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Abstract
Thermal infrared (TIR) images remain unaffected by variations in light and atmospheric conditions, which makes
them extensively utilized in diverse nocturnal traffic scenarios. However, challenges pertaining to low contrast and
absence of chromatic information persist. The technique of image colorization emerges as a pivotal solution aimed
at ameliorating the fidelity of TIR images. This enhancement is conducive to facilitating human interpretation and
downstream analytical tasks. Because of the blurred and intricate features of TIR images, extracting and process-
ing their feature information accurately through image-based approaches alone becomes challenging for networks.
Hence, we propose a multi-modal model that integrates text features from TIR images with image features to jointly
perform TIR image colorization. A vision transformer (ViT) model will be employed to extract features from the orig-
inal TIR images. Concurrently, we manually observe and summarize the textual descriptions of the images, and then
input these descriptions into a pretrained contrastive language-image pretraining (CLIP) model to capture text-based
features. These two sets of features will then be fed into a cross-modal interaction (CI) module to establish the rela-
tionship between text and image. Subsequently, the text-enhanced image features will be processed through a U-Net
network to generate the final colorized images. Additionally, we utilize a comprehensive loss function to ensure the
network’s ability to generate high-quality colorized images. The effectiveness of the methodology put forward in this
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study is evaluated using the KAIST datasets. The experimental results vividly showcase the superior performance of
our CMMF-Net method in comparison to other methodologies for the task of TIR image colorization.

Keywords: Thermal infrared image colorization, vision and language, transformer

1. INTRODUCTION
Infrared imaging differentiates various objects from their surroundings based on emitted radiation. This tech-
nique remains effective even under challenging weather conditions, including precipitation and fog. Conse-
quently, thermal infrared (TIR) imaging finds extensive utility across military operations, surveillance systems,
vehicle imaging, nocturnal traffic management, and various other applications [1–3]. Nonetheless, TIR images
exhibit a deficiency in color depth and intricate details inherent in RGB images, posing challenges for down-
stream tasks such as object recognition [4,5], semantic segmentation [6], obstacle avoidance for mobile robots
in dynamic environments [7], structural health monitoring of bridges [8], the detection of cracks and damage [9]

and related domains [10–12]. By applying colorization to infrared images of building facades, roofs, and win-
dows, personnel can more clearly identify heat leaks, insulation issues, and thermal bridges within the struc-
tures. Furthermore, in the realm of security inspections, infrared image colorization significantly enhances
the effectiveness of surveillance systems. Thus, the process of colorizing TIR images is increasingly vital to
enhance their usability and overall quality.

Image colorization stands as a pivotal method for enhancing TIR imagery, effectively improving its overall
quality. It aligns TIR images more closely with human visual expectations while also restoring their grayscale
intricacies. Current grayscale-image-based colorization techniques have yielded remarkable outcomes [13–16].
However, grayscale image-based colorization typically involves estimating only colors, whereas TIR image
colorization demands the reconstruction of both texture and color information. Additionally, the substantial
disparity between the two types of images complicates the implementation of colorization algorithms. Conse-
quently, a key challenge is to designmechanisms that enable our network to efficiently capture nuanced feature
details from the input images and, under the guidance of the loss function, generate high-quality, color-rich
images.

Over the past few years, The primary focus of traditional methods is to restore the color of infrared images.
However, the resulting colors often exhibit significant discrepancies from real-life counterparts [14,17]. In recent
times, deep learning has significantly advanced various computer vision tasks. Notably, the effective utiliza-
tion of convolutional neural networks (CNNs) and generative adversarial networks (GANs) has propelled TIR
image colorization techniques to considerable success. Nonetheless, owing to the inherent limitations of TIR
imagery, the outcomes still exhibit disparities compared to real RGB images.

This paper proposes CMMF-Net (a generative network based on CLIP-guided multi-modal feature fusion
for TIR image colorization) for the colorization of TIR images, which is capable of efficiently extracting and
processing image feature information by integrating textual descriptions. The introduction of text helps to
mitigate the inherent low quality and blurry features of TIR images, leading to a noticeable improvement in
the quality of the final colorized image results. We utilize a multi-modal network framework to address the
issue of conventional colorizationmethods based solely on single TIR images failing to understand and process
the complex feature information inherent in TIR images effectively and accurately.The network is composed
of three parts. Text_Encoder is responsible for encoding textual information to obtain textual tokens, while
Image_Encoder is responsible for extracting image information to obtain image tokens. Next, the obtained
textual and image tokens are inputted into the cross-modal interaction (CI) module to obtain image features
enhanced with textual information. Finally, combining with the U-Net network to decode this feature, the
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final colorized image is obtained. Our loss function includes content loss, perceptual loss, total variation loss
and structural similarity index (SSIM) loss. Overall, we summarize the contributions below:

• A novel multi-modal feature fusion network is carefully proposed for the task of visible light image restora-
tion from TIR image.

• Text_Encoder parameters of contrastive language-image pretraining (CLIP) model are migrated in this
model, and the text and image feature information are processed by combining vision transformer (ViT)
encoder module and CI module.

• The experimental results demonstrate that our method achieves leading performance in TIR image col-
orization.

2. RELATED WORK
2.1. Visible image colorization
Image colorization involves transforming a monochromatic TIR image into a colorized image with three chan-
nels. Traditional grayscale image colorization techniques often necessitate user participation. For instance,
the Scribble-based method relies on prior color annotations provided by users, which are then extended to the
entire grayscale image [18]. Another approach, the Example-based method, utilizes color data from reference
images to assist in the colorization process [19].

In recent years, the field of image colorization has witnessed a significant shift towards deep learning-based
approaches, which have demonstrated superior performance compared to traditional methods. Larsson et al.
introduced a fully automated technique utilizing CNNs [20]. Building upon this, Zhao et al. integrated image
segmentation information to further enhance colorization accuracy [21]. The integration of generative adver-
sarial network (GAN) models [22] has also become prevalent in numerous colorization tasks [14,23]. Moreover,
recent advancements in denoising diffusion probabilistic models (DDPM) [24,25] have introduced a novel col-
orization approach based on visible image diffusion models. This method utilizes visible images as conditions
for diffusion models, resulting in color images through denoising processes. Impressively, this technique has
shown promising results in the realm of visible image colorization [26]. Collectively, these advancements under-
score the transformative potential of deep learning techniques in revolutionizing image colorization processes.

2.2. TIR image colorization
With the continuous development of deep learning, various popular network frameworks have been applied in
TIR image colorization tasks [27–31]. However, due to the substantial differences in data distribution between
TIR and visible images, alongside the abundance of TIR datasets, CNN architectures often struggle to adapt
effectively to TIR image colorization tasks. TIR stands out as the pioneering CNN-based colorization network,
leveraging the U-Net architecture for TIR image colorization [27]. While TIR boasts lightweight design, its
colorization performance remains less than satisfactory.

In contrast, the inherent capability of GAN-based architectures in image generation has led to the predom-
inance of GAN-based networks in image colorization. Leveraging the advantages of GAN structures, these
networks demonstrate enhanced performance and effectiveness in generating realistic colorized images. Ad-
vancements in TIR image colorization have predominantly been driven by GAN-based approaches, notably
exemplified by Pix2Pix [23], which, while enhancing image details and colors to some extent, still exhibits
a degree of unnaturalness compared to true images. Subsequent refinements, such as those introduced by
Kuang et al., have significantly bolstered colorization quality through the integration of composite loss func-
tions [28]. Innovations such as the ToDayGAN-based network proposed by Lou et al. have further pushed the
boundaries by effectively translating nighttime TIR images into visually satisfying daytime colorized counter-
parts [32]. Additionally, efforts by Liao et al. with the mixed-skipping (MS) U-Net architecture have notably
improved colorization quality through advanced attention mechanisms [30]. He et al. proposed a large kernel
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Figure 1. The overall framework. Including a ViT Image_Encoder module, a CLIP Text_Encoder module, a cross-modality alignment module
and a U-net module. CMMF-Net takes image-sentence pairs as input, and outputs the colorized image. ViT: Vision transformer; CLIP:
contrastive language-image pretraining; CMMF-Net: a generative network based on clip-guided multi-modal feature fusion for thermal
infrared image colorization.

network and a two-branch structure network incorporating a Transformer module to fully process TIR image
features [31]. However, due to inherent defects in the image, the color effect remains unsatisfactory. Recently,
several networks have been proposed for the colorization of TIR videos, including Recycle-GAN [33] and un-
paired infrared-to-visible video translation (I2VGAN) [34]. These approaches primarily focus on enhancing
the realism of video content.

2.3. CLIP net
In tasks involving vision and language, a profound grasp of semantics is pivotal for achieving enhanced col-
laborative representation. In the realm of comprehending visual content, diverse backbone models [35,36] have
emerged, aimed at pure visual comprehension. These models have convincingly demonstrated their efficacy
across substantial datasets [37]. In recent cross-modality research, numerous methods [38–40] have been intro-
duced. These approaches primarily emphasize understanding the intricate connection between visual and
textual elements across diverse modalities. CLIP [41] is a type of neural network trained on various pairs of
images and texts. It can be directed using natural language to predict the most relevant textual snippet given
a specific image, without the need for direct optimization for the task, similar to the zero-shot capability of
GPT-2 and GPT-3. CLIP consists of two models: text encoder and image encoder. The text encoder is uti-
lized to extract features from text and can employ commonly used text transformer models from NLP. On the
other hand, the image encoder is employed to extract features from images, and it can use conventional CNN
models or ViTs. In this paper, we will utilize its pretrained text-encoder module to extract text information.

3. PROPOSED METHOD
3.1. Overview
Figure 1 presents the architecture of the model. The proposed method integrates both image feature informa-
tion and textual information, enabling a more comprehensive and accurate understanding and processing of
the relevant features of TIR images. We utilize the pretrained CLIP model to capture and process text-based
feature information. In this approach, the Text_Encoder module refers to the one used in the original CLIP
method. Meanwhile, we utilize the Encoder module of the ViT model [42] to extract image feature informa-
tion from TIR images. The ViT model is an image processing model based on the Transformer architecture,
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Figure 2. The CI module. The text feature is Q, and the image feature or the current layer output feature is K and V for multi-head attention
operation, and the corresponding relationship is established. CI: Cross-modal interaction.

which has achieved significant success in the field of image processing. It can effectively extract feature infor-
mation from images and encode it into vector representations. Next, the text and image feature information
obtained through the CI module is processed. Through a multi-head attention mechanism, relationships be-
tween text and images are established, ultimately resulting in enhanced image feature representations based
on text. The cross-modality design presented in this paper consists of two transformer blocks. These blocks
are implemented based on the ViT. Unlike the conventional ViT, we integrate the generation of the atten-
tion mechanism’s Key (K), Query (Q), and Value (V) with the modality interaction between images and text.
Specifically, we generate K from the text and Q and V from image embeddings. Additionally, we employ a
multi-head attention mechanism to enable the model to capture more global information. The detailed pro-
cessing flow is illustrated in Figure 2. Next, drawing from the successful practice of the LK_U-Net module in
the first large kernel U-Net and attention_U-Net-transformer (ViT-Based)-based generative adversarial net-
work (LKAT-GAN) method [31] for TIR image colorization task, we employ this U-Net module to process and
decode the text-image features obtained from the previous stage to generate the final colorized image. To
achieve higher-quality results, The total loss comprises content loss, perceptual loss, total variation loss, and
SSIM loss. Details will be provided in the following sections.
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3.2. Text_Encoder and Image_Encoder
In the context of the large-scale dataset WebImageText [41] collected and curated by the OpenAI team, the
emergence of theCLIPmodel signifies a significant breakthrough in the field of text-image predictionmatching.
The key innovation of the CLIP method lies in its contrastive learning framework, which matches natural
language descriptions with images, prompting the model to learn a shared embedding space. In this space,
relevant language descriptions and images are mapped to nearby points, while irrelevant language descriptions
and images are pushed apart, enabling the model to better understand the semantic relationships between
images and language.

Through pretraining on large-scale image-text pairs, the CLIP model has learned a universal cross-modal
representation. This representation not only captures rich relationships between images and language but also
exhibits strong generalization capabilities. In practice, this means that when faced with new tasks or categories,
the CLIP model possesses powerful zero-shot learning abilities. Even in unseen scenarios, this model can
perform inference and generalization because the universal representation it has learned demonstrates strong
generalization properties.

In this paper, we designed a general module that introduces text guidance for image colorization. The text
input for our method is based on the observation of typical object information in the dataset, and the text
features are extracted using the CLIP Text Encoder model. The Text Encoder module of CLIP is essentially
a basic Bert, fundamentally composed of Transformer modules, so the structures of Text Encoder and Image
Encoder are quite similar. In CLIP, the Text_Encoder consists of 12 layers of Transformer Encoder. Due to its
pretraining phase, where it has learned rich semantic information representations through large-scale datasets,
by transferring the parameters of this module and combining themwith the Image_Encodermodule of the ViT
model and the CImodule, we extend these advantages to the TIR image colorization task. In our approach, the
depth of the Image_Encoder module is set to nine layers. The Text_Encoder module, pretrained on massive
datasets, provides a strong foundation, enabling our approach to accurately extract relevant features. These
features capture the rich associations between text descriptions and image features, providing robust support
for the colorization task.

3.3. CI
To better adapt the text features obtained by the transferred Text_Encoder module and the image features
obtained by the Image_Encoder module to TIR image colorization, we designed the CI module to process
the TIR image feature information and corresponding text information. The specific structure is depicted in
Figure 2.

The overall structure is similar to the Transformer module, where we use the token sequence representa-
tion obtained by the Text_Encoder module as Query, and the image feature information obtained by the
Image_Encoder module as Key and Value, which are jointly inputted into the CI module for multi-head at-
tention operations. Through attention mechanisms, the relationships between text and images are established,
and then the text-enhanced image representation is obtained through the multi-layer perceptron (MLP) layer
output. The output of the current layer is then fed along with the text token into the next layer to repeat the
above operation. Finally, the OutputProj layer is used to adjust the feature size and dimensions, outputting
the image features with text feature information. Since the input image features and text features already con-
tain positional information, no Embedding operation is performed in the CI module; instead, the features are
directly inputted into our Transformer_Block.

For the Text_Encoder module with fixed parameters, the input text is mapped to a predefined feature space,
which mainly contains categorical classification information of text tokens. In the CI module, the fixed text
feature information can effectively highlight and emphasize image features, enhancing the model’s understand-
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ing. As for the Image_Encoder module, with the involvement of text features, through network training and
optimization, it can better retrieve and process image features. The enhanced image features ultimately amelio-
rate the problem of inaccuracies in directly extracting image features from TIR images, resulting in significant
enhancements in both image details and color information in the final colorized images.

3.4. U-Net
We introduced a U-Net network module as a critical component in the colorization task. This module plays
a vital role in the network, effectively integrating text and image information, and is crucial in generating col-
orized images. The design inspiration for the U-Net module comes from the innovation in the LKAT-GAN [31]

work, particularly the U-Net module with large kernel convolutions. This structure better handles feature ex-
traction and fusion in colorization tasks. Specifically, during the downsampling process, we employ a network
with large kernel convolutions to effectively extract important feature information from the original TIR im-
ages while ensuring that these features maintain the same size as the features with text information. Next, the
downsampled features and the comprehensive output features of text-image are concatenated for final upsam-
pling. This approach fully utilizes the information fromboth types of features whilemaintaining coherence and
consistency between them. Similar to most U-Net networks, skip connections and concatenation are applied
between the downsampling and upsampling modules, preserving more detailed information and enhancing
the performance of network and robustness. Finally, through a convolutional layer with a 3 × 3 kernel, the
number of channels is adjusted to 3, outputting the final colorized result. This step ensures that the generated
color images have good visual effects and quality. In summary, the U-Net network module in our approach is
trainable, meaning it has the capability to adjust and optimize parameters, allowing for flexible tuning based
on tasks and data to meet the demands of different scenarios, thereby enhancing the quality and accuracy of
colorization results. Additionally, by combining the downsampling and upsampling processes, this module
can effectively fuse text and image information without losing feature details. During the downsampling stage,
the network with large kernel convolutions can better capture global features and structural information of
the image. In the upsampling stage, skip connections and concatenation operations preserve detailed informa-
tion and seamlessly integrate text and image information. This efficient fusion mechanism provides reliable
support for the colorization task, achieving more accurate and clearer colorization effects while maintaining
image quality.

3.5. Loss function
The loss function of our model comprises four components: Content loss 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 , Perceptual loss 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 ,
Total Variant loss 𝐿𝑡𝑣 , and SSIM loss 𝐿𝑠𝑠𝑖𝑚 .

Content loss can ensure theminimization of differences in chrominance and luminance between the generated
colorized image and ground truth image. 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is defined as follows:

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = E𝑥,𝑦 [| |𝑦 − 𝐺 (𝑥, 𝑧) | |1], (1)

where y represents he actual colorized image, x indicates the input infrared image, z denotes the text vector,
and G(x,z) stands for our colorization model.

Perceptual loss can regulate the perceptual details between the colorized image and the ground truth image.
Based on the experience of existing research, the VGG-19 [43] network pretrained on the Image-Net dataset is
utilized as the perceptual feature extractor. 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 is defined as follows:

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎 = E𝑥,𝑦 [| | (Φ𝑖 (𝐺 (𝑥, 𝑧) −Φ𝑖 (𝑦) | |1], (2)

where Φ𝑖 represents the i-th layer features extracted by the pretrained network.
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Total variant loss can significantly enhance the spatial smoothness of the images generated by the model while
simultaneously reducing image noise. First, the pixel differences of the generated image along the height and
width dimensions are calculated. Then, the total variation value along the width direction is obtained. Finally,
the total variation values are summed and normalized by dividing by the total number of pixels in the image,
yielding the average total variation. 𝐿𝑡𝑣 is formulated as follows:

𝐿𝑡𝑣 =
1

𝑊𝐻

∑
|∇𝑥𝐺 ( �̃�) | + |∇𝑦𝐺 (�̃�) |, (3)

where W and H denote the height and width of the image, respectively.

SSIM loss can minimize the difference between generated images and ground truth, we introduce SSIM loss
which can measure the similarity between two images. 𝐿𝑠𝑠𝑖𝑚 is defined as follows:

𝐿ss𝑖𝑚 = 1 −
(2𝜇𝑥𝜇𝑦 + 𝐶1) (2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1) (𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2)
, (4)

where 𝜇𝑥 and 𝜇𝑦 represent the mean luminance values of image x and image y, C is a small constant introduced
to prevent numerical instability, and 𝜎𝑥 and 𝜎𝑦 represent the contrast values of image x and image y, 𝜎𝑥𝑦

represents the structural correlation between the two images.

Thus, the overall loss function for our network is formulated as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝜆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎

+𝜆𝑡𝑣𝐿𝑡𝑣 + 𝜆𝑠𝑠𝑖𝑚𝐿𝑠𝑠𝑖𝑚 ,
(5)

where 𝜆𝑐𝑜𝑛𝑡𝑒𝑛𝑡 , 𝜆𝑎𝑑𝑣 , 𝜆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎 , and 𝜆𝑡𝑣 are parameters that control the weight of each loss function.

4. EXPERIMENTS
4.1. Dataset and implementation details
4.1.1. KAIST dataset
In image colorization tasks, accurate pixel-to-pixel correspondence between infrared and visible images is
essential. Consequently, this paper utilizes the KAIST multi-spectral pedestrian dataset [44] for our experi-
mentation. The training set comprised 26,387 pairs of thermal and RGB images captured during the daytime,
with an additional 23,925 daytime images used for evaluation. In the experiments, each image was randomly
cropped to a resolution of 256 × 256.

4.1.2. IRVI dataset
The IRVI (dataset for infrared-to-visible video translation) dataset [34] includes two distinct scenarios: traffic
and monitoring scenarios. Due to the relatively uniform content of the images in this dataset, we utilized it as
an auxiliary dataset to further validate the model’s performance.

4.1.3. Implementation details
We implemented the model using PyTorch, with the training conducted on an NVIDIA 3090 GPU environ-
ment utilizing the PyTorch framework. The parameters of Text_Encoder module are derived from the original
paper [41]. The weight coefficient of the loss function 𝜆𝑐𝑜𝑛𝑡𝑒𝑛𝑡 , 𝜆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎 , 𝜆𝑡𝑣 and 𝜆𝑠𝑠𝑖𝑚 are set to 1, 1, 1 and
1. For the comparative methods, we employed two evaluation metrics: SSIM and peak signal-to-noise ratio
(PSNR).

4.2. Experiments on KAIST dataset
We select six comparative TIR image colorization methods: Pix2pix [23], thermal infrared image colorization
using mixed-skipping UNet and generative adversarial network (MUGAN) [30], LKAT-GAN [31], PealGAN [32],

http://dx.doi.org/10.20517/ir.2025.03


Jiang et al. Intell. Robot. 2025, 5(1), 34-49 I http://dx.doi.org/10.20517/ir.2025.03 Page 42

Figure 3. Colorized images using different image colorization methods on IRVI. (A) TIR images; (B) I2VGAN [34]; (C) TICC-GAN [28]; (D)
SCGAN [29]; (E) PealGAN [32]; (F) MUGAN [30]; (G) LKAT-GAN [31]; (H) CMMF-Net; (I) True RGB images. The original infrared images (A)
and RGB images (J) were obtained from https://github.com/BIT-DA/I2V-GAN, while the other images were reproduced using methods
from other papers and generated with our laboratory’s equipment. The specific methods can be found in the corresponding references
listed in the bibliography. IRVI: Dataset for infrared-to-visible video translation; TIR: thermal infrared; I2VGAN: unpaired infrared-to-visible
video translation; TICC-GAN: thermal infrared colorization via conditional generative adversarial network; SCGAN: saliency map-guided
colorization with generative adversarial network; MUGAN: thermal infrared image colorization using xixed-skipping UNet and generative
adversarial network; LKAT-GAN: a GAN for thermal infrared image colorization based on large kernel and attentionUNet-transformer;
CMMF-Net: a generative network based on clip-guided multi-modal feature fusion for thermal infrared image colorization.

CycleGAN [33], saliency map-guided colorization with generative adversarial network (SCGAN) [29], and ther-
mal infrared colorization via conditional generative adversarial network (TIC-CGAN) [28]. The best perfor-
mance metrics of the aforementioned methods are shown in Table 1. To illustrate the objective evaluation
of each model, line graphs showing the scores from 16 to 20 epochs are provided in Figure 4. Across all
epochs, the two metrics of our model consistently surpass those of other methods, clearly demonstrating the
potential and performance of our method. Moreover, the outstanding SSIM values provide additional evi-
dence that the results produced by our method are highly consistent with the ground truth. In quantitative
comparisons, CMMF Net exhibits the best overall performance, excelling in both detail reconstruction and
color. The qualitative evaluation metrics of the aforementioned methods are illustrated in Figure 5. Overall,
SCGAN exhibits the weakest performance, with inadequate color and detail reconstruction. Similarly, TIC-
CGAN demonstrates shortcomings in reconstructing fine image details. While PealGAN, as an unsupervised
model, excels in handling unpaired datasets, its performance on paired datasets is inferior to that of supervised
models. MUGAN, although yielding better results than TIC-CGAN and SCGAN, still exhibits unsatisfactory
detail reconstruction, with minor noise present in certain cases. LKAT-GAN produces more realistic colors
and richer details compared to the other methods, but the object recognition is not clear and accurate enough,
and the image noise is significant. In terms of image object details, our proposed method is significantly bet-
ter than other comparison methods, and the colorized images generated by our model are smoother and less
noisy. However, it is worth noting that the results generated by our method, as a whole, do not appear as bright
compared to other methods.
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Table 1. Average results on the KAIST test dataset

Method SSIM PSNR

Pix2pix [23] 0.50 15.10

MUGAN [30] 0.54 15.55

LKAT-GAN [31] 0.54 15.79

PealGAN [32] 0.43 14.83

CycleGAN [33] 0.30 12.17

SCGAN [29] 0.53 15.48

TIC-CGAN [28] 0.54 15.52

CMMF-Net 0.58 16.22

KAIST: A multispectral pedestrian dataset,
proposed by the Korea Advanced Institute of Science
and Technology; SSIM: structural sim-ilarity index;
PSNR: peak signal-to-noise ratio; MUGAN: thermal
infrared image colorization using xixed-skipping UNet
and generative ad-versarial network; LKAT-GAN: a GAN
for ther-mal infrared image colorization based on large
kernel and attentionUNet-transformer; SC-GAN:
saliency map-guided colorization with generative
adversarial network; TIC-CGAN: thermal infrared
colorization via conditional generative adversarial
network; CMMF-Net: a generative network based
on clip-guided multi-modal feature fusion for
thermal in-frared image colorization.

Figure 4. Results of different image colorization methods on KAIST. X-axis is the epoch and Y-axis is the index. KAIST: A multispectral
pedestrian dataset, proposed by the Korea Advanced Institute of Science and Technology.

4.3. Experiments on IRVI dataset
On the IRVI dataset, we conducted complementary experimentswith I2VGAN [34], SCGAN [29], TICC-GAN [28],
PealGAN [32], MUGAN [30] and LKAT-GAN [31]. Due to the limited size of the dataset, we combined the data
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Figure 5. Colorized images using different image colorization methods on KAIST. (A) TIR images; (B) CycleGAN [33]; (C) Pix2pix [23]; (D)
SCGAN [29]; (E) TIC-CGAN [28]; (F) PealGAN [32]; (G) MUGAN [30]; (H) LKAT-GAN [31]; (I) CMMF-Net; (J) True RGB images. The original
infrared images (A) and RGB images (J) were obtained from https://soonminhwang.github.io/rgbt-ped-detection/data/, while the other
images were reproduced using methods from other papers and generated with our laboratory’s equipment. The specific methods can be
found in the corresponding references listed in the bibliography. KAIST: A multispectral pedestrian dataset, proposed by the Korea Ad-
vanced Institute of Science and Technology; TIR: thermal infrared; SCGAN: saliency map-guided colorization with generative adversarial
network; TIC-CGAN: thermal infrared colorization via conditional generative adversarial network; MUGAN: thermal infrared image coloriza-
tion using xixed-skipping UNet and generative adversarial network; LKAT-GAN: a GAN for thermal infrared image colorization based on
large kernel and attentionUNet-transformer; CMMF-Net: a generative network based on clip-guidedmulti-modal feature fusion for thermal
infrared image colorization.

from two scenarios to form the training set, while selecting data from other scenarios for the test set. The
IRVI dataset encompasses a wide range of scenes and diverse image content, including low-light, haze, and
rain/snow weather conditions. The image content includes vehicles, pedestrians, buildings, and natural land-
scapes. The results show that our method consistently achieves the best overall performance across various
lighting conditions and diverse image content, further confirming the superior generalization capability of our
model. From the perspective of objective indicators, ourmethod achieves the best performance comparedwith
other comparison methods in traffic scenarios, and also performs well in monitoring scenarios, second only to
LKAT-GAN method, as shown in Table 2. From the perspective of objective indicators, our method achieves
optimal performance compared with other comparison methods in traffic scenes. Moreover, as shown in
Figure 3, compared with other comparison methods, our proposed method has better performance in image
detail and less noise, but the overall image is darker. In general, in the IRVI dataset, our method achieves good
results in the objective indicators, but there are some shortcomings in subjective evaluation. For example, the
detailed texture is better than that of other methods, but we lose the edges. The edges of other methods show
better visual results, but with more pixel-level loss compared with our method, and the metrics reveal this
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Table 2. Scores of different methods on IRVI. The best results are in bold

Method
Traffic Monitoring

SSIM PSNR SSIM PSNR

I2VGAN [34] 0.60 17.02 0.46 17.30

SCGAN [29] 0.65 17.72 0.50 16.55

TIC-CGAN [28] 0.62 16.94 0.52 17.65

PealGAN [32] 0.60 16.34 0.48 13.84

MUGAN [30] 0.66 18.42 0.46 14.72

LKAT-GAN [31] 0.65 17.43 0.58 18.51

CMMF-Net 0.68 18.84 0.56 18.39

IRVI: Dataset for infrared-to-visible video translation; SSIM:
structural similarity index; PSNR: peak signal-to-noise ratio;
SCGAN: saliency map-guided coloriza-tion with generative
adversarial network; TIC-CGAN: thermal infrared colorization
via conditional genera-tive adversarial network; MUGAN:
thermal infrared image colorization using xixed-skipping
UNet and generative adversarial network; LKAT-GAN: a GAN
for thermal infrared image colorization based on large kernel and
attentionUNet-transformer; CMMF-Net: a generative network
based on clip-guided multi-modal feature fusion for thermal
infrared image colorization.

phenomenon.

4.4. Ablation study
To evaluate the contribution of eachmodule inCMMF-Net, we conducted an ablation study. Two experimental
settings were designed to verify the effect of the module by excluding some parts of the original structure. The
first experiment involved removing the Text_Encoder module experiment, which excluded text information
in the model. The second experiment removed the CI module, which did not perform the text and image
feature interaction processing but directly added the two features for output. Through these experiments, we
were able to analyze the impact of each module on the colorization task and determine which modules were
most critical for the final performance improvement.

This study will demonstrate the impact of each innovative module on the colorization results through ablation
experiments. The colorization results of each ablationmethod are shown in Figure 6. For the subjective evalua-
tion, the color results generated by CMMF-Net have been slightly improved in terms of detail and overall, and
no obvious difference can be seen in the color results of each ablation method, which also proves that the per-
formance of our overall method is excellent. The objective evaluation results are shown in Table 3. Finally, the
overall CMMF-Net model had the highest SSIM and PSNR indicators among all ablation methods. Through
the ablation experiment without adding text information, it is found that the introduction of text features can
effectively assist the model to better extract and process image feature information, and improve the network
color performance. This proves the superiority of our proposed multi-modal model. In the ablation experi-
ment without CI module, it is found that the effect of the model is improved when text information is directly
added to the network without text and image related feature processing, which once again proves the auxiliary
role of text information to the model. At the same time, the performance of the model is further improved
after the addition of CI module, which also proves the importance of this module for multi-modal models in
colorization tasks. In addition, the results of two ablation experiments show that our overall network model
is significantly better than other comparison models.
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Figure 6. Colorization images of ablation studies on KAIST. (A) TIR images; (B) Without Text_Encoder block; (C) Without CI block;
(D) CMMF-Net; (E) True RGB images. The original infrared images (A) were obtained from https://soonminhwang.github.io/rgbt-ped-
detection/data/, while the other images were generated through our own experiments. KAIST: A multispectral pedestrian dataset, pro-
posed by the Korea Advanced Institute of Science and Technology; TIR: thermal infrared; CI: cross-modal interaction; CMMF-Net: a gener-
ative network based on clip-guided multi-modal feature fusion for thermal infrared image colorization.

Table 3. Quantitative comparisons of ablation studies of CMMF-Net on the KAIST dataset

Index Without Text_Encoder block Without CI block CMMF-Net

SSIM 0.57 0.57 0.58

PSNR 16.10 16.13 16.22

CMMF-Net: A generative network based on clip-guided multi-modal feature fusion for thermal
infrared image colorization; KAIST: a multispectral pedestrian dataset, proposed by the Korea
Advanced Institute of Science and Technology; CI: cross-modal interaction; SSIM: structural
similarity index; PSNR: peak signal-to-noise ratio.
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5. CONCLUSION
In this paper, we introduce an innovative method known as CMMF-Net for TIR image colorization. Leverag-
ing the extensive handling of image-language features through our multi-modal model, CMMF-Net adeptly
captures and processes the feature-rich information within TIR images, enabling accurate comprehension of
the semantic content they contain. Furthermore, our multi-modal model is designed to process both image
and language features. Supplementing text information assists the network in better extracting and process-
ing feature information of the TIR image. To enhance the capacity of the network to represent data, a U-Net
architecture is implemented, decoding features from diverse perspectives. Additionally, we implement a com-
posite loss function to ensure the fidelity of the generated images to their real counterparts. The experimental
outcomes obtained from the KAIST datasets underscore the superiority of CMMF-Net when contrasted with
alternative methodologies for TIR image colorization tasks. Looking ahead, our future research will focus on
two primary directions: colorization of TIR images captured at night and application of the proposed method
in real-world applications. Infrared image colorization holds significant potential for various practical applica-
tions, including structural analysis of thermal imaging in the architectural domain, detection of temperature
variations or pollution sources in environmental monitoring, and identification of fire sources or hazardous
materials in security inspections. Furthermore, infrared image colorization and fusion techniques may be fur-
ther integrated [45,46], for instance, by leveraging colorized infrared images in combination with visible light
images in multi-modal tasks, thereby achieving superior performance in real-world scenarios.
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