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Abstract
The potentially powerful impact of microbiota has attracted much attention. For example, dysbiosis of the gut 
microbiota could be linked to various cancers. It is probable that DNA damage and DNA repair impairment due to 
inflammation from gut dysbiosis would be of importance in carcinogenesis and/or preventing carcinogenesis. In 
fact, the signature of the gut microbiome has been shown to be associated with responses and/or successful 
survival rate to certain immune-blockade therapy in several cancers. Conversely, living cells have to cope with the 
danger of reactive oxygen species (ROS) disturbing the integrity of biomolecules, which can eventually lead to 
carcinogenesis if otherwise untreated. Gut microbiota could modulate considerable levels of ROS and oxidative 
damage. Interestingly, an anti-proliferative family (APRO) characterized by several immediate early responsive 
gene products might be deeply involved in the mechanism of carcinogenesis. It has been described that APRO 
proteins also participate in a variety of cellular processes including cell division, DNA repair, and mRNA stability. 
The biological function of APRO proteins seems to be quite complicated; however, they might be a key modulator 
of microRNAs (miRNAs) for post-transcriptional regulation. The next generation of therapy would likely contain 
strategies for modifying the redox background as well as the regulation of ROS in cells and/or for better DNA 
repair machinery with the APRO proteins via the modulation of miRNA-derived post-transcriptional regulation in a 
sustainable manner. Given the important function of the gut microbiota in balancing the immune network, 
carcinogenesis could therefore be prevented by suitable gut microbiota via the roles of APRO proteins. 
Consequently, probiotics might play a key role in the modulation of gut immune system in keeping healthy and/or 
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preventing cancers.
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INTRODUCTION
Microbiota is microorganisms including bacteria living in the digestive tracts. The gut is the main location 
of human microbiota. The gut microbiota is held in an intricate balance[1]. Alterations in the microbiota are 
known to be influenced by several dietary, genetic, and environmental factors[2], which have been shown to 
trigger redox signaling within the gut mucosa[3]. Control of redox signaling may direct the outcome of an 
inflammatory event[4]. Therefore, gut microbiota transducing the redox signaling represents a performer in 
the control of the response to cancer therapies[5]. Redox medicine is a new therapeutic concept directing 
reactive oxygen species (ROS) for health improvement[6]. However, excessive ROS production causes 
oxidative stress, which is involved in the pathogenesis of various cancers[7]. While the production of ROS is 
a cause of DNA damage, the DNA damage could also be induced by alterations in the DNA repair 
machinery[8]. Gut microbiota is intensely involved in the signaling of ROS production, DNA damage, and 
DNA repair machinery within host cells. Therefore, inflammation, gut microbiota, ROS, and cancer 
therapeutics are closely associated with each other, which can affect the occurrence, progression, and 
treatment of cancers[9]. Several machineries in a cell are also responsible for multidrug resistance. It has been 
shown that complex redox signaling networks can regulate the pathways related to the progress of 
resistance[10]. The development of multidrug resistance generally characterizes the major problem of cancer 
therapy, which may result in poor prognosis of cancer patients[11]. Fundamental genetic modifications in 
cancer cells via several DNA damages by ROS may induce the changes of various genes’ expressions, 
regulating specific pathways that could control DNA repair, apoptosis, autophagy, and drug targets[12,13].

In our gut, there are numerous bacteria that are valuable to us, but pathogenic microorganisms may also 
exist. The commensal bacteria can even regulate the effectiveness of immune checkpoint cancer therapy by 
modulating the immune response to cancers[14]. For example, the benefits of therapy could be observed in 
cancer patients treated with anti-programmed cell death ligand 1 (PDL1), anti- Programmed cell death 
protein 1 (PD1), and/or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) blockade therapies. 
Microbial imbalance in the gut, called dysbiosis, is now supposed as one of the entrances to cancers[14,15]. In 
addition, the gut microbiota could increase the efficacy and decrease the toxicity of current chemotherapy 
mediators[16]. Communication between gut microbiota and host cells may signify a novel research area into 
potential machineries regulating the efficacy of cancer immune therapies. Especially, host-directed 
immunomodulation via the gut microbiota appears encouraging for a successful defense against cancers. 
Here, we summarize the key roles of ROS and/or inflammation in homeostasis, gut microbiota, and 
interesting anti-proliferative (APRO) family family proteins involved in the cell signaling, which would 
address emerging therapeutic strategies with the potential molecular mechanisms to strengthen protective 
host immunity against cancers.

GUT-CANCER AXIS IN CARCINOGENESIS
Gut microbiota consists of a multispecies microbial community that develops symbiosis with the host 
organism[17]. The microbiota is an important source of various metabolites, which exert important functions 
on the regulation of intestinal epithelial and immune homeostasis[18]. Gut dysbiosis is a perturbation of the 
microbiota, which may disturb the structure and/or function of the gut proteome and gut immunity[19]. 
Therefore, dysbiosis could lead to many diseases such as inflammatory bowel disease and/or cancer 
[Figure 1]. In fact, several studies have revealed an association between poor gut microbiota and 
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Figure 1. Illustration of the relationship among gut microbiota, cytotoxic T cells, cancer cells, and immune checkpoints inhibitors. There 
might be two opposite actions of gut microbiota. One is oncogenic or the cancer-causing gut-cancer axis. The other is the gut-
anticancer axis favorable to the host. Immune checkpoint molecules are involved in the cell-cell communications, which are present on 
T cells and shared on cancer cells. Immune checkpoint molecules send signals to inhibit T cell activities of killing cancer cells. 
Monoclonal antibodies have been used as therapeutic checkpoint inhibitors. Through the gut-anticancer axis, the gut microbiota could 
activate cytotoxic T cells through undefined mechanisms including the effect of short-chain fatty acids (SCFAs). The arrows indicate 
stimulation and/or augmentation. Note that some critical events have been omitted for clarity. CTLA4: Cytotoxic T-lymphocyte-
associated protein 4; PD1: programmed cell death protein 1; PDL1: programmed cell death ligand 1; CD: cluster of differentiation; ROS: 
reactive oxygen species.

carcinogenesis. For example, close relationships between the gut microbiota and colorectal cancer in 
humans have been found, which are implicated in intricate immune responses of gut dysbiosis influencing 
carcinogenesis[20]. Among gut microbiota-derived metabolites, trimethylamine-N-oxide has a possible role 
in the carcinogenesis of colorectal cancer[21]. However, the specific stimulus of the metabolites on 
carcinogenesis may be conditional. As mentioned above, diet has an influence on the construction and/or 
metabolism of the gut microbiota. Several metabolites, such as short-chain fatty acids (SCFAs) and indole 
derivatives, may act as guardians against carcinogenesis by adjusting immune responses[20]. The gut 
microbiome has also been linked to gastric and esophageal cancers[22]. In addition, gut dysbiosis is associated 
with a cycle of hepatocyte injury and regeneration characteristic of chronic liver disease, suggesting that the 
gut microbiota influences hepatic carcinogenesis[23]. Actually, it has been shown that the gut microbiota is 
associated with the development of hepatocellular carcinoma[24]. Different features of the gut microbiota 
have been observed between prostate cancer patients and benign prostatic hypertrophy, while the former 
has presented a higher prevalence of Bacteroides massiliensis compared to cases of benign prostatic 
hypertrophy[25]. Furthermore, the fecal microbiota of breast cancer and prostate cancer patients differs from 
that of control individuals[26]. In postmenopausal breast cancer patients, an altered fecal microbiota 
composition has also been observed compared with healthy controls[27]. Of note, alterations of the gut 
microbiota have been associated with increased estrogen deconjugation through the secretion of β-
glucuronidase, suggesting the possibility of estrogen-related malignancy developing due to microbiota 
alteration[28]. In addition, gut microbiota closely participates in the development of lung cancer[29]. 
Furthermore, a supportive role for the gut microbiota has been shown in the development of lymphoid 
neoplasms[30]. DNA of Helicobacter spp. has been frequently reported to be detected in pancreatic cancer 
tissues[31]. Therefore, Helicobacter pylori infection may be a considerable risk factor for pancreatic ductal 
adenocarcinoma[32]. In addition, Helicobacter spp. is thought to be involved in chronic and/or acute 
pancreatitis as well as autoimmune pancreatitis[33]. An increase in these bacteria species is also associated 
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with bile duct inflammation, the severity of bile duct fibrosis, and cholangiocarcinoma proliferation[34]. 
Conversely, it has been shown that metformin significantly changes the composition and/or predicted 
function of the gut microbiota in mice, suggesting an implication of metformin usage in the prevention of 
certain cancers[35]. Thus, many studies have pointed toward the gut microbiota as a key manager in host 
conditions against the development of various cancers. In other words, microbial imbalance and/or 
dysbiosis are now supposed as one of the gateways to several cancers.

GUT-ANTICANCER AXIS IN CANCER THERAPY
It is generally recognized that commensal microorganisms may coexist within the human gut and other 
organs protecting against several cancers. For example, gut microbiota dysbiosis of a cancer patient has been 
identified as a prognostic factor for the success of cancer treatment[36]. In addition, the role of the microbiota 
in the effectiveness of anti-tumor therapeutics has been designated in various cancers including colorectal 
cancer, melanoma, and/or sarcoma[37]. The gut mucosal defense system might employ immunological 
barriers against cancers. Several cohort studies have revealed that patients with colorectal cancer with a 
great amount of Fusobacterium nucleatum live considerably shorter than patients with lower counts of this 
bacteria species[38]. Furthermore, it has been documented that some chemotherapies may play a key role in 
modifying the fecal microbiota of breast cancer patients[39]. Mice transfaunated with modified microbiota 
communities have been shown to harbor fewer neoplastic lesions in the colon[40]. Several therapeutics are 
offered with which to change the composition of gut microbiota by the administration of probiotics and/or 
prebiotics, which could provide various benefits for the treatment of colorectal cancer[41]. In this way, 
probiotics have been exploited to control gut microbiota, which are defined as living microorganisms with a 
great health benefit on the administered individuals[42]. Probiotics could also decrease the side effects of 
various cancer therapies[43]. In addition, the administration of probiotics has decreased the infection 
incidence of pneumonia after anti-cancer surgery[44]. Accumulating data reveal that modifications in the gut 
microbiome may contribute to the development, prognosis, and management of several diseases, including 
various cancers, via the interaction with the immune system [Figure 1]. For example, abundant single 
species in the gut mucosa, Akkermansia muciniphila, might contribute to the efficacy of PD1 blockade 
immunotherapy[45]. Some compounds may possess the beneficial properties of gut bacteria, such as short-
chain fatty acids to modulate immune responses[46]. Prebiotics, which could stimulate the growth of certain 
microorganisms, may also trigger modifications in the composition of gut microbiota deliberating such 
great health benefits[47]. Furthermore, they may be critical to the pharmacological effects of cancer 
chemotherapies[48]. Thus, there is evidence highlighting the significance of the connections between 
commensal bacteria and both cancer and immune cells in controlling the effectiveness of cancer therapy, 
suggesting that gut bacteria could also affect the response to therapeutic cancer medications[49]. As 
mentioned above, gut bacteria are closely linked to targeted immunotherapies such as anti-PDL1 and anti-
CLTA4 blockade therapies[50]. At the same time, anti-cancer treatments may modify the gut microbiota 
composition, disturbing host homeostasis[51]. The mechanistic elucidation of gut microbiota should be 
critical before personalized medicine can be made by modulation of the gut microbiota. More 
comprehension of how gut microbiota influences cancers and immunity will help us find better therapies to 
manage and treat malignant disease.

PROBIOTICS AS A THERAPEUTIC INTERMEDIATION AGAINST CANCER
The microbiota protects and/or damages host cells including immune cells, indicating that commensal 
microbes change host immunity, which might contribute to the homeostasis of the host[52]. Generally, 
immune cells release ROS, which may cause DNA damage[53]. Therefore, inflammation and oxidative stress 
are thought to be involved in carcinogenesis, enhancing the further release of ROS[54]. Some key 
physiological roles of ROS include the regulation of enzymes involved in DNA synthesis and DNA 
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repair[55]. For example, several studies have revealed that nickel-iron could bring DNA damage via the DNA 
binding and/or ROS production, and nickel-iron could also suppress the function of DNA repair systems 
containing homologous recombination repair, mismatch repair, nucleotide repair, base excision repair, and 
nonhomologous repair pathways[56]. Oral nickel consumption definitely alters the interaction between the 
host and the intestinal microbial flora[57]. ROS are defined as oxygen-containing active molecules capable of 
reacting with numerous biologically important molecules, which may contain various reactive radicals such 
as hydroxyl radicals and superoxide anions as well as non-radical species including hydrogen peroxide 
mostly derived from intracellular metabolism and/or inflammatory reactions[58]. One of the leading 
intracellular resources of ROS is the electron transport chain reaction in mitochondrial throughout ATP 
synthesis[59]. ROS were initially believed to function as molecules to damage various components in a cell. 
Now, many studies have established that ROS also play a crucial role in various cellular processes[60]. Certain 
levels of ROS affect the signaling pathway to regulate mRNA and/or protein expression, which determines 
the cell destiny, thus profoundly modulating either cell survival or cell apoptosis[61]. Cancer treatments 
designed to produce excessive concentrations of ROS have been developed to promote cancer cell death 
and/or apoptosis through considerable oxidative damages, which may include plasma membrane 
composition damage of cancer cells via the oxidation of both lipid bilayer and membrane proteins[62]. ROS 
may also influence the ability of dendritic cells (DCs) such as CD8-positive T cells[63]. DCs are known as 
chief players in coordinating the immune responses, and their interaction with intestinal microbiota is 
critical for gut homeostasis[64]. The DCs from older animals indicate signs of mitochondrial dysfunction, 
suggesting an increased ROS production compared to DCs from younger animals[65]. This finding indicates 
that an intensification in the environmental redox could impede DC function, although DCs actively utilize 
ROS to enable their important functions.

Probiotics are a group of bacteria that play a crucial role in gut microbiota homeostasis. They are recognized 
to be valuable in preventing various diseases including inflammatory bowel disease, which is related to ROS 
levels in animal models[66]. Certain gut bacteria are linked to greater levels of ROS induced by higher fat 
intake[67]. Microbes that can exert a protective effect at the gastrointestinal level by preventing host DNA 
damage are considered important probiotics for reducing gut pathologies[68]. Recently, it has been suggested 
that probiotics might possess a potential molecular mechanism through the action of miRNAs. For 
example, the useful properties of probiotics could be elucidated based on the pivotal role of certain 
miRNAs[69], which is addressed in the next section. Owing to the amplified expression of tumor suppressors 
and/or reduced level of oncogenes after treatment with probiotics, they may be considered valuable for 
cancer therapy[70]. Future treatments against cancers will likely comprise strategies for modifying the 
environment at distinct locations in a bearable manner. Therefore, understanding redox regulation of 
various physiological processes is imperative for evolving new therapeutic approaches.

RELATIONSHIP AMONG GUT MICROBIOTA, ROS, POST-TRANSCRIPTIONAL 
REGULATION, AND APRO PROTEINS IN CARCINOGENESIS
B-cell translocation gene 1 (BTG1) is a participant of the anti-proliferative (APRO) family proteins, which 
prevent cancer cell growth and stimulate cancer cell apoptosis[71]. Interestingly, the expression of BTG1 in 
gut intraepithelial lymphocytes is high[72]. Overexpression of BTG1 along with X-ray irradiation might 
induce the production of ROS, enhancing the radiation sensitivity of human breast cancer to therapy[73]. 
Radiotherapy is one of the most effective strategies for breast cancer therapeutics[74]. BTG1 overexpression is 
involved in the inhibition of PI3K/AKT signaling pathways, which induce the growth inhibition of cancer 
cells[73]. Generation of ROS is also the common event mediating BTG2[75], which has been revealed to make 
cancer cells more sensitive to anti-solid tumor treatment with doxorubicin by upregulating SOD2 
expression[76]. In response to DNA damages, transducer of ErbB 1 (TOB1), another member of the APRO 
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family, increases due to transcriptional and/or protein stabilization mechanisms, resulting in inhibition of 
apoptotic signaling[77]. In this way, ROS-mediated cell responses, including several carcinogenesis ones, 
appear to be involved in the functions of the APRO family. Actually, the expression of an APRO protein is 
often downregulated in various cancer cells[78]. The APRO genes are categorized as immediate early 
responsive genes[79]. Gene products of the APRO family include BTG1, pheochromocytoma cell 3 (PC3)/ 
tetradecanoyl phorbol acetate-inducible sequences 21/BTG2, Abundant in Neuroepithelium Area /BTG3, 
TOB1, TOB2, PC3B, and others[79], which have been shown to contribute to diverse cellular activities 
including DNA repair, mRNA stability, and cell-division[80,81].

APRO proteins have been shown to have diverse and important roles; therefore, the molecular mechanisms 
competent in the proteins may be multifactorial. Some members of the APRO family have been revealed to 
be involved in the regulation of mRNA transcription by mRNA deadenylation in nucleus and cytoplasm[82]. 
The N-terminal well-preserved APRO domain has been revealed as the segment for protein-protein 
interaction, which is able to associate with DNA-binding transcription factors as well as with the 
deadenylase subunits (CNOT7 and CNOT8) of the carbon catabolite repression 4-negative on TATA-less 
protein complex[83]. For example, TOB1 can connect to the poly-A nuclease complex CCR4- Chromatin 
assembly factor-1 (CAF1) and/or the cytoplasmic poly-A binding protein (PABP), indicating the roles of 
TOB1 in an assembly of mRNA deadenylation machinery[84]. It has also been shown that both TOB1 and 
TOB2 proteins possess a conserved C-terminal domain with two PABP-interacting motif 2[85]. These TOB 
proteins can associate with CAF1 and PABP at the same time, which can induce the deadenylation of 
mRNAs[86]. Remarkably, the anti-proliferative properties of TOB1 have been proposed to depend on the 
association to the CAF1-CCR4 deadenylase complex[86], indicating that TOB proteins can employ their anti-
proliferative activity by modifying mRNA turnover [Figure 2]. BTG2 also binds to the CAF1 deadenylase 
via the APRO domain for regulating cell proliferation[87]. It has been revealed that mRNA destabilization by 
the roles of BTG1 and/or BTG2 could retain the cell quiescence[88]. miRNAs could prevent mRNAs function 
by pairing to the 3’ UTR of the target mRNAs, which later prevents mRNA translation by introducing poly-
A tail deadenylation and mRNA destabilization [Figure 2][89]. miRNA-mediated specific deadenylation is 
reliant on the activity of CAF1 and PABP, which act as miRNA-related coactivators[90]. mRNA 
deadenylation may also occur following the main translational inhibition, indicating an action of miRNA on 
mRNA destabilization[90,91]. The miRNA burdened RNA-induced silencing complex (miRISC) might interact 
with the PABP, CAF1, and CCR4 deadenylases[90,91]. Remarkably, a central module of miRISC might 
associate with PABP through its C-terminal region, which is essential for miRNA-mediated 
deadenylation[90,91]. Since APRO proteins could interact with the CAF1-CCR4 complex, APRO proteins 
might be a modulator of the roles of miRNA [Figure 2]. In addition, the CAF1-CCR4 complex has been 
revealed as a multifunctional controller that might play important roles in the cellular processes of 
eukaryotes[92]. Based on the various roles of APRO proteins, the expressions might be regulated by many 
miRNAs. Actually, miR-21 has been revealed to control BTG2 gene expression during carcinogenesis[93]. 
More understanding of miRNA could help to improve cancer diagnosis and/or therapy.

FUTURE PERSPECTIVES
Broad studies have provided evidence on the involvement of the gut microbiota in regulating the pathways 
related to carcinogenesis[94]. In particular, gut dysbiosis has been persuasively linked to some processes of 
carcinogenesis, which could be oncogenic over the progression of gut mucosal inflammation[95,96]. It is, 
therefore, also possible that microorganisms adjacent to and/or distant from tumors might disturb cancer 
initiation, progression, and the course of the disease. Now, gut microbiota is an emergent target in the next 
cancer therapeutics. Currently, there are some therapeutic methods accessible that can change gut 
microbiota[97]. In particular, the administration of prebiotics and probiotics seems to be beneficial in certain 
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Figure 2. Schematic demonstration of miRNA-mediated inhibition of mRNAs. The GW182 protein interacts with AGO2 protein 
assembling the miRISC complex, which may enable the deadenylation and mRNAs degradation by PABP and APRO proteins with the 
CAF1-CCR4-NOT1 complex. The CAF1-CCR4-NOT1 complex is recruited to the 3’ UTR of specific mRNAs through interaction with 
PABP protein. APRO proteins may also associate with the PABP protein and recruit the CAF1-CCR4-NOT1 complex. Consequently, 
miRNAs could play dynamic roles in regulating mRNA expression via the decapping, translational inhibition, deadenylation, and 
degradation of mRNAs. The hammerhead represents inhibition. Note that some critical pathways have been omitted for clarity. AGO2: 
Argonaute2; PABP: poly(A)-binding protein; APRO: anti-proliferative; ORF: open reading frame; ROS: reactive oxygen species; miRISC: 
microRNA-induced silencing complex; AUG: initiating codon ATG; CAF1: chromatin assembly factor-1; CCR4-NOT: carbon catabolite 
repression 4-negative on TATA-less.

Figure 3. The relationship between cytotoxic T cells and cancer cells in a body resembles the relationship between tumor suppressor 
APRO family proteins and oncogenesis in a cell. It could be hypothesized that the former is regulated with immune checkpoint 
molecules such as PD1/PDL1 and CTLA4, whereas the latter may be regulated by various miRNAs. The gut commensal microbiota 
might support both phases of the anti-cancer activity via unclear factors, possibly including ROS and/or SCFAs. APRO: Anti-
proliferative; CTLA4: cytotoxic T-lymphocyte-associated protein 4; PD1: programmed cell death protein 1; PDL1: programmed cell death 
ligand 1; BTG1: B-cell translocation gene 1; TOB: transducer of ErbB-2; ROS: reactive oxygen species; SCFAs: short-chain fatty acids.

circumstances[97]. Additionally, crucial studies have established the significant impact of fecal microbiota 
transplantation on the host immune responses[98]. Administration of certain probiotic bacteria appears to 
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support cancer treatment owing to their immunomodulatory activities and the ability to decrease adverse 
effects of anti-cancer therapy[99]. In particular, the uncomfortable events after chemotherapy as well as 
radiotherapy could be decreased by probiotic administration[100]. Furthermore, we found that the TOB1 
expression levels in colon epithelium have been increased and/or upregulated by stimulation with certain 
microorganisms (unpublished). If so, gut microbiota could potentiate the effect of cancer therapy. 
Consistently, the growth suppression by adenovirus-mediated TOB1 protein in pancreatic cancer has been 
described, suggesting an application of APRO proteins for chemotherapy-resistant cancerous peritonitis[101]. 
Identification of such supportive mechanisms may provide a promising viewpoint for microbiota-based 
therapies, which could be integrated with general cancer therapy to improve the outcomes of patients 
[Figure 3]. However, this requires intensive research in the future. Future analyses are also mandatory to 
elucidate the mechanisms by which the microbiome may assist as a basis for diagnostics and/or treatments 
for cancer. Moreover, there is a strong necessity to assess the safety of probiotics and/or fecal microbiota 
transplantation with regard to their long-term clinical effects.
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