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Abstract
The significance of the superconducting diode effect (SDE) lies in its potential application as a fundamental 
component in the development of next-generation superconducting circuit technology. The stringent operating 
conditions at low temperatures have posed challenges for the conventional semiconductor diode, primarily due to 
its exceptionally high resistivity. In response to this limitation, various approaches have emerged to achieve the 
SDE, primarily involving the disruption of inversion symmetry in a two-dimensional superconductor through 
heterostructure fabrication. In this study, we present a direct observation of the supercurrent diode effect in a 
NbSe2 nanobridge with a length of approximately 15 nm, created using focused helium ion beam fabrication. 
Nonreciprocal supercurrents were identified, reaching a peak value of approximately 380 μA for each bias polarity 
at Bz

max = ± 0.2 mT. Notably, the nonreciprocal supercurrent can be toggled by altering the bias polarity. This 
discovery of the SDE introduces a novel avenue and mechanism through nanofabrication on a superconducting 
flake, offering fresh perspectives for the development of superconducting devices and potential circuits.

Keywords: Supercurrent diode effect, Ising spin-orbit interaction, nanobridge

INTRODUCTION
Nonreciprocal charge transport is a phenomenon commonly observed in semiconductors[1,2], characterized 
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by an electron-hole asymmetric junction that produces an asymmetric current in response to positive and 
negative voltages. This behavior finds extensive applications in electronic devices, including diodes, a.c./d.c. 
converters, optical isolators, circulators, and microwave diodes across a wide frequency spectrum[3-5]. 
Among these, the p-n junction, a well-established device in logic and computation, is structured by the 
hetero-interface of a p-type and an n-type semiconductor, resulting in an asymmetric current-voltage 
characteristic (IVC). However, the applicability of semiconductor junctions in quantum circuits is limited 
by the requirement to operate at extremely low temperatures to avoid thermal excitation. To address this 
challenge, a practical solution is found in the nonreciprocal supercurrent, known as the superconducting 
diode effect (SDE)[6]. The SDE exhibits nonreciprocity in non-dissipative superconducting current, allowing 
it to flow exclusively in one direction. Serving as the superconducting counterpart to a semiconducting 
diode, this effect has the potential to emerge as a novel non-dissipative circuit element, akin to traditional 
diodes. This characteristic opens up exciting possibilities in the realms of superconducting electronics[7], 
superconducting spintronics[8,9], and quantum information and communication technology[10,11].

In recent years, various methods have been proposed to realize the SDE. The initial discovery of SDE was 
reported by Ando et al., who investigated a junction-free superconducting [Nb/V/Ta]n superlattice, 
breaking both spatial-inversion and time-reversal symmetries[12]. Subsequent research by the same team 
introduced another implementation of zero-field SDE using noncentrosymmetric [Nb/V/Co/V/Ta] 
superconducting films with 20 multilayers, demonstrating the achievability of field-free SDE through 
noncentrosymmetric superconductor/ferromagnet multilayers[13]. A notable advancement stems from the 
study of a NbSe2/Nb3Br8/NbSe2 Josephson junction, functioning as a field-free SDE due to the asymmetric 
Josephson tunneling induced by rotational symmetry breaking from Nb3Br8 on NbSe2/Nb3Br8 interfaces[14]. 
Moreover, a supercurrent diode effect was observed in few-layer NbSe2 sandwiched between BN. This 
observation results from the breaking of inversion symmetry caused by the presence of a few layers of 
NbSe2

[15]. The Ising superconductivity nature of the few-layer NbSe2 or rotational symmetry breaking on the 
NbSe2/BN interfaces may dominate the mechanism. It is crucial to note that prior instances of SDE were 
based on rotational or time-reversal symmetry breaking on the interface of a two-dimensional (2D) 
superconductor through other quantum materials[16-18]. This approach requires a complex technique for 
interface control, especially concerning electron or magnetic correlation effects on the interface. Therefore, 
there is a need to explore intrinsic SDE in noncentrosymmetric superconductors. Remarkably, a few-layer 
NbSe2 has been identified as a noncentrosymmetric superconductor, possessing unique intrinsic Ising-type 
spin-orbit coupling (SOC) with a locked electron spin along the out-of-plane axis. Consequently, the 
pairing symmetry can also be disrupted to generate a nonreciprocal supercurrent[19]. Thus, the observation 
of intrinsic SDE in low-dimensional patterned NbSe2 appears highly promising.

This study presents the observation of intrinsic SDE in a NbSe2 nanobridge, created using a focused helium 
ion microscope. Nonreciprocal critical currents are evident without the need for artificially breaking 
inversion symmetry when a nonzero magnetic field is applied. Current-voltage (I-V) mapping illustrates the 
asymmetry of the critical current (Ic) concerning the magnetic field under bias polarities at Bz= ± 0.2 mT. A 
demonstrated example of a bias-polarity-controlled superconductivity diode is provided.

MATERIALS AND METHODS
Thin NbSe2 flakes are mechanically exfoliated onto a polydimethylsiloxane (PDMS) film positioned on a 
glass slide. Subsequently, the PDMS is stamped onto the pre-prepared electrode using a micromanipulator 
located beneath a microscope. The sample transfer process is conducted within a glove box filled with argon 
gas.
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The microbridge sample was fabricated using a Laser Direct-Write Lithography System (Durham Magneto 
Optics Ltd) and a reactive ion beam etching system (Advance Vacuum Scandinavia AB). Figure 1A 
illustrates the schematic representation of the typical device. The chosen NbSe2 crystal for this study has a 
thickness of approximately 15.4 nm [Supplementary Figure 1]. Electrical contacts and microbridge strips 
(1 μm wide and 4 μm long) were defined through conventional photolithography [Figure 1B]. The narrow 
channel serves the purpose of establishing a well-defined current direction in the constriction, indicated by 
the orange arrow in Figure 1A and defined as the x direction. The z axis is parallel to the stacking direction 
of NbSe2. Subsequently, the sample was introduced into a Zeiss Orion NanoFab helium ion microscope, and 
a 30 kV helium beam was scanned across the microbridges to create nanobridges. A lower linear fluence 
may slightly influence the superconductivity of NbSe2, whereas a higher linear fluence induces insulating 
behavior in the barrier. Within these extremes, linear fluences (600 ions/nm in this sample) were 
determined to selectively diminish superconductivity to a certain depth, effectively reducing the dimension 
of NbSe2. The regions bombarded by helium ions can be identified by a scanning electron microscope 
(SEM) [Figure 1C and D].

The as-patterned nanobridge measures approximately 15 nm in length and 1 μm in width, depicted as a red 
and blue gradient area in Figure 1A. The red area signifies the region where superconductivity is disrupted, 
while the blue area represents NbSe2 reaching the 2D limit. A schematic diagram of the helium-ion-beam 
milling process of NbSe2 is presented in Figure 1B. During the process, He+ implantation into the NbSe2 
crystal can lead to preferential sputtering of selenium atoms within the 2D transition-metal dichalcogenides 
(TMDs)[20], resulting in the degradation of superconductivity in the irradiated region (red area). Notably, 
vacancy defects caused by recoil ions serve as the primary source of superconductivity disruption. 
Consequently, the surface, in contrast to the underlying NbSe2, can be considered nearly undamaged. As the 
radiation linear fluence increases, the influence depth of He ions extends, subsequently reducing the 
thickness of the superconducting NbSe2. This process may facilitate the formation of Ising pairing in few-
layer NbSe2 (blue area).

Electrical transport measurements were conducted utilizing a Physical Property Measurement System 
(PPMS-Dynacool, Quantum Design) with the external electric meter comprising a Keithley 2400 as the 
current source and a Keithley 2182 as the voltage meter. The investigation of transport properties employed 
conventional four-terminal methods.

RESULTS AND DISCUSSION
In monolayer or few-layer NbSe2, the in-plane inversion symmetry is disrupted. Consequently, the 
concurrent impact of the Zeeman effect and substantial intrinsic spin-orbit interactions gives rise to an 
electron-spin-locking phenomenon along the out-of-plane direction[19,21-23] [Figure 1E]. Ising-type 
superconducting pairing symmetry emerges in NbSe2 due to the reverse spin splitting within the valence 
bands near valleys K and K’. This phenomenon gives rise to intervalley spin-momentum-locked spin-singlet 
Cooper pairing between two electrons, characterized by opposing momenta and antiparallel out-of-plane 
spins.

The directions of the inversion symmetry break (r) and the current (I) have been illustrated in Figure 1E. 
Consequently, the supercurrent diode behavior of this nanobridge can be influenced by the out-of-plane 
component (Bz) of the magnetic field. When the applied magnetic field (B), electric current (I), and polar 
axis (r) are mutually orthogonal, the critical current (Ic) magnitude depends on both B and r, leading to a 
magnetic chiral effect[24]. Therefore, the supercurrent diode behavior is determined by the out-of-plane 
component Bz.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202404/microstructures3073-SupplementaryMaterials.pdf
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Figure 1. (A) Schematic illustration of the measurement configuration. The orange arrow indicates the supercurrent pathway, and the 
red laser indicates the focused helium ion beam creating a weakly coupled junction in the multilayer NbSe2. The central constriction is 
about 1 μm wide and 15 nm long. The direction of the supercurrent is defined along the x-axis, while the z-axis is perpendicular to the 
crystal plane; (B) Artistic representation of the focused helium ion beam etching the multilayer NbSe2. The crystal structure is that of 
NbSe2; (C) SEM (upper) and optical (lower) image of the device. The nanobridge is made by ion beam etching, and an Ohmic contact is 
made by the pick-up and transfer method; scale bar, 20 μm; (D) A zoom-in image of the dashed rectangular area shown in (B). The color 
change reflects the change in electrical conductivity, which can be observed; (E) Illustration depicting type-I Ising superconductivity: the 
pairing of electrons in valleys with opposite spin splitting. r (y) refers to the direction of space inversion symmetry breaking, B (z) refers 
to the direction of time inversion symmetry breaking, and I (x) refers to the current direction. SEM: Scanning electron microscope.

Figure 2 illustrates the nonreciprocal transport properties of the NbSe2 nanobridge under varying 
irradiation linear fluences. Figure 2A-C depicts three pairs of IVCs corresponding to the magnetic fields 
applied along the z-axis. I-V curves are recorded under Bz = 0 (top), Bz = 0.7 mT (middle), and Bz = -0.7 mT 
(bottom) for three linear fluences. All curves represent zero-to-finite (either positive or negative) bias sweep 
directions, mitigating potential heating effects. The orange (blue) curve denotes the current density in the 
nanobridge oriented toward the positive (negative) x direction. Two additional devices, fabricated with 
NbSe2 of identical thickness, were irradiated at different linear fluences. Figure 2A and B displays the I-V 
curves for the devices under irradiation linear fluences of 0 and 300 ions/nm. Notably, nonreciprocal charge 
transport is absent in these samples. Given the intrinsic thickness of the NbSe2 flake at 15.4 nm, the Ising 
SOC may be ineffective, and it is reasonable to assume the preservation of inversion symmetry[22]. The 
minimal irradiation of 300 ions/nm appears insufficient to influence the superconductivity of the 
nanobridge region, as evidenced by the absence of nonreciprocal transport.

As the irradiation linear fluence increases to 600 ions/nm, a robust SDE becomes evident, as depicted in the 
I-V curves in Figure 2C. Notably, a significant disparity exists in linear fluences between Ic

+ and |Ic
-| in the 

critical current for the two supercurrent orientations. The sign of Δ = Ic
+ - |Ic

-| changes with the reversal of 
the magnetic field Bz, confirming that Δ is intrinsically determined by the magnetic field. The I-V loop 
further excludes the influence of thermal effects [Supplementary Figure 2]. It is essential to note that the 
nanobridge appears to be slightly damaged under helium ion irradiation, as evidenced by optical 
microscope and SEM images [Figure 1C and D]. A zoom-in image can clearly show the area of helium ion 
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Figure 2. (A-C) Current-voltage characteristics were measured at 2 K, considering opposite bias polarities (current directions) in a 
4-terminal configuration, under zero magnetic field Bz = 0 T, which is always applied parallel to the z direction. The bias sweep direction 
consistently proceeds from 0 to a finite bias. But for Bz = -0.7 mT. (A) and (B) Measurement for 0 and 300 ions/nm sample; (C) 
600 ions/nm sample. There is a difference between two critical currents. With the orientation of the magnetic field reversed, the roles 
of the two bias polarities are also exchanged; (D-F) The temperature-dependent resistance under different linear fluences ranging from 
0 to 600 ions/nm.

radiation framed by a dashed rectangle. We hypothesize that helium ions might influence chemical bonds 
or even induce doping[25,26], rather than causing a direct etching effect. Similar to the outcomes of electron 
beam irradiation[27], helium ion irradiation can introduce disorders into thin crystals, potentially suppressing 
superconductivity. Temperature dependence of resistance [Figure 2D-F] exhibits a broadened 
superconducting transition region with increasing linear fluences, which indicates the degradation of 
superconductivity in the nanobridge. Consequently, our focus shifts to the study of the sample under 
600 ions/nm irradiation. The results of the other two devices (Device#4 and Device#5) have been shown in 
Supplementary Figures 3-5.

The I-V values at 2 K under various magnetic fields are presented in Figure 3A, where the color bar reflects 
the differential resistance (dV/dI). An enlarged view around zero field is provided in Figure 3B, revealing a 
distinct asymmetric behavior. The maximum of the differential resistance is defined as the critical current 
(Ic). The Ic values for both positive (Ic

+) and negative (|Ic
-|) sides are plotted under different magnetic fields 

[Figure 3C]. The range between the positive critical current (Ic
+) and the absolute value of the negative 

critical current (|Ic
-|) defines the supercurrent diode regime. In this regime, the current flows without 

dissipation in only one direction, and this direction can be chosen by altering the sign of the magnetic field. 
These curves clearly demonstrate that the sign of nonreciprocal components in Ic is exclusively determined 
by the relative orientation of the current and magnetic field. Regardless of the bias polarity, the critical 
current increases with the magnetic field, peaking at a nonzero field (Bzmax ≈ 0.2 mT).

The substantial rise in the critical current is vital as it dismisses the possibility of the nonreciprocal 
supercurrent originating from Joule heating[15]. Although the origin of the supercurrent diode effect in 
NbSe2 requires further investigation, several potential explanations can be considered. These include the 
interplay between Meissner currents and barriers for vortex entry[28,29], vortex flow in asymmetric pinning 
potentials[19], and the influence of valley-Zeeman spin-orbit interaction[15]. It is noteworthy that the observed 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202404/microstructures3073-SupplementaryMaterials.pdf


Page 6 of 9 Zhang et al. Microstructures 2024;4:2024018 https://dx.doi.org/10.20517/microstructures.2023.73

Figure 3. (A) A color map of critical current in the plane of magnetic field at 2 K, and a color bar shows the value of dV/d I. An apparent 
current asymmetry with respect to the magnetic field can be observed. The critical current can be extracted, as shown in (C); (B) A 
magnification of (A). The red dotted line marks the zero-field position; (C) Nonreciprocal critical current (Ic) as a function of B z, with 
positive bias (orange) and negative bias (red), exhibiting symmetry across reflection about Bz = 0. The critical current peaks at a 
nonzero |Bzmax| = 0.2 mT, indicated by labeled orange and blue arrows.

behavior closely resembles the characteristics of NbSe2 in the 2D limit[19,21,22,30,31], despite our sample having a 
thickness of approximately 15.4 nm. However, upon dimension reduction in the nanobridge, phenomena 
akin to those observed in Josephson junctions emerge [Supplementary Figure 4]. It is noteworthy that in 
non-uniform Josephson junctions, the dominance of Josephson vortex motion leads to an asymmetric 
Fraunhofer pattern[32,33]. A recent experimental study has successfully achieved SDE by introducing a non-
uniform current and a single Abrikosov vortice in the junction electrodes[34]. Actually, the non-uniform 
penetration of helium ions can induce a non-uniform supercurrent, even when the current is uniform based 
on the geometry of the device [Supplementary Figure 6]. This inhomogeneity can amplify the SDE, 
particularly in the presence of a large critical current density, 26.7 mA·μm-2 in this instance.

The primary outcome of our observations indicates that the supercurrent diode effect in the NbSe2 
nanobridge is governed by the out-of-plane magnetic field. Based on this idea, we demonstrated bias-
polarity-controlled SDE at 2 K, 0.2 mT, where the |Ic

-| reaches the maximum [Figure 4]. The values of Ic
+ and 

|Ic
-| are 345 and 380 μA, respectively. A square-wave excitation with an amplitude of 340 μA is applied 

[Figure 4, top panel]. The bottom panel of Figure 4 reveals that the nanobridge maintains the 
superconducting state with negative current (blue area) and transitions to the normal state during positive 
current (white area). This outcome strongly suggests that the switch between superconducting and normal 
conducting states is contingent on the magnetic field’s sign and the current direction. Consequently, the 
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Figure 4. Controllable superconducting diode. The top panel displays the square-wave excitation applied at 2 K with an amplitude of 
340 μA (between Ic

+ and |Ic
-|) under a magnetic field of 0.2 mT. The coincidentally measured junction voltage is presented in the 

bottom panel. In this depiction, the blue shaded region represents the superconducting state, where the voltage remains zero under 
negative current bias. Conversely, the white region signifies the normal state, with a high voltage observed during positive current bias. 
The red dotted line denotes the zero line.

magnetic field.

CONCLUSIONS
In conclusion, we have illustrated a supercurrent diode effect in a NbSe2 nanobridge fabricated using a 
focused helium ion microscope. Our findings indicate that this effect is governed by the out-of-plane 
magnetic field, presenting a deviation from observations in Rashba superconductors. Nonreciprocal critical 
currents can be well turned under bias polarities at Bzmax = ± 0.2 mT. Helium ions break the 
superconductivity at a certain depth and shrink the thickness of the superconductor to 2D limit. The 
findings suggest that the supercurrent diode effect may be linked to the inversion symmetry breaking 
caused by Ising SOC in a few layers of NbSe2 and can be improved by heterogeneous penetration of helium 
ions. This insight offers a potential avenue for comprehending and optimizing the performance of the 
supercurrent diode effect, with implications for its application in superconducting logic and memory 
devices.
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