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INTRODUCTION

As the world’s population ages and life expectancy 
increases, many individuals are faced with an 
increased risk of developing dementia. The most 
common form of dementia is Alzheimer’s disease (AD). 
About 35.6 million people worldwide are now 
suffering from AD, and the disease is expected to 
affect 115 million by 2050.[1] Although this disease 
has been known about for over a century, there is 
no curative treatment available so far. At present, 
four drugs have been approved by the United States 
Food and Drug Administration for the symptomatic 
treatment of AD. The acetylcholinesterase (AChE) 
inhibitors donepezil, rivastigmine, and galantamine 
are suggested for managing mild‑to‑moderate 
AD, whereas donepezil and memantine, a 

noncompetitive antagonist of N‑methyl‑D‑aspartate 
receptors (NMDAR), is indicated for patients with 
moderate or severe AD.[1‑3]

Pathologically, AD is characterized by atrophy 
of the hippocampus and neocortex resulting from 
neuronal and synaptic loss, and the deposition of two 
proteinaceous lesions: senile plaques containing a 
core of amyloid‑beta (Aβ) peptide and neurofibrillary 
tangles (NFT) composed of hyperphosphorylated 
microtubule‑associated tau protein.[3,4] It is well‑accepted 
that the accumulation of Aβ protein plays a central role 
in the pathogenesis of AD. The severity of dementia 
in AD correlates more strong with cortical levels of 
soluble Aβ species than with insoluble amyloid plaque 
burden.[5,6] Experimentally, soluble Aβ oligomers have 
been specifically shown to block hippocampal long‑term 
potentiation (LTP), an electrophysiological correlate of 
learning and memory, in vivo and in brain slices.[7‑9] 
Understanding precisely how Aβ impairs hippocampal 
synaptic function could enable the development of 
potential therapeutics for AD.
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Synaptic loss is one of the pathological hallmarks of AD 
and the best correlate of cognitive decline[10,11] suggesting 
that it is a critical event in the pathophysiology of 
the disease. Several factors such as Aβ production, 
cholinergic dysfunction, NFT accumulation, 
inflammatory agents, oxidative stress, mitochondrial 
dysfunction, glutamate‑mediated excitotoxicity, and 
genetic components are reported to be involved in 
the pathogenesis.[3] Proposed explanations for the 
pathophysiology of AD include the cholinergic 
hypothesis,[11] the soluble Aβ oligomers hypothesis,[12] 
and the tau hypothesis.[12,13]

CHOLINERGIC SYSTEM

Acetylcholine (ACh) is widely distributed in the nervous 
system and plays a critical role in cerebral cortical 
development, cortical activity, and learning and memory 
processes. Cholinergic neurons in the brainstem and 
basal forebrain project axons to many areas of the brain. 
All functions of the cholinergic system are controlled 
by the interaction of ACh with two families of receptors: 
muscarinic ACh receptors (mAChRs) and nicotinic ACh 
receptors (nAChRs).[14]

Hippocampal cholinergic activity contributes to memory
Many studies have shown that hippocampal‑dependent 
learning is associated with an increase in hippocampal 
ACh levels; thus, the elevation of extracellular 
ACh is thought to reflect hippocampal‑dependent 
memory processes.[15] Several behavioral studies 
have demonstrated that lesion‑induced damage to 
cholinergic activity in the basal forebrain and its 
projections to the neocortex induced learning and 
memory deficits.[16] Pharmacological experiments have 
further confirmed that cholinergic receptor agonists 
and acetylcholinesterase inhibitors (AChEIs) reduce 
the severity of cognitive dysfunction,[17] whereas 
anticholinergic drugs cause learning and memory 
deficits in both animal and humans.[18] Antagonists of 
mAChRs such as scopolamine, impair the encoding 
of new memories in animal models of learning 
and memory and produce cognitive impairment in 
humans.[15]

It has been found that pharmacological activation of 
mAChRs or nAChRs produces an LTP‑like increase 
in synaptic transmission in the hippocampal CA1 
region.[14] Blockade of the presynaptic inhibitory M2/M4 
subtype of mAChRs by methoctramine increased ACh 
levels, and elicited a pharmacological LTP[19] that shares 
a similar mechanism with tetanus‑induced LTP.[20] In 
accordance, both the endogenous release of ACh in vivo 
and the exogenous application of mAChR agonists 
in vitro facilitate the induction of LTP.[14] Increasing 
endogenously released ACh specifically activates 

the nAChR, facilitating LTP induction.[21] Selective 
depletion of medial septum cholinergic neurons caused 
LTP impairment and glutamatergic synaptic current 
alteration in the hippocampus.[22]

Glutamatergic effect
The facilitation of LTP by mAChR activation is thought 
to be mediated by enhancement of synaptic NMDAR 
activity either by direct alteration of NMDAR channels[14] 
or by induction of Ca2+ release from endoplasmic 
reticulum stores.[23] The mAChRs also inhibit a variety 
of potassium channels including small conductance 
calcium‑activated KCa2 channels (SK channels).[24] 
Therefore, mAChR activation might induce a parallel 
long‑term enhancement of both α‑amino‑3‑hydrox
y‑5‑methyl‑4‑isoxazolepropionic acid (AMPA) and 
NMDAR‑mediated transmission.[25]

It has been reported that chronic nicotine administration 
and in vitro acute nicotine treatment increases ACh 
release and enhances NMDAR responses in the 
hippocampus.[26] One potential mechanism is that 
nicotine acts at presynaptic nAChRs to increase 
glutamate release onto postsynaptic NMDARs.[27] 
The activation of nAChRs causes Ca2+ entry through 
receptor channels, which can trigger Ca2+ release 
from intracellular stores.[28] Multiple lines of evidence 
also suggest that nicotine could act to ameliorate 
hippocampal‑based learning deficits associated with 
changes in NMDAR function.[29] Consistent with these 
studies, pretreatment with AChE inhibitors has been 
found to protect cortical neurons from glutamate 
neurotoxicity in a time‑ and dose‑dependent manner 
through activation of nAChR.[30]

Anti‑inflammatory effect
The deposition of Aβ is the result of an imbalance 
between Aβ production and clearance. This imbalance 
leads to a situation of chronic inflammation in the 
brain. Aβ deposition contributes to the activation of 
astrocytes and microglia, and induces the production 
of a series of proinflammatory cytokines, chemokines, 
macrophage inflammatory proteins, leukotrienes, 
reactive oxygen species, and nitric oxide (NO).[3,31,32] 
The neuroinflammatory cytokines may not only 
contribute to neuronal death, but they might also 
influence classical neurodegenerative pathways such 
as amyloid precursor protein (APP) processing and tau 
phosphorylation.

A growing body of studies using donepezil has 
shown that donepezil does not function solely at the 
level of ACh, but also has potent anti‑inflammatory 
effects in AD patients, a tauopathy mouse model and 
lipopolysaccharide (LPS)‑treated animals.[33] Donepezil 
inhibits proinflammatory gene expression directly 
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resulting in reduced secretion of tumor necrosis 
factor‑alpha, NO, and interleukin‑1 beta in LPS‑treated 
BV2 cells, a murine microglia cell line.[34] Furthermore, 
donepezil may inhibit neuronal death and cognitive decline 
by repressing oligomeric Aβ‑triggered inflammatory 
pathways in microglia.[35] Thus, donepezil‑mediated 
attenuation of the release of inflammatory mediators 
may result from inhibition of protein expression of 
proinflammatory molecules.

The cholinergic pathway has been shown to exert 
anti‑inflammatory effects on several diseases such 
as rheumatoid arthritis,[36] inflammatory bowel 
disease,[37] sepsis,[38] and cardiovascular diseases.[39] 
On the other hand, nAChR has been shown to possess 
anti‑inflammatory properties in macrophages,[40] and 
the activation of α7‑nAChR significantly inhibits 
the production of proinflammatory cytokines.[41] It 
has been demonstrated that AChEI treatment may 
favor a Th2‑mediated immune response by activating 
B‑lymphocytes and increasing immunoglobulin 
production.[42] Galantamine‑enhanced microglial Aβ 
phagocytosis to promote Aβ clearance requires the 
combined action of an ACh competitive agonist and 
the allosterically potentiating ligand for nAChRs.[43] 
Furthermore, plasma anti‑Aβ1‑42 antibody levels in AD 
patients were found to be significantly increased after 
AChEI treatment,[44] thus suggesting that increasing the 
endogenous response against Aβ might provide new 
insights for AD therapy. Recently, several promising 
studies have been conducted in phase II and phase 
III trials using active and passive immunotherapies, 
respectively.[45]

GLUTAMATERGIC SYSTEM

Glutamate is one of the most prominent 
neurotransmitters in the body. It is present in over 50% 
of the nervous tissue.[46] It plays a prominent role 
in a variety of brain functions including synaptic 
transmission, neuronal growth and differentiation, 
synaptic plasticity, learning and memory, and other 
cognitive functions.

The role of the glutamatergic system is to convert 
nerve impulses into a chemical stimulus by controlling 
the concentration of glutamate at the synapse. It is 
well‑accepted that LTP induction triggers the NMDAR, 
and therefore, activates the AMPA receptor in the CA1 
region.[47,48] NMDAR activation allows Ca2+ to enter 
the postsynaptic cell, which subsequently triggers 
a number of kinase pathways and increases protein 
transcription. This process strengthens synapses 
and increases synaptic density, thus allowing fast 
adaptations of network activity which are critical for 
information processing.[49]

Neuroexcitotoxicity
Glutamate excitotoxicity has been hypothesized to have 
a role in AD pathogenesis. Dysfunction of glutamate 
transporters has been implicated in this pathway.[50] It 
has been reported that hippocampal excitatory amino 
acid transporter 1 (EAAT1) and EAAT2 expression is 
significantly reduced in AD,[49] further reinforcing the 
notion of a deficit in glutamate clearance in AD brain. 
In addition to uptake defects, the abnormal release of 
glutamate from vesicle stores has been implicated as 
a source of excess extracellular glutamate in AD.[51] 
Excessive activation of glutamate receptors leads 
to a number of deleterious consequences including 
impairment of calcium buffering, generation of 
free radicals, and activation of the mitochondrial 
permeability transition that results in release of 
apoptogenic proteins into the cytosol, where they 
trigger caspase‑dependent apoptosis or promote 
autophagy.[52]

We and others have demonstrated that Aβ inhibits 
glutamate uptake in rat cortical synaptosomes, cultured 
cells, and acute brain slices.[9] These findings are 
also consistent with an intracerebroventricular 
injection of Aβ into rat brain, which causes a rapid 
increase in interstitial fluid glutamate levels without 
altering gamma‑aminobutyric acid or aspartate.[53] The 
hydrophobic Aβ oligomers may bind principally to 
membrane lipids, and thereby, secondarily interrupt 
the structure and function of synaptic transmembrane 
transporters (glutamate transporters), leading to 
increases in extracellular glutamate concentration.

Activation of extrasynaptic receptors
Electron microscopic studies have shown that most 
plasmalemma receptors are extrasynaptically located, 
whereas only 1‑2% of cell membrane receptors are 
located at synaptic sites in the hippocampus.[54] Thus, 
the chemicals distribute in the extracellular fluid 
and bind preferentially to these vastly extrasynaptic 
receptors. Extrasynaptic NMDARs, that is, receptors 
that are not activated during low‑frequency synaptic 
events, can be found at various locations, such as 
the cell body, the dendritic shaft, the neck of the 
dendritic spine, and adjacent to the postsynaptic 
density. It has been found that synaptic NMDAR 
activity is extremely important for neuronal survival, 
whereas the extrasynaptic NMDARs are coupled 
to cell death pathways.[55] Using both whole‑cell 
recording and Fluo‑4 calcium measurements, we 
confirmed that Aβ rapidly and significantly increases 
extrasynaptic NMDA responses. Soluble Aβ oligomers 
activate extrasynaptic NR2B‑containing NMDARs, 
thus increasing downstream calpain signaling and 
p38 mitogen‑activated protein kinase activity.[9] 
Several studies have demonstrated that selective 
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NR2R antagonists prevent Aβ‑induced synaptic 
dysfunction.[9] Consistent with these findings, low 
concentrations of memantine have been shown to 
target extrasynaptic NMDAR.[56] Both studies and 
related reports suggest that Aβ oligomers disrupt 
glutamate uptake or trigger glutamate release from 
glial cells, thus increasing glutamate levels to induce 
synaptic dysfunction.

BEHAVIORAL AND PSYCHOLOGICAL SYMPTOMS 
IN DEMENTIA

AD is a neurodegenerative disorder associated 
not only with a decline in cognitive abilities, but 
also with frequent manifestation of noncognitive 
symptoms (such as anxiety, depression, apathy, 
and psychosis) and other conduct disorders that 
impair daily living.[57] It has been proposed that the 
behavioral and psychological symptoms of dementia 
in AD patients are due to an imbalance of different 
neurotransmitters (ACh, dopamine, noradrenaline, 
and serotonin) in specific brain regions responsible 
for emotional activities (parahippocampal gyrus, 
dorsal raphe, and locus coeruleus) and cortical 
hypometabolism.[58]

There is increasing awareness that the cholinergic 
system plays a role in emotion and noncognitive 
behavior and may be involved in neuropsychiatric 
symptoms of AD.[59,60] Other evidence indicates that 
monoamines, in addition to ACh, are also involved 
in the pathogenesis of AD and other dementia 
disorders. The increased activity and altered 
serotonergic modulation as a result of dopaminergic 
neurotransmission are associated with agitated 
and aggressive behavior, respectively.[61] Chronic 
administration of donepezil has been reported to 
reduce the incidence of neuropsychiatric symptoms 
in patients with mild to moderately severe AD.[62] 
Thus, the stimulation of monoaminergic activity 
in conjunction with AChE activity may provide an 
effective treatment option for AD and accompanying 
psychiatric disorders.

COMPARISON OF DONEPEZIL AND MEMANTINE

It is well‑established that AChEIs inhibit the action 
of the ACh‑hydrolyzing enzyme AChE to boost ACh 
levels, and thus, alleviate disease symptoms associated 
with the progressive loss of cholinergic function in AD. 
In contrast, memantine acts at the NMDAR to lower 
the pathologically increased tonic level of excitation 
of the glutamatergic synapse at rest. Although 
AChEIs significantly improve learning and memory, 
memantine behaves like other NMDAR antagonists 

and has been reported to inhibit hippocampal LTP,[63] 
disrupt cognitive flexibility, and impair memory and 
locomotor behaviors.[64,65] Interestingly, a comparison 
between the effects of donepezil and memantine on 
spatial memory in the APP23 mouse model using a 
complex dry‑land maze test showed that donepezil 
treatment significantly improved moving time, whereas 
memantine improved resting time, thus suggesting 
that donepezil may influence memory acquisition and 
memantine influences memory retrieval.[66]

Donepezil administration increases dopamine and 
norepinephrine levels in the dorsal hippocampus 
and decreases extracellular norepinephrine and 
serotonin levels in the ventral hippocampus.[67] 
In contrast, memantine decreases dopamine and 
serotonin in the dorsal hippocampus and increases 
3‑methoxy‑4‑hydrophenylglycol in the ventral 
hippocampus. Although memantine is recognized 
as a moderate affinity, noncompetitive, reversible 
NMDAR antagonist, it has been demonstrated 
that memantine enhances synaptic transmission 
in an mAChR‑dependent manner in the mouse 
hippocampus,[68] and may interact more potent with 
cholinergic receptors than with NMDAR.[69] Acute 
systemic or local administration of either memantine 
or donepezil significantly increases ACh levels in the 
neocortex and hippocampus of rats.[70]

EFFICACY OF DONEPEZIL AND MEMANTINE ON 
THE TREATMENT OF AD

AChEIs are considered the standard treatment of the 
mild‑to‑moderate stage of AD,[71] whereas memantine 
is suggested for moderate‑to‑severe AD patients.[72] 
Clinically, donepezil at 10 mg/day significantly improves 
cognitive, neuropsychiatric, and global function, 
thus reducing caregiver burden.[62,72] Increasing the 
daily dose to 23 mg/day was found to be safe and 
tolerated in patients with moderate‑to‑severe AD.[73,74] 
Memantine has been found to improve global cognition, 
functional communication, and some behavioral 
symptoms (agitation and aggression).[75,76] Interestingly, 
donepezil and memantine also have differential 
behavioral effects: donepezil affects depression, anxiety, 
and apathy whereas memantine mainly affects agitation, 
aggression, and delusions.[77,78] A recent clinical review 
suggests that combination therapy with donepezil and 
memantine for AD could be safe and well‑tolerated 
for moderate‑to‑severe AD.[79] However, there are no 
significant benefits of the combination of donepezil 
and memantine over donepezil alone on cognitive 
function.[80] Thus, combination therapy may be more 
effective in improving neuropsychiatric behaviors than 
cognition because of their complementary activity.
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CONCLUSION

AChE inhibitors ameliorate the cognitive and 
psychiatric symptoms in AD patients through increased 
synaptic ACh levels to activate AChRs and protect 
against glutamate neurotoxicity and inflammation, 
whereas memantine appears to mainly protect against 
excitotoxicity and consequent neurodegeneration. 
AChE inhibitors exert neuroprotective effects by 
improving cholinergic mediated memory function, 
enhancing glutamatergic responses and acting as 
anti‑inflammatory agent. Memantine is efficient at 
preventing the deleterious actions of Aβ oligomers 
mainly due to its selectivity for the extrasynaptic 
NMDARs. Therefore, AChE inhibitors could be used for 
the earlier to later stages of AD, but memantine should 
preferentially be used only in the later phase of AD.
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