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Abstract
We report herein an enantioselective acyl transfer protocol via electrophile activation. The reaction cascade 
sequence encompasses dinuclear zinc-catalyzed asymmetric Michael addition, intramolecular cyclization, and 
retro-Claisen reaction, which leads to a step- and atom-economic approach to a variety of protected cyclic tertiary 
α-hydroxyketones in good yields with excellent enantioselectivities (24 examples, 56%-82% yield, 1.5-13 dr and 
79%-96% ee). Besides, the large-scale synthesis and further transformation of the products demonstrate the 
effectiveness of this method for organic synthesis.
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INTRODUCTION
Acyl transfer presents an omnipresent and efficient chemoselective ligation process in biological systems[1], 
which has attracted extensive attention in the chemical community in recent years[2]. In order to circumvent 
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intrinsic reactivity or selectivity issues associated with mono-activated reactants, acyl transfer strategy 
utilizes the acyl group as a transient activating group to produce bis-activated reactants [Scheme 1A]. Such a 
chemical event involves a reaction cascade of X-Y bond formation, intramolecular cyclization, and the 
retro-Claisen reaction, where the challenging mono-activated function could be implemented formally. In 
this context, several catalytic asymmetric acyl transfer methods have been developed based on nucleophile 
activation [Scheme 1B]. For example, Mondal, Song et al. developed the asymmetric cascade Michael/acyl 
transfer reactions of α-nitroketones and 1,3-diketones using bifunctional organocatalysts[3-11]. Rodriguez and 
Luo reported the secondary or primary amine-catalyzed acyl transfer reactions[12-16]. Very recently, Yi et al. 
have established an elegant iridium-catalyzed asymmetric cascade allylation/acyl transfer reaction for the 
synthesis of enantiomerically enriched 3-hydroxymethyl pentenal units[17]. Besides, using acyl transfer, 
Zhou, Yang et al. prepared the medium-sized-ring lactams from cyclobutanone β-ketoamides[18-21]. Despite 
these achievements via nucleophile activation, acyl transfer via electrophile activation remains far less 
developed [Scheme 1C]. As far as we know, there was only one example from the Pan group, where 
nitroenone was used as an electrophilic acyl transfer reagent in catalytic asymmetric Friedel-Crafts and 
Michael reactions[22]. Therefore, the development of new catalytic asymmetric acyl transfer methods via 
electrophile activation is highly desired.

Our group has a long-standing interest in developing facile protocols for synthesizing biologically important 
molecules. Recently, we have discovered that α-hydroxy-1-indanones could serve as a valid synthon in 
cyclization reactions with activated Michael acceptors via chiral dinuclear zinc catalysis[23,24]. Along this line, 
we envisioned that dinuclear zinc-catalyzed asymmetric acyl transfer reaction between α-hydroxy-1-
indanones 1 and nitroenones 2 was feasible via less-explored electrophile activation mechanism, generating 
thereby the protected cyclic tertiary α-hydroxyketones 3 in an enantioselective, step- and atom-economic 
manner. As illustrated in Scheme 2, the reaction cascade was triggered by dinuclear zinc-catalyzed Michael 
reaction[25,26], which led to the intermediate Int-1. The subsequent intramolecular cyclization/retro-Claisen 
reaction resulted in the acyl transfer product 3. However, therein lie several synthetic organic chemistry 
challenges to this reaction proposal, which include: the enantioselective formation of the tetrasubstituted 
stereocenter, the side-formations of potential interruption product hemiketal Int-2 and dehydration 
product dihydrofuran 4. Herein, we introduce a highly enantioselective acyl transfer protocol via under-
exploited electrophile activation by making use of dinuclear zinc-catalyzed Michael/cyclization/retro-
Claisen reaction cascade, which led to a step- and atom-economic access to a variety of protected cyclic 
tertiary α-hydroxyketones in good yields with excellent enantioselectivities.

EXPERIMENTAL
Under a nitrogen atmosphere, a solution of diethylzinc (20 μL, 1.0 M in hexane, 0.02 mmol) was added 
dropwise to a solution of L4 (0.01 mmol, 9.6 mg) in MeCN (2 mL). After the mixture was stirred for 30 min 
at 30 oC, 1a (0.2 mmol, 29.6 mg) and 2a (0.2 mmol, 50.6 mg) were added. The reaction mixture was stirred 
for 48 h at the same temperature. The reaction was quenched with HCl solution (1 M, 2 mL), and the 
organic layer was extracted with CH2Cl2 (3 × 5 mL). The combined organic layer was washed with brine and 
dried over Na2SO4. The solvent was removed under reduced pressure by using a rotary evaporator. The 
residue was purified by flash chromatography with petroleum ether/ethyl acetate (4:1) to afford the desired 
chiral product 3a.

RESULTS AND DISCUSSION
The model reaction between α-hydroxy-1-indanone 1a and 2-nitro-1,3-diphenylprop-2-en-1-one 2a was 
initially performed in the presence of 10 mol % of dinuclear zinc catalyst in situ generated from 10 mol % of 
ligand L1 and 20 mol % of ZnEt2 in tetrahydrofuran (THF) at 30 oC oC Figure 1. The desired product 3a was 
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Scheme 1. Acyl transfer strategies in asymmetric synthesis.

obtained in 56% yield with 1.5:1 diastereoselectivity and 39% ee value [Table 1, entry 1]. The screening of 
different chiral ligands including ProPhenol ligands (L2-L5) and AzePhenol ligands (L6-L8) indicated that 
L4 bearing 4-CF3C6H4 groups was the best ligand [Table 1, entries 2-8]. Subsequently, the examination of 
solvent effect demonstrated that MeCN could give a high ee value of 84% [Table 1, entries 9-13]. 
Unfortunately, raising or lowering the reaction temperature failed to optimize the efficiency and 
stereoselectivity. [Table 1, entries 14-17]. Finally, we turned our attention to investigating the catalyst 
loading, and found that by utilizing 5 mol % of ligand L1 and 10 mol % of ZnEt2, the yield and 
stereoselectivity could be improved to a high level (82% yield, 88% ee, 3:1 dr) [Table 1, entries 18-20].

With the best conditions in hand, the scope of both nitroenones and α-hydroxy-1-indanones for the 
projected reaction was examined [Scheme 3]. Firstly, the Ar1 group of nitroenones was studied. A range of 
ortho-, meta-, para-substituted phenyl substrates 2 had been successfully employed to afford the 
corresponding products 3b-3f in 56%-74% yields, 1.5:1-8.3:1 diastereoselectivities and 82%-94% 
enantioselectivities. In addition, 1-naphthyl group was also well tolerated, giving the desired product 3g in 
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Table 1. Condition ptimizationa

Entry L solvent x T (oC) yieldb (%) drc ee d (%)

1 L1 THF 10 30 56 1.5:1 39

2 L2 THF 10 30 54 3.5:1 35

3 L3 THF 10 30 61 3.3:1 69

4 L4 THF 10 30 65 3.5:1 77

5 L5 THF 10 30 55 3.1:1 37

6 L6 THF 10 30 45 1.1:1 37

7 L7 THF 10 30 39 1.2:1 23

8 L8 THF 10 30 49 1:1 37

9 L4 PhMe 10 30 56 2.8:1 60

10 L4 MeCN 10 30 71 3:1 84

11 L4 CH2Cl2 10 30 65 2.7:1 75

12 L4 CHCl3 10 30 70 1.7:1 59

13 L4 PhCF3 10 30 60 2.1:1 63

14 L4 MeCN 10 0 46 1.5:1 40

15 L4 MeCN 10 10 69 3:1 80

16 L4 MeCN 10 40 71 3:1 84

17 L4 MeCN 10 50 69 3:1 82

18 L4 MeCN 3 30 54 3:1 85

19 L4 MeCN 5 30 82 3:1 88

20 L4 MeCN 15 30 74 3:1 80

aReaction conditions: Unless otherwise noted, all reactions were conducted with x mol % of ligand, 2x mol % of ZnEt2, 0.10 mmol 1a and 0.10 

mmol 2a in 2 mL solvent. bIsolated yields. cThe diastereomeric ratio parameter of 3a was detected by 1H NMR of the crude reaction mixture. dThe 

enantiomeric excess (ee) value was determined by high-performance liquid chromatography (HPLC) analysis.

54% yield, 4.5:1 dr and 82% ee value. Next, the scope of Ar2 group appended to the double bond of 
nitroenones was investigated. As illustrated in Scheme 3, both electron-rich and electron-deficient aryl 
groups could be tolerated, delivering the corresponding products 3h-3k in 54%-79% yields, 2.8:1-9:1 
diastereoselectivities and 79%-91% enantioselectivities. Furthermore, incorporating a heteroaromatic group 
(Ar2 = 2-furyl) or a sterically bulky group (Ar2 = 1-naphthyl) did not affect the efficiency of the reaction (3l 
and 3m). Currently, only nitroenones bearing different aromatic substituents have been examined. 
Subsequently, we investigated the substrate generality of α-hydroxy-1-indanones by reacting them with 1-
(2-methoxyphenyl)-2-nitro-3-phenylprop-2-en-1-one 2f. Different substituents (from electron-donating to 
electron-withdrawing) at the C-4 to 6 positions of α-hydroxy-1-indanones 1 participated in the cascade 
reactions to give the desired products 3n-3x in 62%-81% yields, 4.3:1-13:1 diastereoselectivities and 86%-
96% enantioselectivities. Notably, the absolute configuration of the major isomer of product 3f was 
determined by the X-ray crystallographic analysis and that of other products was assigned by analogy[27].

To showcase the synthetic utility of this protocol, a gram-scale synthesis of 3f was carried out by using 5 
mmol of 1a and 5 mmol of 2f. Under the standard condition, the reaction proceeded smoothly to give 
product 3f in 69% yield (1.48 g) with 10:1 dr and 93% ee [Scheme 4A]. Further reduction of nitro group with 
the NiCl2/NaBH4 system and hydrolysis of the ester group took place in one-pot and afforded the 
indeno[1,2-b]pyrrol-(3H)-ol derivative 5 [Scheme 4B].
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Scheme 2. Our designed catalytic asymmetric acyl transfer methods via electrophile activation.

Figure 1. Reaction condition screening.

As previously described, a plausible reaction mechanism for this acyl transfer-enabled catalytic asymmetric 
Michael addition was illustrated in Scheme 5. Firstly, α-hydroxy-1-indanone 1a and nitroenone 2a were 
coordinated to the two zinc atoms in the chiral pocket of the dinuclear zinc complex in a less hindered 
manner. Then, the enantioselective Michael addition led to the intermediate B. Next, an intramolecular 
hemiketalization proceeded in the same chiral pocket to give intermediate C, which underwent the retro-
Claisen reaction to afford the complex D. Finally, the catalytic cycle was restarted after a proton exchange of 
intermediate D with another α-hydroxy-1-indanone 1a, followed by the release of product 3a.
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Scheme 3. Reaction scope. Reaction conditions: Unless otherwise noted, all reactions were conducted with 5 mol% of L4, 10 mol % of 
ZnEt2, 0.20 mmol 1 and 0.20 mmol 2 in 2 mL MeCN. Isolated yields. The diastereomeric ratio parameter of 3 was detected by 1H NMR of 
the crude reaction mixture. The enantiomeric excess (ee) value was determined by HPLC analysis.
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Scheme 4. Gram-scale reaction (A) and derivatization (B).

Scheme 5. Proposed reaction mechanism.

DFT calculations were performed on the enantioselectivity-determining step to elucidate the origins of 
selectivity. Model catalyst IN1 [Figure 2] was used for the calculation. The ligand exchange of substrate 1a 
and ethane leads to IN2, which is exergonic by 21.5 kcal/mol, followed by the Michael addition step. Our 
calculations show that the pathway leading to the major RR-enantiomer (via transition state TS3-RR) has a 
free energy barrier of 13.8 kcal/mol, which is 2.3 kcal/mol more favorable than that leading to the minor SS-
enantiomer (via transition state TS3-SS) and agrees with experiment. Detailed analyses indicate that there is 
favorable C-H…π interactions between the C-H bond adjacent to C1 in 1a and the phenyl ring connecting 
to C2 in 2a (2.69 Å, Figure 2) in TS3-RR. On the other hand, however, unfavorable steric repulsion was 
found between hydrogen atoms of the two substrates in TS3-SS (the closest H-H distance is 2.04 Å, 
Figure 2). The steric repulsion between the two substrates in TS3-SS would retard the C1-C2 bond 
formation, as manifested by the much longer C1-C2 distance in TS3-SS (2.29 Å) than in TS3-RR (2.16 Å). 
Thus, our computations reveal that both the C-H…π interaction in TS3-RR and the steric effect in TS3-SS 
account for the observed enantioselectivity.
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Figure 2. The calculated free energy profile and geometries of the key transition states for the enantioselectivity-determining Michael 
addi t ion  step (ca lculat ions  were  performed at  the  M06/6-311++G(d,p)/SDD//B3LYP-D3BJ/6-31G(d,p)/LANL2DZ//
SMD(solvent=Acetonitrile) level of theory; bond distances are given in Å).

CONCLUSION
In conclusion, we have disclosed a novel acyl transfer-enabled catalytic asymmetric Michael reaction of α-
hydroxy-1-indanones with nitroolefins via an underexplored electrophilic mode of activation. The chemical 
event underwent a reaction cascade of dinuclear zinc-catalyzed asymmetric Michael addition, 
intramolecular cyclization, and the retro-Claisen reaction. Good yields and stereoselectivities of the desired 
products were obtained with a wide substrate scope under mild conditions. In the activation mode, the 
dinuclear zinc complex acted as a bifunctional catalyst, wherein one zinc atom worked as a Lewis acid and 
the another functioned as a Brønsted base. Further applications of this catalytic asymmetric acyl transfer via 
electrophile activation for the synthesis of polyfunctional heterocycles are ongoing in our laboratory.
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