline (PC), phosphatidylcholine (Pchol), and sphingomyelin (SM) were added to the ex vivo fermentations. C0 - concentration at time 
0, Ci - concentration at individual time point. A t-test was performed to compare TMA production from choline derivatives at individual 
time points. Data are presented as mean ± standard deviation. ***: P value < 0.001, **: P value < 0.01, *: P value < 0.05. All experiments 
were performed in triplicates with individual subjects. TMA: trimethylamine; NMR: nuclear magnetic resonance.

series graph measuring relative TMA levels showed that all three prebiotics suppressed the conversion of 
choline derivatives to TMA [Figure 2A-C]. On comparison of relative TMA levels across the three 
prebiotics, GOS significantly reduced TMA with the lowest variance [Figure 2D]. GOS demonstrated a 
strong inhibition of choline conversion to TMA and was selected for further experiments.

Human stool samples from individual subjects were cultured as control (without prebiotics), control + GOS, 
choline, and choline + GOS, and the amount of TMA and choline was quantified after 24 h. We observed a 
significant reduction in TMA [Figure 2E] and an increase in choline[Figure 2F] in the choline + GOS group. 
This significant reduction in TMA and availability of choline indicates a long-lasting inhibition of cutC 
activity, possibly achieved via suppression of TMA producers at the community level or the inhibition of 
cutC expression at the genomic level. The cutC expression level was then measured by RT-PCR and a 
significant reduction in cutC was observed in the choline + GOS group (compared to control) [Figure 2G 
and H], which can explain the reduced TMA levels.

Enrichment of genus Blautia and reduction in Clostridium in the choline + GOS group
To examine the microbiota profile in human stool samples, shotgun metagenomic sequencing was 
performed on ex vivo anaerobic cultures.  The subjects (n = 11) were divided into three groups: control (n = 
7), choline (n = 4), and choline + GOS (n = 4). The term “choline” collectively refers to “choline and its 
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Figure 2. Choline-mediated increase in TMA was significantly reduced by GOS. Trendlines illustrating relative TMA conversion levels on 
treatment with (A) choline; (B) glycerophosphocholine; and (C) phosphoric choline across 0 h, 4 h, 8 h, and 24 h time points with 
different prebiotics (GOS, FOS, inulin). Whisker plot showing relative TMA levels across GOS (G); FOS (F); and inulin (I). Bar plot 
showing (E) TMA and (F) choline levels across control, control + GOS, choline, and choline + GOS. The ex vivo cultures include control 
(without prebiotics), choline, and choline + GOS. RNA was extracted, converted to cDNA, and analyzed by real-time quantitative PCR 
(qPCR) to quantitate (G) the transcript levels of cutC relative to the control. The qPCR product was run on 1X tris acetate 
ethylenediaminetetraacetic acid (TAE)gel in the following order: ladder, positive control (Desulfovibrio desulfuricans), negative control (no 
template control), control, choline, and choline + GOS. Student’s t-test was used to analyze the TMA, choline, and cutC levels, with data 
shown as mean ± SEM. ***: P value < 0.001, **: P value < 0.01, *: P value < 0.05 compared to respective controls. Each data point in the 
analysis represented an individual subject (n = 4) and all experiments were performed in triplicates. C0 denotes the concentration at 0 
time point and Ci indicates the concentration of metabolites at individual time point. cutC: choline trimethylamine-lyase; TMA: 
trimethylamine; GOS: galactooligosaccharides; SEM: standard error of the mean.

derivatives (GPC, PC)”. Taxa abundance was analyzed first between the Choline and Control groups, and 
second between the ChoGOS and Choline groups. Heat tree analysis revealed a notable reduction in 
Oscillospiraceae and an increase in Dialister [Figure 3A] in the choline group compared to the control. The 
choline group also showed a significant increase in the species Dialister hominis, Pseudoflavonifractor 
phocaeensis, and a reduction in Parabatceroides merdae [Figure 3B]. Compared to the choline group, the 
ChoGOS group displayed a significant increase in Firmicutes and a decrease in Bacteroidota. As per the 
tree, there was a significant increase in the family Lachnospiracease but a decrease in the family 
Clostridaceae [Figure 3C]. At the species level, ChoGOS showed a significant increase in Anaerostripes 
hadrus, Blautia glucerasea, Eubacterium rectale, and Bifidobacterium adolescentis and a reduction in 
Clostridium sp AF27_2A and Verscimonas coprocola [Figure 3D]. Further analysis of the relative abundance 
of taxa across the three groups at the phylum [Figure 3E] and genus levels [Figure 3F] revealed a significant 
increase in the genus Blautia [Figure 3G] and a reduction in Clostridium [Figure 3H] in the ChoGOS group 
across all samples.

Reduction in Clostridium species encoding cutC and cutD in the choline + GOS group
A significant reduction in the genus Clostridium was observed in the choline + GOS group. Previous studies 
have identified Clostridium as a TMA producer that encodes the cutC gene[16]. To confirm this, we 
investigated the abundance of specific Clostridium species in our dataset. Notably, we found a reduction in 
Clostridium citroniae, Clostridium fessum, Clostridium sp AF27_2AA, clostridium lavalense, Clostridium 
bolteas, Clostridium aldenese in the ChoGOS group compared to the Choline-only group [Supplementary 
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Figure 3. Enrichment of Blautia and reduction in Clostridium in the choline + GOS group. The hierarchical heat tree illustrates microbial 
abundance differences between (A) control vs. choline and (C) choline vs. ChoGOS. Red and green colors indicate higher and lower 
abundances, respectively, highlighting distinct microbial profiles between the choline and ChoGOS groups. (B) and (D) Volcano plots 
showing significantly different species differences (P value < 0.05, effect size > 0.2) identified using MaAsLin2, (E) and (F) presenting 
the relative abundances at the phyla and genera levels, respectively, while (G) and (H) showing significant changes in the genera Blautia 
and Clostridium in the ChoGOS group, with statistical significance denoted as *** (P value < 0.001), ** (P value < 0.01), * (P value < 
0.05). Control (n = 7), choline (n = 4), and choline + GOS (n = 4). Only microbial taxa with significant differences based on t-tests (P 
value < 0.05) are shown. Cho: choline; GOS: galactooligosaccharides.

Figure 2A]. We then annotated the metagenome data using uniref90 to identify bacterial species encoding
cutC and cutD, and to assess their relative abundance across the three groups. In the ChoGOS group,
Clostridium citroniae strains encoding cutC [Supplementary Figure 2B] and cutD [Supplementary Figure 2C
were absent compared to the choline-only group.

Altered microbiota diversity and distinct correlation networks across the three groups
Gut microbial diversity and complexity are key to understanding community structure and function. We
analyzed alpha and beta diversity, as well as the microbial correlation networks, across the three
experimental groups. The Shannon diversity index (H) was used to assess microbial species diversity within
the communities. ANOVA revealed no statistically significant differences in alpha diversity among the three
groups across all features (F = 2.89, P value = 0.08). Post hoc two-group comparisons using Welch’s t-test
showed marginal differences between the control vs. choline groups (t = 2.07, P value = 0.06) and no
significant difference between the ChoGOS vs choline groups (t = -0.85, P value = 0.409) [Supplementary
Figure 3A]. Beta diversity was measured using Bray-Curtis dissimilarity to measure microbial differences
between samples. Permutational multivariate analysis of variance (PERMANOVA) indicated a significant
difference in beta diversity across the three groups (F = 2.9, P value = 0.026, R2 = 0.24) [Supplementary
Figure 3B]. To further explore group-specific microbial interactions, we constructed microbial correlation
networks based on Pearson correlation of microbial abundances. The control group exhibited a sparse
correlation network [Supplementary Figure 3C], whereas the choline [Supplementary Figure 2D] and
choline + GOS groups [Supplementary Figure 3E] showed denser and more clustered correlation patterns.

]
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Significant enrichment in Chorismate and reduction in the tryptophan biosynthesis pathway
We compared pathway enrichment between the choline and control groups and observed an increase in the 
superpathway of aromatic amino acid biosynthesis (COMPLETE-ARO-PWY), chorismate biosynthesis 
from 3-dehydroquinate (PWY-6163), and chorismate biosynthesis I (ARO-PWY) [Figure 4A]. This increase 
was associated with an increase in the genus Dialister [Figure 4B].

Next, we compared the ChoGOS group with the choline group [Figure 4C] and observed a significant 
reduction in L-tryptophan biosynthesis (TRPSYN-PWY), L-methionine biosynthesis IV (PWY-7977), and 
the superpathway of adenosylcobalamin salvage (COBALSYN-PWY), which corresponded to a decrease in 
the abundance of Faecalibacterium and Clostridium [Figure 4D].

Enriched pathways included the pentose phosphate pathway (PWY-8178) (non-oxidative branch), the 
Calvin-Benson-Bassham cycle (CALVIN-PWY), and various co-factor biosynthesis pathway required for 
the growth and function of Blautia [Figure 4D] The volcano plot highlights only those pathways and 
bacteria taxa with a P value < 0.05 and an effect size coefficient > 2. We also observed that, in the presence of 
added choline, clostridium sp. were enriched, and tryptophan biosynthesis was upregulated [Supplementary 
Figure 4A]. In the ChoGOS group, tryptophan biosynthesis was enriched primarily by Blautia, Anaerostipes, 
and Lachnospiracease [Supplementary Figure 4A and B]. A detailed annotation of all pathways is provided 
in Supplementary Table 2.

ChoGOS significantly reduces Desulfovibrio desulfuricans growth and cutC gene copy number
To determine whether GOS directly suppresses cutC expression or indirectly affects it by inhibiting the 
growth of cutC-encoding microbes, we used Desulfovibrio desulfuricans (ATCC 27774), a choline-
degrading, sulfate-reducing bacterium that carries the cutC gene[25]. A significant reduction in D. 
desulfuricans growth was observed in the presence of Choline + GOS compared to choline alone 
[Figure 5A]. This growth inhibition was accompanied by reduced TMA levels [Figure 5B]. We further 
quantitated the copy numbers of the cutC gene and 16s rRNA using RT-PCR with a standard curve method. 
The ChoGOS group showed a reduced percentage of cutC gene copies [Figure 5C], as well as diminished 
band intensity for the cutC gene [Figure 5D]. These findings indicate that ChoGOS may inhibit the growth 
of cutC-encoding gut microbes, leading to a concurrent reduction in cutC copy number and, consequently, 
TMA levels.

DISCUSSION
Choline is an essential micronutrient, yet many individuals do not meet the recommended daily intake. 
Chronic choline deficiency has been associated with cognitive decline, liver and muscle damage, and 
elevated homocysteine levels - a known risk factor for CVD[35]. The conversion of dietary choline to TMA 
by the gut microbiota can further contribute to choline deficiency and its related cardiometabolic risks. In 
this study, we investigated gut microbiota-mediated choline metabolism and explored the use of prebiotics 
to modulate the microbiota in order to enhance choline bioavailability and minimize TMA production. Our 
findings suggest age, gender, and the specific form of choline consumed may influence its conversion to 
TMA. This insight could inform the development of personalized nutritional guidelines. Additionally, we 
observed that not all choline-containing derivatives are converted to TMA at the same rate by the gut 
microbiota. This indicates that different choline derivatives vary in their accessibility to microbial enzymes 
responsible for TMA production. For example, comparative studies have shown that consumption of 
phosphatidylcholine, common in eggs, results in lower plasma TMAO levels than intake of choline 
bitartrate, a common dietary supplement[36]. It is possible that the steric hindrance caused by the fatty acid 
chains in phosphatidylcholine impedes the phosphocholine head group from binding to the catalytic site of 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202505/mrr40090-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202505/mrr40090-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202505/mrr40090-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202505/mrr40090-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202505/mrr40090-SupplementaryMaterials.pdf


Page 10 of Goh et al. Microbiome Res Rep. 2025;4:21 https://dx.doi.org/10.20517/mrr.2024.9015

Figure 4. Significant enrichment in Chorismate and reduction in the tryptophan biosynthesis pathway. Volcano plots illustrate 
significantly altered metabolic pathways and their associated genera between choline and control groups (A and B), and ChoGOS versus 
choline (C and D). Microbial pathway abundance in the community was profiled using the HUMAnN pipeline, and differential analysis 
was performed using MaAsLin2 with a general linear model (feature ~ group). Volcano plots were generated in R. Red: P value < 0.02, 
coefficient > 2; Blue: P value < 0.02; Green: coefficient > 2. Black: not significant.  Cho: choline; GOS: galactooligosaccharides.

cutC. These findings may contribute to more effective dietary recommendations by guiding the selection of 
choline sources that minimize TMA generation and potentially reduce the risk of cardiometabolic diseases.

We further investigated the ability of different prebiotics to suppress microbially mediated choline 
metabolism to TMA and found that GOS exhibited the best performance compared to inulin and FOS. 
GOS, prebiotics produced through β-galactosidase transgalactosylation, selectively stimulate the growth of 
beneficial bacteria such as Bifidobacterium[37], Ruminococcus gnavus[38], and Lactobacillus[39], which produce 
short-chain fatty acids that can reduce potential pathogenic bacteria[40]. In our study, we also observed an 
increase in Bifidobacterium, Blautia, Lactobacilli, and Ruminococcus, accompanied by a simultaneous 
reduction in Coprobacter and Enterocloster. The genus Blautia is an anaerobic bacteria widely distributed in 
the mammalian gut and has been reported to increase in abundance following supplementation with the 
prebiotic 2’-fucosyllactose[41]. Metagenomic studies have shown that individuals with increased levels of 
Blautia exhibit a proliferation of genes encoding extracellular α-l-fucosidase, an enzyme that releases lactose 
and fucose - both of which serve as substrates for Blautia growth. Studies have also reported that an increase 
in Bifidobacterium in the gut can antagonize the activity of spoilage bacteria such as Clostridium sp, thereby 
reducing the production of toxic fermentation byproducts. Additionally, a rise in Blautia abundance has 
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Figure 5. GOS inhibits Desulfovibrio desulfuricans growth and reduces cutC gene copy number. (A) Average optical density (OD) at 600 
nm measurements show a significant reduction in Desulfovibrio desulfuricans growth in the ChoGOS group compared to the choline-alone 
group; (B) Box plot of the TMA concentrations in the culture media indicating a marginal reduction in TMA levels in the ChoGOS group (
P value = 0.0635); (C) Box plot showing the percentage reduction in cutC gene copy number in the ChoGOS group (P value = 0.057); 
(D) Image of a 1.5% agarose gel (1x TAE) illustrating amplification of the cutC gene across different groups and a positive control, 
plasmid. Statistical comparisons between groups were performed using t-tests, and data are presented as mean ± SEM. Experiments 
were conducted in triplicate for each group: control, choline chloride (CC), choline + GOS, and CC + GOS, with n = 4 per group. 
Significance is noted as **: P value < 0.01. GOS: galactooligosaccharides; TMA: trimethylamine; Cho: choline; SEM: standard error of the 
mean; TAE: tris acetate ethylenediaminetetraacetic acid.

been associated with decreased Clostridium colonization[42]. These observations support our findings that 
increases in Bifidobacterium and Blautia are linked to reductions in Clostridium species. Notably, the 
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reduction in Clostridium observed with on GOS supplementation was particularly associated with the 
decrease in a subset of Clostridium species harboring genes for cutC and cutD.

Gut bacteria can metabolize choline into TMA, which is subsequently converted to TMAO in the liver. 
Bacterial families involved in this process include Firmicutes and Proteobacteria. Specifically, species such as 
Bacteroides, Clostridium, and members of the Enterobacteriaceae family have been identified as key players 
in choline metabolism[13]. Short-chain fatty acids (SCFAs) play a vital role in maintaining health and 
regulating disease by contributing to gut homeostasis[43]. Supplementation with choline has been shown to 
alter the gut microbiota, potentially modifying SCFAs and promoting an increase in the genus Dialister. 
Similarly, the presence of the prebiotics GOS has been associated with an increase in Blautia and a decrease 
in a subset of Clostridium. Clostridium species can utilize large amounts of nutrients that cannot be digested 
by host enzymes, leading to the production of numerous SCFAs that support intestinal homeostasis[44].

In our investigation of prebiotics-mediated choline metabolism, we observed that choline stimulated TMA 
producers, which in turn promoted an increase in Dialister, enriching the chorismate pathway. In contrast, 
prebiotics led to a reduction in Clostridium, thereby enhancing the tryptophan pathway. Collectively, these 
findings suggest that choline metabolism induces shifts in gut microbiota that influence the shikimate 
pathway, one-carbon metabolism, amino acid metabolism, and immune modulation[45]. Choline is a key 
contributor to one-carbon metabolism, which plays a role in methyl group synthesis and amino acid 
metabolism[6]. Chorismate is an important intermediate in the shikimate pathway, responsible for the 
bacterial synthesis of aromatic amino acids such as tryptophan, phenylalanine, and tyrosine[46]. Choline has 
recognized anti-inflammatory properties, while chorismate-derived metabolites - such as tryptophan 
derivatives - can modulate immune responses[47].

This study has two main limitations: first, the small sample size; and second, the use of an ex vivo model 
rather than a dietary intervention study involving choline + GOS in human subjects.

In summary, our study presents several key findings. First, microbial choline metabolism to TMA is 
influenced by the availability of specific substrates in the presence of prebiotics; Second, choline-induced 
TMA production was significantly reduced by GOS; Third, this reduction in TMA was associated with 
notable changes in gut microbiota, particularly a loss of subsets of TMA producers; Lastly, TMA-stimulated 
microbiota favored amino acid metabolism, while GOS promoted tryptophan and methionine biosynthetic 
pathways. We conclude that prebiotic-mediated modulation of the microbiota to reduce TMA production 
would be impactful in reducing the risk of cardiovascular disease.
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