
Wang et al. J Surveill Secur Saf 2024;5:258-72
DOI: 10.20517/jsss.2024.21

Journal of Surveillance,
Security and Safety

Research Article Open Access

VulnScan GPT: a new framework for smart contract
vulnerability detection combining vector database and
GPT model
Lianjie Wang, Yunhao Zhao, Keqing Wang, Zhongwen Zhang, Wenyin Zhang

School of Computer Science & Engineering, Linyi University, Linyi City, Shandong Province, 276000, China.

Correspondence to: Wenyin Zhang, Zhongwen Zhang, School of Computer Science & Engineering, Linyi University, Industrial Av-
enue (North Section,West Side), LanshanDistrict, Linyi City, ShandongProvince, 276000, China. E-mail: zhangwenyin@lyu.edu.cn;
zhangzhongwen@lyu.edu.cn

How to cite this article: Wang L, Zhao Y,WangK, Zhang Z, ZhangW.VulnScanGPT: a new framework for smart contract vulnerabil-
ity detection combining vector database andGPTmodel. J Surveill Secur Saf 2024;5:258-72. http://dx.doi.org/10.20517/jsss.2024.21

Received: 30 Aug 2024 First Decision: 19 Nov 2024 Revised: 29 Nov 2024 Accepted: 10 Dec 2024 Published: 31 Dec
2024

Academic Editor: Panayiotis Kotzanikolaou Copy Editor: Ting-Ting Hu Production Editor: Ting-Ting Hu

Abstract
With the rapid development of blockchain technology and smart contracts, the security issues of smart contracts have
become increasingly serious. To address the significant limitations of traditional detection methods in handling the
complexity and scale of smart contracts, a new framework for smart contract vulnerability detection that combines a
vector database and a generative pre-trained transformer (GPT) model — VulnScan GPT— has been proposed. This
framework comprises three main components: function signature extraction, vector database storage and retrieval,
and GPT-based vulnerability detection. The framework uses the solc tool to generate an abstract syntax tree from
smart contracts, extract function signatures, and vectorize the code for storage. By integrating the GPT model, the
framework can preliminarily analyze and filter key functions based on common vulnerability scenarios and then re-
trieve relevant implementations from the vector database for in-depth assessment. This method gradually optimizes
function analysis through an iterative detection mechanism, leveraging the efficient storage and retrieval capabilities
of the vector database, combinedwith the deep natural language processing abilities of theGPTmodel, enhancing the
accuracy and comprehensiveness of vulnerability detection. In the experimental evaluation, tests were conducted on
various datasets to detect automated market maker price manipulation and initial risk deposit vulnerabilities, demon-
strating that VulnScan GPT not only improves the accuracy of vulnerability detection, but also significantly reduces
operational costs by optimizing token usage, resulting in an efficient and cost-effective detection solution.

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.oaepublish.com/jsss

https://creativecommons.org/licenses/by/4.0/
www.oaepublish.com/jsss

Page 259 Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21

Keywords: ChatGPT, iterative detection, VulnScan GPT, smart contract, vector database, token efficiency

1. INTRODUCTION
Since the advent of Bitcoin and its underlying blockchain technology in 2008, blockchain applications and
cryptocurrencies have undergone significant development. Especially for smart contract platforms such as
Ethereum, whose market value exceeded $400 billion in 2023. With the widespread application of smart con-
tracts, their security issues have significantly increased. Particularly after The Decentralized Autonomous
Organization (DAO) suffered a reentrancy attack in 2016, the industry has paid more attention to security
vulnerabilities caused by human errors and design flaws in smart contracts. Unlike traditional software func-
tional errors, vulnerabilities in smart contracts usually lead to direct financial losses, making their detection
especially complex and requiring in-depth analysis of specific domain attributes.

A recent study [1] conducted a systematic investigation of 167 smart contracts with real vulnerabilities on the
Code4rena platform from 2021 to 2022, finding that over 80% of the vulnerabilities were so-called machine-
unverifiable bugs (MUBs) that existing tools could not detect. Due to the traditional analysis methods’ lack
of understanding of smart contract semantics, they find it difficult to grasp the complex relationships between
code vulnerabilities and associated attack behaviors. Zhang et al.. [1] categorize smart contract vulnerabilities
by their detection needs into two groups: those detectable with simple and general test oracles, and those
requiring advanced semantic oracles for detection. Vulnerabilities requiring advanced semantic oracles include
price oracle manipulation, ID-related violations, state update errors, atomicity violations in business processes,
privilege escalation and access control issues, accounting errors, and business model disruptions. Detecting
these vulnerabilities requires higher-level semantic analysis to identify the complex relationships and potential
issues between code and business logic.

Generative Pre-trained Transformer (GPT) [2,3] is an advanced natural language processing model developed
by OpenAI. Through large-scale pre-training and fine-tuning, it generates high-quality text, understands and
produces human language, and performs complex language understanding and generation tasks. Due to its
powerful semantic analysis capabilities, GPT can effectively assist in contract vulnerability detection [4]. How-
ever, applying GPT directly to extensive smart contract code can increase token consumption and potential
overload, reducing the model’s efficiency and accuracy. This limitation is crucial as it reflects on the scalability
challenges of current methods when managing large-scale contract audits.

Therefore, when dealing with large amounts of code and complex data structures, a system capable of efficiently
managing and retrieving information is required. Vector databases [5], a technology specifically designed for
storing and retrieving high-dimensional vector data, perfectly meet this need. Converting the features of smart
contracts into vector form enables rapid and accurate similarity searches and data comparisons, thereby greatly
supporting various vulnerability detection applications. Additionally, the core functions of vector databases,
including efficient similarity searches, vector indexing, and data storage and management, provide the neces-
sary support for the GPT model when processing smart contract code.

This study introduces VulnScan GPT, a novel smart contract detection framework that combines the vector
database and the natural language processing capabilities of the GPT model to overcome the limitations of
existing methods and improve the accuracy and comprehensiveness of vulnerability detection. VulnScan GPT
utilizes the efficient storage and retrieval capabilities of the vector database to comprehensively manage smart
contract code without being constrained by token length limitations. The system performs vectorization to
quickly retrieve the contextual information needed by the GPTmodel, preserving the semantic integrity of the
code and avoiding detection issues caused by context loss or fragmented processing. Through this innovative

http://dx.doi.org/10.20517/jsss.2024.21

Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21 Page 260

framework, we aim to significantly enhance the security detection of smart contracts, thereby protecting the
safety and stability of blockchain applications. The structure of this paper is organized as follows: Section
2 reviews related studies and analyzes the limitations of existing approaches. Section 3 provides a detailed
introduction to the framework design of VulnScan GPT. Section 4 evaluates its performance. Finally, Section
6 discusses potential improvements and summarizes the research contributions.

2. RELATED WORKS
Traditional smart contract vulnerability detection methods mainly include static analysis, dynamic analysis,
symbolic execution, and formal verification. Static analysis tools, such as Vandal [6], Securify [7], and Slither [8],
detect potential vulnerabilities by analyzing the structure and logic of smart contract code. Dynamic analy-
sis tools, such as Echidna [9], ContractFuzzer [10], and Harvey [11], use fuzz testing techniques to generate test
inputs and identify anomalies during the actual execution of smart contracts, thereby gaining insights into
runtime vulnerabilities. Symbolic execution tools, such as Oyente [12], Halmos [13], and Mythril [14], detect
vulnerabilities by simulating contract execution paths and checking possible states along each path. Formal
verification tools, such as ZEUS [15], VerX [16], and VeriSmart [17], use rigorous mathematical proofs to verify
the correctness and security of smart contracts. However, research by Zhang et al. [1] found that traditional
analysis methods lack an understanding of smart contract semantics, making it difficult to grasp the complex
relationships between code vulnerabilities and related attack behaviors.

The rapid advancement of deep learning has opened up new opportunities [18,19]. With the rapid development
of language models, the application of the GPT series models in code-related tasks has also increased. GPT
models, particularly GPT-3 and GPT-4, have been extensively studied and utilized for code repair and vulner-
ability detection tasks [20].

David et al. [21] evaluated the performance of GPT-4 in smart contract auditing, showing that it has a certain
level of accuracy in identifying smart contract vulnerabilities. In some cases, the GPT-4 model correctly iden-
tified the types of vulnerabilities, achieving a true positive rate of 78.7%. Existing research typically focuses on
directly using GPT for code vulnerability detection. Although this approach is feasible for smaller amounts of
code, it can lead to a significant increase in token usage when dealing with large contract projects. Moreover,
inputting all code information into GPT is not optimal as it increases meaningless token consumption and can
cause information overload, leading to confusion in the large language model and impacting its performance.

GPTLens [22] proposed an innovative two-stage framework by designing large language models (LLMs) to
play the antagonistic roles of auditor and commentator, significantly improving the performance of traditional
single-stage detection methods. This approach addressed the accuracy challenges LLMs face when dealing
with real-world datasets due to high false positive rates. However, GPTLens also faces similar issues as those
identified in research by David et al. [21], struggling to effectively handle contract projects with large amounts
of code.

GPTScan combines the GPT model with static analysis, breaking down logical vulnerabilities into Scenarios
and Properties for matching, thereby improving the accuracy and efficiency of smart contract vulnerability
detection. This method employs multidimensional filtering strategies (including project-wide files, Open-
Zeppelin function filtering, etc.) to accurately screen candidate functions, effectively reducing false positives.
However, its heavy reliance on predefined rules and static analysis may limit its adaptability to new or com-
plex vulnerabilities, while excessive pre-filtering might overlook necessary contextual information, affecting
the comprehensiveness of detection. Additionally, the reachability analysis process may cause unnecessary
duplicate detections, increasing resource consumption.

http://dx.doi.org/10.20517/jsss.2024.21

Page 261 Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21

Figure 1. VulnScan GPT process overview.

Our proposed VulnScan GPT framework enhances detection specificity and efficiency by extracting function
signatures to precisely locate code related to specific vulnerabilities. Through dynamic interaction with the
vector database, the system automatically searches for and further inspects the code after initial analysis, en-
suring comprehensive and accurate detection through iterative detection processes. VulnScan GPT is more
effective than other methods in handling large-scale codebases, adapting to complex and dynamic coding
environments, and significantly improving detection efficiency and accuracy.

3. VULNSCAN GPT
This study aims to address the growing demand for vulnerability detection in smart contracts prior to de-
ployment by designing a framework that integrates the capabilities of the GPT model with vector databases.
Specifically, our approach seeks to enhance the efficiency of static analysis processes, minimizing both detec-
tion time and cost, and thus contributing to the acceleration of the security auditing workflow.

In this chapter, we provide a detailed introduction to the design and implementation of the VulnScan GPT
framework. The goal of this system is to automatically detect potential vulnerabilities in smart contracts by
combining Abstract Syntax Tree (AST) analysis and vectorized storage technology with the powerful under-
standing capabilities of GPT. The process of VulnScan GPT is shown in Figure 1.

Next, we will introduce the three main components of VulnScan GPT: function signature extraction, vector
database storage and retrieval, and GPT-based vulnerability detection.

Function Signature Extraction: Using the solc tool to generate ASTs for smart contracts [23], extracting the
signature of each function. However, we do not extract signatures from all files. For example, interface files
(i.e., files where the ”contracting” key in the AST tree corresponds to ”interface”), files in the ”node_modules”
directory, test files (e.g., those found in various ”test” directories), and third-party library files (e.g., those from
well-known libraries such as ”OpenZeppelin,” ”Uniswap,” and ”PancakeSwap”). Once these files are filtered
out, we can focus on the project’s files.

http://dx.doi.org/10.20517/jsss.2024.21

Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21 Page 262

Vector Database Storage and Retrieval: Considering that when using GPT to generate supplementary infor-
mation, the generated function signature has a certain degree of ambiguity (such as parameter types are similar
but not exactly the same), and may not be completely consistent with the actual function, we choose to use the
cosine similarity of the vector database to find the most similar function. The contracts of the target project
are vectorized and stored in the vector database. This process not only includes the vectorization of contracts
but also involves removing interface declaration files and test files to ensure that subsequent vector retrieval is
not disrupted, thereby improving the accuracy and relevance of retrieval results.

GPT-Based Vulnerability Detection: The extracted function signatures are analyzed by GPT, which auto-
matically selects the functions to be inspected based on the vulnerabilities to be detected and their common
scenarios, making an initial judgment. Subsequently, GPT-4 performs an in-depth analysis of these functions.
Through iterative multi-round detection and scoring mechanisms, it dynamically adjusts the query strategy,
gradually refining the assessment until sufficient information supports a definitive vulnerability judgment.

3.1. AST generation and function signature extraction
First, we use solc-js to compile the project’s contracts to obtain the AST for each contract. From the generated
AST, we extract each function’s declaration and signature and store this information. At the same time, we also
obtain the ASTs corresponding to the external libraries referenced in the project. However, the ASTs generated
from these external libraries and interface files are not needed. Therefore, we employ methods to skip these
and focus on extracting functions from the project files.

In the generated AST, we determine whether to skip specific files by checking the ‘absolutePath‘ property of
the top-level node. If the path contains ”openzeppelin” or is not within the path where we store the contract
project, we directly skip these AST files and do not extract function signatures from them.

We also choose to skip files where the ‘contractKind‘ attribute in the AST node is ‘interface‘. These interface
files only contain function declarations but do not include function implementations. Function declarations
in interface files can all be called externally, but not all function signatures will be declared in interface files.
Therefore, relying solely on interface files for signature extraction is insufficient. The content of interface files
may overlap with the function signatures we extract from the AST tree, adding unnecessary redundancy. By
these means, we can more efficiently focus on the key functions in the project, avoiding unnecessary interfer-
ence from external libraries and interface files, thus improving the accuracy and efficiency of function signature
extraction.

3.2. Vector database storage and retrieval
In VulnScan GPT, vector database storage and retrieval are crucial components. This section will describe in
detail our design choices for the vector database storage and retrieval component. A vector database stores the
code functions of smart contracts as high-dimensional vectorized chunks, allowing GPT to focus on context-
relevant functional blocks and avoiding the computational resource waste associated with processing the entire
contract code directly. GPT then analyzes this data to further uncover potential vulnerability patterns. The
vectorization process is shown in Figure 2.

3.2.1. Vectorization process
In the vectorization process, we first perform feature extraction on the raw data and convert it into high-
dimensional vectors. This process is crucial because high-quality vectorization can significantly improve the
accuracy and efficiency of retrieval.

Letting the data to be vectorized be 𝑓 , its vector representation is 𝑉 𝑓 , which can be given as

http://dx.doi.org/10.20517/jsss.2024.21

Page 263 Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21

Figure 2. We take a sol file in the project as an example, split it into n function-level code blocks, and vectorize them separately and store
them in the vector database.

𝑉 𝑓 = embedding(𝑓) (1)

Where embedding() represents the embedding model, mapping the function to a high-dimensional vector.

3.2.2. Segmentation strategy
We employ a method of vectorizing the smart contract code, converting each function into a fixed-length high-
dimensional vector. At the same time, we simultaneously choose to segment the smart contract code at the
function level. If the block is too small, it will cause the complete function to be split into different segments,
making the semantic information of the function code incomplete. If the block is too large, excessive overlap-
ping information may lead to meaningless token wastage. Segmentation at the function level helps enhance
the granularity of vector representation, allowing each vector to precisely represent the semantic information
of a single function. Additionally, we will add the file address and ”start_index” as ”metadata” during storage,
so that when we subsequently use function signatures for vector similarity calculations and searches, we can
obtain the required function bodies more quickly and accurately.

3.2.3. Storage strategy
To store and manage the generated high-dimensional vectors, we chose a local vector database. The local
vector database uses an efficient local storage mechanism, enabling quick access to vector data. This is crucial
for the smart contract vulnerability detection system, which requires frequent vector retrievals, ensuring high
response speed for the system.

To ensure the efficiency and accuracy of the vector database, we conduct preliminary screening and reduc-
tion work before storing project contracts in the vector database. Interface files, test files, and some runtime-
generated non-Solidity files and non-documentation files are the files we do not need to store. This approach
not only reduces storage pressure but also improves the overall efficiency of the system. Interface files need
to be deleted because they only contain various function signature declarations and do not include complete
function implementations. These function signatures may interfere with search results when searching for
function implementations through vector similarity, affecting accuracy. Therefore, we choose not to store
these interface files. Test files, runtime-generated non-Solidity files, and non-documentation files are also not
within the storage scope. These files usually contain test cases and temporarily generated data, which do not di-
rectly aid in the implementation and analysis of contract functionality, but rather increase the system’s storage
and processing burden.

http://dx.doi.org/10.20517/jsss.2024.21

Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21 Page 264

3.2.4. Content retrieval
First, we generate query vectors based on the characteristics of the functions to be detected. Then, we perform
similarity searches using the vector database, determining their similarity by calculating the cosine similarity
between the query vectors and the stored vectors in the database. The cosine distance is calculated by:

𝑑 = 1.0 −
∑(𝐴𝑖 × 𝐵𝑖)√∑(𝐴2

𝑖) ×
∑(𝐵2

𝑖)
(2)

Where 𝐴𝑖 and 𝐵𝑖 represent the components of the two vectors, and 𝑑 is the cosine distance, obtained by sub-
tracting the cosine similarity from 1.

By calculating the cosine distance, we can obtain the most similar blocks. These vectors represent code seg-
ments in the database that are most similar to the target function. The returned results include similar vectors
and their corresponding metadata, such as the function body and file path.

Due to the limitations of the segmentation method or the results returned by vector retrieval, the returned
content may only be a part of the code and may not be a complete function. In such cases, we need to assess
the returned code blocks and complete any incomplete functions. The specific steps are as follows:

Upon receiving the retrieved code blocks, we first determinewhether they constitute a complete target function.
If the code block is complete, it is directly passed to GPT for analysis. If the code block is incomplete, it needs
to be supplemented. We use the ”start_index” index-based method for supplementation. By locating the file
position, we gradually add subsequent content in fixed sizes until the target function is complete. To avoid
excessive code blocks bringing redundant information and affecting GPT’s judgment while saving tokens, we
choose the smallest possible size for the supplementary blocks. This strategy not only ensures the efficiency of
the supplementation process, but also improves the accuracy and efficiency of GPT’s analysis.

3.3. GPT-based vulnerability detection
The system consolidates all extracted function signatures into a JSON format and submits it to GPT for initial
assessment. Based on the description of specific vulnerabilities and common scenarios, GPT will select the
functions that need to be checked and return their signatures. The system then retrieves the corresponding
function implementations from the vector database for further assessment.

First Phase: Utilize the GPT-4 model to automate the pre-screening process of smart contract vulnerabilities.
In this process, the model initially selects functions based on the description of a specific vulnerability and its
occurrence in common function scenarios, outputting the function signatures to be checked for subsequent
matching in the vector database. This screeningmethod effectively reduces the range of potential risk functions
before we proceed to code-level vulnerability detection. It also significantly reduces the number of functions
required for vector search and GPT model detection, thereby saving computational resources and OpenAI
tokens, and enhancing the efficiency and cost-effectiveness of the detection process.

Second Phase: Conduct Iterative Detection and Scoring. We use prompts to impose format constraints and
have GPT make judgments on the complete functions identified in the first phase through the vector database.
The screened complete functions are submitted to GPT for review, where it analyzes the current content, scores
it, and searches for the required information. Figure 3 shows a process of using prompts in this phase.

In this process, the GPT model may produce two outcomes: one is that the existing function information
is sufficient to diagnose potential issues; the other is that the existing information is insufficient to make an
accurate judgment. For the latter case, the system implements an iterative multi-round detection mechanism.

http://dx.doi.org/10.20517/jsss.2024.21

Page 265 Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21

Figure 3. VulnScan GPT framework detection and scoring prompt.

Figure 4. An example of the test result output, equivalent to the assistant messages section in Figure 3.

We show one example of this judgment in Figure 4. When the ”function signature” is ”None”, we consider the
detection complete, meaning the current information is sufficient for GPT to make a judgment.

When the GPTmodel indicates that more information is needed, the system queries the vector database based
on the specific function signatures provided by GPT. This query aims to obtain the missing function imple-
mentations or related data, which are then resubmitted to GPT for further evaluation. The addition of new
information each time can change the accuracy and results of the evaluation. Therefore, this multi-round iter-
ative process continues until the GPT model confirms that the retrieved function information is sufficient to
support a clear judgment, which is indicated by a ”None” supplementary signature, with the final scoring as

http://dx.doi.org/10.20517/jsss.2024.21

Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21 Page 266

the criterion. Through this adaptive selection mechanism, GPT can automatically identify and supplement the
key contextual information required to handle specific tasks with minimal code. This method optimizes the
efficiency of information processing and saves the cost of using related tokens for detection. Figure 2 shows
the prompt used by the VulnScan GPT framework during the detection phase.

This multi-round iterative detection mechanism enables the system to dynamically adjust query strategies,
gradually improving the analysis and evaluation of each function. This mechanism not only increases the
accuracy of vulnerability detection but also greatly enhances the flexibility and adaptability of the process.
Ultimately, through continuous information supplementation and GPT analysis, the system can effectively
identify and prevent potential vulnerabilities in smart contracts.

This study employs the following researchmethods: (1) Dataset Selection: The experimental datasets consist of
three subsets—Web3Bugs, DefiHacks, and Top200—covering smart contracts of varying scales and complex-
ities; (2) Evaluation Metrics: Metrics such as Precision, Recall, and F1-Score are utilized to comprehensively
assess detection capabilities; (3) Experimental Procedure: Detection efficiency is optimized through vector-
ization techniques and iterative GPT analysis, with the framework’s performance ultimately validated across
multiple datasets.

4. EXPERIMENTS AND EVALUATION
This chapter will detail the evaluation methods, experimental parameters, and results of the VulnScan GPT
framework in smart contract vulnerability detection. We analyze the performance of the VulnScan GPT frame-
work on different vulnerabilities through experimental results to verify its effectiveness and reliability in vul-
nerability detection.

4.1. Dataset
We conducted an analysis on a total of 366 contracts. Among them, 20 project contracts were selected from
the web3bugs dataset, and 66 contracts with identifiable vulnerabilities were selected from real attack cases
recorded in DefiHacks [24]. For these 66 contracts, based on the attacks they have experienced, if there is no
evidence of attackers profiting from automated market maker (AMM) vulnerabilities, we consider them to be
free of such vulnerabilities. The remaining 280 contracts are from a dataset named Top200, which includes the
top 200 smart contracts by market capitalization. This set includes 280 open-source contract projects from six
major Ethereum-compatible chains. Since these projects have been deployed on the blockchain for a long time
and are very popular, we assume they are free of vulnerabilities. The Web3Bugs dataset consists of smart con-
tract samples sourced from real-world vulnerability detection platforms, characterized by diverse vulnerability
types and comprehensive annotations. The DefiHacks dataset focuses primarily on recorded attack incidents,
while the Top200 dataset reflects the security status of mainstream smart contracts in actual production en-
vironments. This dataset is mainly used to evaluate the false positive rate of VulnScan GPT when testing for
AMMvulnerabilities. Since themethod of obtaining AST trees through solcjs compilation is highly dependent
on the solc version, we filtered out project contracts that involved multiple Solidity language versions within
a single project. Additionally, all 20 project contracts selected from web3bugs were detected by GPTscan.
Among these 20 contracts, nine were confirmed to have Automated Market Maker price manipulation vulner-
abilities, and six were found to have Risk First Deposit (RFD) vulnerabilities. Based on the GPTScan results,
we performed Automated Market Maker price manipulation vulnerability scans on 20 contracts and RFD vul-
nerability scans on ten contracts. In the DefiHacks dataset, we conducted targeted detection specifically for
Automated Market Maker price manipulation vulnerabilities. Figure 5 and Figure 6 show examples of these
two vulnerabilities, respectively.

http://dx.doi.org/10.20517/jsss.2024.21

Page 267 Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21

Figure 5. AMM price manipulation from 2021-09-sushimiso.

Figure 6. Risk first deposit from 100-LogicBug-Prepo.

4.2. Experimental parameters
In the experiment, we used the latest GPT-4 model provided by OpenAI (version: gpt-4-0125-preview). This
model is renowned for its powerful language generation capabilities and wide range of applications. During
the experiment, the model’s Temperature parameter was set to 1, and the response_format parameter was
set to type ”json_object” to ensure diversity, randomness, and format stability in the generated results. To
achieve efficient text vectorization, we used OpenAI’s text-embedding-ada-002model. Thismodel can convert
text data into high-dimensional vectors, facilitating subsequent similarity calculations and other vector-based
operations.

For the vector database, we chose the Chroma [25] local vector database. Chroma is widely praised for its
efficient retrieval performance and flexible local storage solutions. In this experiment, the Chroma vector
database is used to store and retrieve text vectors generated by the text-embedding-ada-002 model [3]. In the
text processing phase, reasonable text segmentation can significantly improve the model’s processing efficiency
and the accuracy of the results. To this end, we used Langchain’s Solidity-based text splitter [26] for function
chunking. This text splitter can segment complex text content according to certain logic and rules, ensuring
that the model maintains high contextual coherence when processing each text block.

http://dx.doi.org/10.20517/jsss.2024.21

Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21 Page 268

4.3. Evaluation criteria
Evaluating the performance of a smart contract vulnerability detection system requires multiple metrics to
comprehensively assess its detection capability and accuracy. The following are the main evaluation criteria
we used:

TP: True Positive. The number of vulnerabilities correctly detected by the system. These vulnerabilities indeed
exist in the actual contracts and have been successfully identified by the VulnScan GPT framework.

FP: False Positive, indicating the number of instances the system incorrectly reported as vulnerabilities. These
are code segments misjudged by the system as having vulnerabilities, reflecting the system’s false alarm rate.

FN: False Negative, the number of actual vulnerabilities that the system failed to detect. These vulnerabilities
indeed exist in the smart contracts but were not identified by the VulnScan GPT framework.

Precision: Precisionmeasures the accuracy of the systemwhen detecting vulnerabilities, calculated as the ratio
of true positives to the total number of detected vulnerabilities (including true positives and false positives). A
high precision indicates that the system has a high accuracy when reporting vulnerabilities.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3)

Recall: Recall measures the proportion of actual vulnerabilities detected by the system out of the total num-
ber of actual vulnerabilities. A high recall indicates that the system can detect most of the actual existing
vulnerabilities.

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4)

F1 Score: To comprehensively consider precision and recall, we use the F1 score as a composite evaluation
metric. The F1 score is the harmonic mean of precision and recall.

𝐹1 = 2 × Precision × Recall
Precision + Recall

(5)

4.4. Results
In this section, we introduce the advantages of VulnScan GPT from two aspects. First, we present the results in
AMM price manipulation and RFD vulnerability detection. Second, we discuss the token savings achieved by
using VulnScan GPT for detection. Unlike existing detection tools such as Mythril and Slither, the VulnScan
GPT framework focuses on detecting complex semantic vulnerabilities, such as AMM price manipulation and
initial risk deposit vulnerabilities. Traditional tools primarily rely on static analysis methods, which are limited
to identifying structural errors or simple logical flaws and cannot detect complex behaviors that require deep
contextual understanding. While the aforementioned types of vulnerabilities are beyond the detection scope
of traditional tools, they have caused significant economic losses in practice (as evidenced by real attack cases
in DeFi hacks). Therefore, a direct comparison with traditional tools is not meaningful. VulnScan GPT is more
focused on expanding the detection scope and addressing the shortcomings of traditional methods. Table 1
and Table 2 illustrate the detection results, while Table 3 shows the token savings.

In the detection of AMM price manipulation vulnerabilities, VulnScan GPT achieved a precision of 58%, a
recall of 88%, and an F1 score of 70% on the Web3bugs dataset. This is a slight improvement compared to the

http://dx.doi.org/10.20517/jsss.2024.21

Page 269 Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21

Table 1. VulnScan GPT vulnerability detection results on different datasets

Vulnerabilities (Dataset) Precision Recall F1 Score

GPTScan AMM(Web3bugs) 53% 100% 69%
VulnScan GPT AMM(Web3bugs) 58% 88% 70%
GPTScan RFD(Web3bugs) 50% 60% 55%
VulnScan GPT RFD(Web3bugs) 67% 67% 67%
VulnScan GPT AMM(DefiHacks) 70% 90% 79%
GPTScan AMM(DefiHacks) N/A N/A N/A

Table 2. Accuracy evaluation of VulnScan GPT on AMM vulnerabilities

Dataset TP TN FP FN

VulnScan GPT Web3bugs 7 7 5 1
VulnScan GPT Top200 0 235 45 0
VulnScan GPT DefiHacks 19 37 8 2

Table 3. A token usage comparison table for the detection of 66 project contracts in the DefiHacks dataset

Phase Token usage

complete project contracts 977k
After Pruning 328k
With VlnScanGPT Framework 104k

69% F1 score of GPTScan. For the Defihacks dataset, VulnScan GPT achieved a precision of 70%, a recall of
90%, and an F1 score of 79%. This indicates that VulnScan GPT has made progress in reducing false positives
while accurately detecting vulnerabilities in most cases (high recall). Due to technical reasons, we were unable
to conduct GPTScan before the article’s submission deadline, so the comparison is based on data released by
GPTScan. The 100% recall rate of GPTScan is due to the fact that the selected contracts and the rules detected
by GPTScan indeed involve related vulnerabilities, and we can also ensure that checks are not affected by
compiler dependency issues. The same applies to the DefiHacks dataset, so there are no relevant detection
results.

In the detection of RFD vulnerabilities, VulnScanGPT performed better in both precision and recall, achieving
an F1 score of 67%, significantly higher than GPTScan’s 55%. This indicates that VulnScan GPT has higher
reliability and accuracy in detecting this type of vulnerability.

We found that on the defiHacks dataset and the Top200 dataset, the effect of VulnScanGPT is much higher
than that of theWeb3bugs dataset. This may be related to the fact that they are all token contracts compared to
Web3bugs, and their logic is not as complicated as that of Web3bugs. Through our analysis, we found that cer-
tain vulnerability samples in the Web3bugs dataset exhibit higher logical complexity, leading to a significantly
higher misclassification rate for these samples. This phenomenon may be attributed to the following factors:
(1) the increased logical complexity poses challenges to the identification of AMM patterns; (2) the Web3bugs
dataset contains more files and features significantly higher module complexity compared to the DefiHacks
dataset. In contrast, the samples in the DefiHacks dataset generally exhibit lower logical complexity, enabling
the model to capture their features more effectively and achieve better detection performance.

Complete project contracts: refer to submitting an entire contract directly to GPT for detection without any
prior processing.

After Pruning: refers to the state after removing unnecessary third-party libraries (e.g., those fromwell-known
libraries such as ”OpenZeppelin,” ”Uniswap,” and ”PancakeSwap”) and interface files before storing them in the
vector database.

http://dx.doi.org/10.20517/jsss.2024.21

Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21 Page 270

Table 3 demonstrates that our framework achieves an 89% reduction in token usage compared to directly
analyzing the entire smart contract project using GPT. Additionally, following the pruning of non-essential
files, our proposed VulnScan GPT framework further reduces token usage by 68% relative to the After Pruning
method. This significant reduction in token consumption underscores the efficiency and cost-effectiveness
of our approach in utilizing GPT for vulnerability detection. Based on the recorded token usage during the
experiments, we estimate that under the current OpenAI API pricing standard ($0.01 per 1k tokens), VulnScan
GPT achieves nearly 89% cost savings compared to direct detection methods. This significant cost reduction
provides an economically viable solution for batch vulnerability detection in blockchain projects, particularly
in large-scale, multi-project environments.

5. CONCLUSION
This study provides an in-depth evaluation of the efficiency of the VulnScan GPT framework in detecting
vulnerabilities in smart contracts, with notable effectiveness in identifying critical issues such as AMM price
manipulation and RFD vulnerabilities. The findings not only validate the framework’s capability in vulnera-
bility detection but also highlight its significant savings in token usage. However, the analysis revealed several
challenges that require immediate attention, particularly the issue of search ambiguity when handling similar
function signatures, which affects the detection accuracy. Specifically, first, the problem of function segmenta-
tion reveals the limitations of current text processing algorithms. Incorrect segmentationmay lead to detection
errors, indicating that automated text processing needs further optimization. We consider using regular ex-
pressions to build a script to segment solidity files specifically for smart contract writing habits. Secondly,
the method of searching based solely on signature similarity has defects when facing similar function signa-
tures, emphasizing the necessity of introducingmore refined differentiationmechanisms in the vector database
search phase to enhance the system’s sensitivity to subtle differences. In addition, the inaccuracy of GPT in
generating signatures further indicates that more effective prompt design and innovative strategies are needed
to improve the reliability and accuracy of the generated results. We are temporarily considering adding the
use of natural language descriptions to code blocks as a reference indexing method.

Looking ahead, future research will focus on addressing these technical challenges to improve the system’s
accuracy and efficiency. Specifically, regarding functional expansion of the framework, future efforts will
concentrate on the following aspects: first, enhancing the framework’s robustness against adversarial attacks
and ensuring the integrity of vector database operations through data validation mechanisms and secure stor-
age technologies [27]; second, improving real-time monitoring capabilities by incorporating dynamic data flow
analysis and incremental detection techniques to meet the rapidly evolving security demands of blockchain
technology; and third, integrating predictive models for historical vulnerability trend analysis to support the
identification and prevention of potential risks. These enhancements will significantly improve the adaptabil-
ity, scalability, and effectiveness of VulnScan GPT in blockchain security scenarios, providing more reliable
tools for smart contract security assessments [19].

DECLARATIONS
Authors’ contributions
Responsible for research design and experimental plan formulation; writing the main part of the paper: Wang
L
Participated in data visualization and chart production; assisted in paper proofreading and language polishing:
Zhao Y
Performed data collection and analysis; assisted in revising the paper: Wang K
Responsible for the evaluation and review of research ideas; led the overall review and quality control of papers:
Zhang Z

http://dx.doi.org/10.20517/jsss.2024.21

Page 271 Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21

Provided research funding support; participated in technical review of research results and paper editing:
Zhang W

Availability of data and materials
Not applicable.

Financial support and sponsorship
None.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author(s) 2024.

REFERENCES
1. Zhang Z, Zhang B, Xu W, Lin Z. Demystifying exploitable bugs in smart contracts. In: 2023 IEEE/ACM 45th International Conference

on Software Engineering (ICSE). Melbourne, Australia: IEEE; May 14-20,2023. pp. 615–27. DOI
2. WangY,Kordi Y,Mishra S, et al. Self-instruct: aligning languagemodels with self-generated instructions. arXiv preprint arXiv:221210560

2022. DOI
3. OpenAI; 2024. Available from https://openai.com/. [Last accessed on 25 Dec 2024]
4. Chen C, Su J, Chen J, et al. When chatgpt meets smart contract vulnerability detection: How far are we? arXiv preprint arXiv:230905520

2023. DOI
5. Han Y, Liu C, Wang P. A comprehensive survey on vector database: storage and retrieval technique, challenge. arXiv preprint

arXiv:231011703 2023. DOI
6. Brent L, Jurisevic A, Kong M, et al. Vandal: A scalable security analysis framework for smart contracts. arXiv preprint arXiv:180903981

2018. DOI
7. Tsankov P, Dan A, Drachsler-Cohen D, et al. Securify: practical security analysis of smart contracts. In: Proceedings of the 2018 ACM

SIGSAC conference on computer and communications security. Toronto Canada: Association for Computing Machinery, New York, NY,
United States; October 15-19,2018. pp. 67–82. DOI

8. Feist J, Grieco G, Groce A. Slither: a static analysis framework for smart contracts. In: 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). Montreal, QC, Canada: IEEE; May 27-27,2019. pp. 8–15. DOI

9. Grieco G, SongW, Cygan A, Feist J, Groce A. Echidna: effective, usable, and fast fuzzing for smart contracts. In: Proceedings of the 29th
ACM SIGSOFT international symposium on software testing and analysis. Virtual Event USA: Association for Computing Machinery,
New York, NY, United States; July 18-22,2020. pp. 557–60. DOI

10. Jiang B, Liu Y, Chan WK. Contractfuzzer: fuzzing smart contracts for vulnerability detection. In: Proceedings of the 33rd
ACM/IEEE international conference on automated software engineering. Montpellier France: Association for Computing Machinery,
New York,NY,United States; September 3-7,2018. pp. 259–69. DOI

11. Wüstholz V, Christakis M. Harvey: a greybox fuzzer for smart contracts. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. Virtual Event USA: Association for
Computing Machinery, New York, NY, United States; November 8-13,2020. pp. 1398–409. DOI

12. Luu L, Chu DH, Olickel H, Saxena P, Hobor A. Making smart contracts smarter. In: Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. Vienna Austria: Association for ComputingMachinery, NewYork, NY, United States; October
24-28,2016. pp. 254–69. DOI

13. halmos;. 2024. Available from https://github.com/a16z/halmos. [Last accessed on 25 Dec 2024]
14. Mythril;. 2024. Available from https://github.com/Consensys/mythril. [Last accessed on 25 Dec 2024]
15. Kalra S, Goel S, Dhawan M, Sharma S. ZEUS: Analyzing Safety of Smart Contracts. In: Network and Distributed System Security

Symposium; 2018. Available from: https://api.semanticscholar.org/CorpusID:3481056. [Last accessed on 25 Dec 2024]
16. Permenev A, Dimitrov D, Tsankov P, Drachsler-Cohen D, Vechev M. Verx: Safety verification of smart contracts. In: 2020 IEEE

http://dx.doi.org/10.20517/jsss.2024.21
http://dx.doi.org/https://doi.org/10.1109/ICSE48619.2023.00061
http://dx.doi.org/https://doi.org/10.48550/arXiv.2212.10560
https://openai.com/
http://dx.doi.org/https://doi.org/10.48550/arXiv.2309.05520
http://dx.doi.org/https://doi.org/10.48550/arXiv.2310.11703
http://dx.doi.org/https://doi.org/10.48550/arXiv.1809.03981
http://dx.doi.org/https://doi.org/10.1145/3243734.3243780
http://dx.doi.org/10.1109/WETSEB.2019.00008
http://dx.doi.org/https://doi.org/10.1145/3395363.3404366
http://dx.doi.org/https://doi.org/10.1145/3238147.3238177
http://dx.doi.org/https://doi.org/10.1145/3368089.3417064
http://dx.doi.org/https://doi.org/10.1145/2976749.2978309
https://github.com/a16z/halmos
https://github.com/Consensys/mythril
https://api.semanticscholar.org/CorpusID:3481056

Wang et al. J Surveill Secur Saf 2024;5:258-72 I http://dx.doi.org/10.20517/jsss.2024.21 Page 272

symposium on security and privacy (SP). San Francisco, CA, USA: IEEE; May 18-21,2020. pp. 1661–77.
17. So S, Lee M, Park J, Lee H, Oh H. Verismart: A highly precise safety verifier for ethereum smart contracts. In: 2020 IEEE Symposium

on Security and Privacy (SP). San Francisco, CA, USA: IEEE; May 18-21,2020. pp. 1678–94.
18. Rani P, Lamba R, Sachdeva RK, Kumar K, Iwendi C. A machine learning model for Alzheimer’s disease prediction. IET Cyber-Physical

Systems: Theory & Applications 2024. DOI
19. Taheri R. UNBUS: uncertainty-aware deep botnet detection system in presence of perturbed samples; 2022. DOI
20. Wang Z, Zhang L, Cao C, Liu P. The effectiveness of large language models (ChatGPT and CodeBERT) for security-oriented code analysis.

Available at SSRN 4567887 2023. DOI
21. David I, Zhou L, Qin K, et al. Do you still need a manual smart contract audit? arXiv preprint arXiv:230612338 2023. DOI
22. Sun Y, Wu D, Xue Y, Liu H, Wang H, et al. Gptscan: Detecting logic vulnerabilities in smart contracts by combining gpt with pro-

gram analysis. In: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. Association for Computing
Machinery,New York,NY,United States; April 14-20,2024. pp. 1–13. DOI

23. Ma R, Jian Z, Chen G, Ma K, Chen Y. Rejection: A AST-based reentrancy vulnerability detection method. In: Trusted Computing
and Information Security: 13th Chinese Conference, CTCIS 2019, Shanghai, China, October 24–27, 2019, Revised Selected Papers 13.
Springer; 2020. pp. 58–71. DOI

24. DefiHacks;. 2024. Available from https://web3sec.notion.site/web3sec/I-m-SunSec-ddaa8bf9a985494dbaf70d698345b899. [Last ac-
cessed on 25 Dec 2024]

25. Chroma;. 2024. Available from https://docs.trychroma.com/. [Last accessed on 25 Dec 2024]
26. langchain;. 2024. Available from https://www.langchain.com/. [Last accessed on 25 Dec 2024]
27. Taheri R, Shojafar M, Arabikhan F, Gegov A. Unveiling vulnerabilities in deep learning-based malware detection: Differential privacy

driven adversarial attacks. Comput Secur 2024;146:104035. DOI

http://dx.doi.org/10.20517/jsss.2024.21
http://dx.doi.org/https://doi.org/10.1049/cps2.12090
http://dx.doi.org/https://doi.org/10.48550/arXiv.2204.09502
http://dx.doi.org/http://dx.doi.org/10.2139/ssrn.4567887
http://dx.doi.org/https://doi.org/10.48550/arXiv.2306.12338
http://dx.doi.org/https://doi.org/10.1145/3597503.3639117
http://dx.doi.org/https://doi.org/10.1007/978-981-15-3418-8_5
https://web3sec.notion.site/web3sec/I-m-SunSec-ddaa8bf9a985494dbaf70d698345b899
https://docs.trychroma.com/
https://www.langchain.com/
http://dx.doi.org/https://doi.org/10.1016/j.cose.2024.104035

	1. Introduction
	2. Related works
	3. VulnScan GPT
	3.1. AST generation and function signature extraction
	3.2. Vector database storage and retrieval
	3.2.1. Vectorization process
	3.2.2. Segmentation strategy
	3.2.3. Storage strategy
	3.2.4. Content retrieval

	3.3. GPT-based vulnerability detection

	4. Experiments and Evaluation
	4.1. Dataset
	4.2. Experimental parameters
	4.3. Evaluation criteria
	4.4. Results

	5. Conclusion
	Declarations
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright

