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ABSTRACT
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, 
viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, 
virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead 
to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included 
among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million 
people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will 
develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk 
factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring 
the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. 
HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range 
and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, 
the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA 
intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, the authors 
provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, 
and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV 
X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the 
development of HBV-induced HCC, and the authors highlight the functions of HBx that may contribute to the development 
of HBV-associated HCC.
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INTRODUCTION

The discovery by Baruch Blumberg and colleagues of 
the Australia antigen, which would later be identified as 
the hepatitis B virus (HBV) surface antigen, was a major 
breakthrough towards improving global health.[1,2] For 
decades prior to Blumberg’s discovery, an unknown virus 
in blood and plasma samples had been the suspected 

cause of post-transfusion hepatitis.[3] Recognition that 
the Australia antigen was a marker of viral hepatitis 
facilitated the generation of a blood-screening protocol 
that led to a two- to three-fold reduction in the incidence 
of post-transfusion hepatitis,[4] with the remaining cases 
likely caused by hepatitis C virus (HCV), which would not 
be identified for another 23 years.[5] Retrospective studies 
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also associated the presence of the Australia antigen with 
chronic liver diseases such as cirrhosis and hepatocellular 
carcinoma (HCC).[6,7] Finally, the discovery of the Australia 
antigen also facilitated the eventual development of a 
vaccine that has greatly reduced the global burden of 
HBV infection,[8-10] and Baruch Blumberg was awarded the 
1976 Nobel Prize in Medicine for his discovery of HBV.

Despite the decades of work between the discovery of 
HBV and our current understanding of the virus, many 
aspects of the HBV life cycle and pathogenesis remain 
unclear. The fact that it is estimated that as much as a 
third of the world’s population has been infected with 
HBV at some point, that roughly 5% of the population 
(350-500 million people) are chronically infected with the 
virus, and that about 800,000 people die annually from 
acute or chronic HBV-related consequences underscores 
the importance of a more complete understanding of 
HBV biology and pathogenesis.[11,12]

HEPADNAVIRIDAE

While the discovery of human HBV, hereafter denoted as 
HBV, occurred in the 1960s, recent research has shown 
that hepatitis B viruses have actually been present since 
the time of the dinosaurs. In fact, the earliest known 
hepatitis B virus is approximately 82 million years old 
and was identified from the DNA of infected birds from 
the Mesozoic period.[13] Although multiple theories of 
the origins of HBV exist, it appears that the infection of 
mammals is a much more recent event. The jump into 
humans, in particular, may have been only about 40,000 
years ago.[14] Despite the evolutionary timeline, modern 
HBV is remarkably similar to these ancient hepatitis B 
viruses.[13]

The present day Hepadnaviridae family is a group of small, 
hepatotropic, DNA viruses that are divided into two distinct 
genera based on their divergent genomic sequences and 
narrow host range of infection. The avihepadnaviruses, 
such as duck HBV (DHBV) and heron HBV, infect birds. 
In contrast, the orthohepadnaviruses infect mammals 
and include HBV and woodchuck hepatitis virus (WHV), 
among others. Each member of the Hepadnaviridae family 
is primarily species specific. For example, the only non-
human hosts of HBV are chimpanzee and treeshrew, each 
of which can be experimentally infected.[15,16] Additionally, 
a primate virus similar to HBV, called woolly monkey HBV, 
has been identified in woolly monkeys and designated 
as the prototype of a new species of hepatitis B-like 
viruses. A maximum of 40% sequence divergence exists 
between orthohepadnaviruses, while only 20% sequence 
divergence exists among avihepadnaviruses; however, 
little to no homology exists between the two genera. 
All mammalian HBV encode an X protein, which has 
been shown to be required for viral replication and has 
oncogenic properties (discussed below). This X protein 
is either lacking or highly divergent in avian viruses, 

and the acquisition of this X protein could have been 
an essential factor for the evolution of hepadnaviruses 
from avian into mammalian hosts.[13] Genomic diversity 
between species of hepadnaviruses is reviewed in detail 
in the literature.[11,17]

While significant genomic diversity exists between viral 
species and particularly between the hepadnaviridae 
genera, all hepadnaviruses share a large number of 
common features. Among these, all members have an 
extremely small (3.0-3.3 kb) and compact DNA genome 
that encodes overlapping open reading frames (ORFs). 
Additionally, all hepadnaviruses use a genome replication 
strategy in which the virus replicates its DNA genome by 
reverse transcription of an RNA intermediate using the 
reverse-transcriptase activity of the viral polymerase. 
Hepadnaviruses are also distinguished from nearly all 
other viruses utilizing reverse transcription for viral 
replication by a number of unique features, including 
envelopment of a DNA genome, rather than RNA, and the 
fact that integration of the hepadnavirus DNA genome 
into the host-cell genome is not required for viral 
replication. These features, common to all members of 
the hepadnavirus family, contributed to the designation 
of Hepadnaviridae as a distinct family of viruses.[11]

HBV

Studies have identified a minimum of eight HBV genotypes, 
designated A-H, with genetic differences greater than 
8%, but less than 17% between each genotype.[11,17,18] Two 
additional potential genotypes have been described. 
Genotype I has genetic divergence around 8% with a strong 
homology to genotype C,[19] making its classification as a 
distinct genotype more controversial than that of the more 
well-accepted genotypes.[20] A potential 10th genotype, 
genotype J, has also been described recently and is likely 
the result of recombination of genotype C and gibbon HBV.[18] 

There is a distinct distribution of HBV genotypes within 
specific populations and geographic locations. Similarly, 
there is an association between genotype and disease 
severity and outcome. In the United States, where chronic 
HBV infection is relatively uncommon, each genotype is 
present, though not at equal levels. Within the United 
States population, genotypes A and D are most prevalent 
overall, and the distribution of genotypes can be further 
divided based on ethnicity.[21,22] For example, genotype 
C is most common in Asian Americans, which correlates 
with the prevalence of this genotype in much of Asia. This 
is significant because genotype C has been associated 
with a more severe disease and a lower response rate to 
interferon therapy.[23,24]

HBV GENOME ORGANIZATION

HBV has a small (3.2 kb), partially double-stranded, 
relaxed-circular DNA genome that encodes four 
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overlapping ORFs [Figure 1a]. The largest ORF encodes 
the viral polymerase, which also has reverse transcriptase 
(RT) activity that generates the first strand of the DNA 
genome from an RNA intermediate. The second largest 
ORF encodes the three viral envelope proteins: large 
(L-), middle (M-), and small (S-) surface antigen (HBsAg). 
Another ORF encodes precore, also referred to as HBV 
E antigen (HBeAg), and the core protein, which makes 
up the viral capsid. Finally, the smallest ORF encodes 
the HBV X protein (HBx), a small regulatory protein that 
has been shown to be required for HBV replication both 
in vitro and in vivo.[25-29] The viral ORFs are encoded in 
distinct capped and polyadenylated RNAs that can be 
divided into genomic and subgenomic transcripts. The 
subgenomic transcripts act only as templates for HBV 
proteins and consist of the 0.7 kb transcript, which 
encodes HBx, and the 2.1 kb and 2.4 kb HBsAg transcripts 
encoding M- and S-HBsAg, and L-HBsAg, respectively. The 
genomic transcripts act as mRNAs for precore, core, and 
polymerase. The genomic transcript that encodes both 
core and polymerase is multifunctional and referred to 
as pregenomic RNA (pgRNA). The pgRNA is the template 
for HBV replication and is reverse transcribed to generate 
the HBV DNA genome. As the viral genome is only 3.2 kb 
and the pgRNA is 3.5 kb, the pgRNA is a greater than unit 
length, terminally redundant copy of the viral genome. 
All HBV RNA transcripts share the same polyadenylation 
site, and each of the smaller transcripts makes up the 3’ 
end of each of the larger transcripts. This means that the 
sequence of the HBx transcript is contained at the 3’ end 
of all HBV mRNA transcripts, while the largest transcript 
is the only viral transcript to contain sequence that is not 
shared with the other transcripts.[11,30,31]

Transcription of HBV RNAs is driven from specific 
promoter sequences within the viral genome. At least 
some of the hepatotropic restriction of HBV can be 
attributed to transcriptional activation by hepatocyte-
specific transcription factors. For example, activation 
of the Enhancer I/HBx promoter is a required first step 
in viral transcription, as this is believed to enhance 
transcription from downstream promoters. A number 
of the transcription factors that have been mapped 
to the EN1/HBx promoter are liver specific, including 
hepatocyte nuclear factor (HNF) 1, HNF3, and HNF4. 
Many of the transcription factor binding sites that have 
been identified within the 4 promoter regions of HBV 
are for transcription factors that are activated by HBV 
proteins, oftentimes HBx, implying a specific cascade of 
transcription.[32] Transcription factor-mediated regulation 
of HBV transcription has been reviewed in more detail 
elsewhere.[11,33]

HBV PROTEINS

The HBV genome encodes seven proteins: HBx, core, 
polymerase, L-, M-, and S-HBsAg, and precore/HBeAg 
[Figure 1a]. Of these proteins, HBx is a non-structural 
regulatory protein, HBeAg is not incorporated into 
virions and is independently secreted from the cells, the 
polymerase is responsible for genome replication, and 
the core and HBsAg proteins form the structural aspects 
of the virion.[11] Each of these will be discussed in further 
detail below.

E antigen
HBeAg is the final product of post-translational processing 

Figure 1: Molecular biology of hepatitis B virus (HBV). (A) Scaled depiction of the HBV (genotype ayw) genome. Internal circle shows genomic position relative 
to EcoRI site at position 1. Partially double-stranded genome is depicted with attached RNA primer and polymerase protein. Open reading frames (ORFs) 
are indicated by the thicker, colored lines. The outermost black circles represent the viral transcripts with the shared polyadenylation site; (B) schematic 
representation of the overlapping nature of the HBV ORFs; (C) the mature HBV virion (Dane particle) consists of two main parts: a nucleocapsid (or core 
particle) consisting of a partially double-stranded DNA genome bound to polymerase (P) and encapsidated by dimers of core protein, and a viral envelope 
consisting primarily of S-HBsAg (S), with an intermediate amount of M-HBsAg (M) and lower levels of L-HBsAg (L)
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of the translated precore ORF [Figure 1a and b]. As one 
of the proteins encoded by a genomic transcript, the 
genomic promoter drives its expression. The HBeAg 
ORF encodes an endoplasmic reticulum (ER) targeting 
sequence that co-translationally traffics the peptide to 
the ER, where the protein is processed to the final 15 kD 
HBeAg that is secreted from HBV-infected cells.[34]

The function of HBeAg remains incompletely defined. 
Multiple groups have hypothesized that HBeAg can 
facilitate HBV immune evasion, and studies with HBc/
HBeAg-transgenic (tg) mice crossed with T cell receptor 
(TCR)-Tg mice expressing receptors for the HBc/
HBeAgs specifically suggest that a function of HBeAg 
is to suppress the immune response to the HBV core 
protein.[35,36] The secretion of a viral marker that is not 
present in the HBV infectious virion may help to dampen 
the neutralizing immune response by diverting this 
response away from infectious viral particles.[11] From 
a diagnostic perspective, HBeAg is an important marker 
of HBV replication, and the levels of serum HBeAg are 
generally considered to correlate with viral titer. In fact, 
HBeAg seroconversion is considered an important aspect 
of the transition to the inactive carrier state of infection 
(described below).[37]

Surface antigens
HBV encodes three envelope proteins, or surface antigens, 
that make up the viral envelope: large (L), middle (M), and 
small (S) surface antigen [Figure 1a and c]. The smallest 
envelope protein, or S (24 kD), is 226 amino acids (aa) in 
length and makes up a shared C-terminal region of the two 
longer envelope proteins. The M protein (31 kD) contains 
the S sequence with a 55aa N-terminal extension known 
as preS2. Expression of the M- and S-encoding mRNA is 
driven by the S promoter, with translation initiating from 
an upstream (M) or downstream (S) AUG. The L protein 
(39 kD), the largest of the envelope proteins, contains 
S, preS2, and an additional 108aa or 119aa (depending 
on the genotype) N-terminal extension known as preS1. 
L-HBsAg is encoded by its own mRNA transcript that is 
controlled by the preS1 promoter.

The envelope proteins are synthesized at the ER, where 
they attain their transmembrane configuration. Because 
all three proteins contain an identical C-terminal 
sequence, the transmembrane topology of this region 
is the same across all three proteins. Specifically, an 
N-terminal signal sequence initiates insertion of S into 
the ER membrane, followed by another signal that 
pushes the downstream peptide sequence into the ER 
lumen. The sequence upstream of this signal remains 
in the cytosol, with the signal domain itself acting as a 
transmembrane anchor domain. This orientation forms 
two loops; one loop, between aa 23-79, remains on the 
cytosolic side, while the other loop, between aa 99-169, 
remains in the ER lumen.[38] Importantly, the luminal loop 
contains the major conformational epitope of HBsAg and 

is glycosylated in nearly half of all S-protein moieties.[39] 

Once budding of the membrane occurs, these epitopes 
are on the outer surface of the viral particles. The 
topology of M is identical to that of S, except for the 
presence of preS2 within the ER lumen.[40]

A major characteristic of L is that it exists in two 
conformations that vary in the localization of the 
N-terminal domain. In the first conformation of L, the 
preS1 and preS2 domains are present in the cytosol. This 
conformation of L is essential for binding of capsids and for 
the assembly of HBV virions. In the second conformation 
of L, the N-terminus is located in the ER lumen and, as 
a result, exposed on the surface of viral particles. Thus, 
this conformation of L plays a role in the infection of 
hepatocytes. The conformational change is facilitated by 
interactions of molecular chaperones Hsc70/Hsp40 and 
BiP with L; however, the exact details of the mechanism 
underlying this step are not yet understood.[11] The preS1 
domain contains the receptor-binding region for HBV,[41,42] 
thus it needs to be exposed out of the cell. A myristylated 
peptide containing a portion of the N-terminal preS1 
region is sufficient to inhibit infection[41] and is currently 
being developed as a therapeutic.[43]

The main function of the surface antigen proteins is to form 
the HBV envelope. Three different forms of viral particles 
are secreted from an HBV-infected cell as a result of the 
unequal expression of each of the three surface antigens. 
S-HBsAg is the highest expressed of the three envelope 
proteins and makes up the majority of the viral envelope. 
Intact, infectious HBV virions, called Dane particles, 
also include M-HBsAg and L-HBsAg. In addition, an HBV-
infected cell produces non-infectious subviral particles 
(SVP) made primarily of S-HBsAg containing varying 
(but much lower) amounts of M-HBsAg and little to no 
L-HBsAg. These SVPs can reach a concentration 10,000-
fold higher than infectious HBV particles in the serum 
of an infected individual.[44,45] SVPs are produced in two 
forms: 25 nm spheres, which are almost exclusively made 
up of S-HBsAg, and 22 nm filaments, which are made up 
primarily of S-HBsAg, with some M-HBsAg and potentially 
small amounts of L-HBsAg. It is currently unknown why 
HBV produces SVPs in such excess compared to the level 
of infectious virions, but multiple hypotheses have been 
proposed. For example, it has been suggested that the 
excess SVPs act to divert neutralizing antibodies away 
from infectious particles and that SVPs play a role in 
inducing the immune tolerance required to sustain a long-
term chronic infection. A study of DHBV SVPs showed 
that the SVP-to-infectious-particle ratio plays a role in 
determining the efficiency of hepatocyte infection, with 
SVPs acting to either enhance or inhibit infection based 
on the ratio of SVP-to-infectious-particles.[46] 

Core protein
The 21 kD HBV core protein, or HBcAg, is the organizing 
framework for the virion [Figure 1c]. When expressed in 
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cells, core mainly exists as soluble dimers, or in T = 3 or T = 4 
icosahedral capsids. About 95% of mature nucleocapsids 
isolated from Dane particles contain T = 4 capsids made 
up of 120 core dimers, with the remaining 5% being the 
smaller T = 3 with 90 dimers.[47] Core is translated from 
the pgRNA and the first 149aa of core form the assembly 
domain, which is sufficient for in vitro formation of capsids 
that are indistinguishable from capsids isolated from 
Dane particles.[48] The remaining 34-36aa makes up the 
arginine-rich C-terminal domain (CTD); phosphorylation 
of various aa in the CTD regulates multiple stages of the 
HBV life cycle.[49-52]

While the best-described role for core protein is 
assembling the nucleocapsid, the results of recent 
studies also suggest that the core protein does more 
than simply act as an inert container for the HBV genome. 
In fact, core protein binds to HBV covalently closed 
circular DNA (cccDNA), potentially to regulate spacing of 
nucleosomes on cccDNA; cccDNA is a nuclear-localized 
replication intermediate of hepadnaviruses that forms 
a minichromosome (described in more detail below).[53] 

In addition, the CTD is required for pgRNA packaging,[54] 
and core protein also plays an active role in initiating 
reverse transcription[55-57] and in mature nucleocapsid 
envelopment.[58] The many potential roles of core protein 
in the HBV life cycle were recently reviewed, along 
with a detailed description of the mechanism of capsid 
assembly.[59]

Polymerase/reverse transcriptase
Not long after the identification of an HBV-like virus in 
ducks,[60] the DHBV model was used to demonstrate that 
DHBV genome replication utilizes an RNA intermediate, 
implying that hepadnaviruses replicate via reverse 
transcription.[61] While reverse transcription is a 
mechanism employed by many viruses, hepadnaviruses 
approach genome replication with a number of unique 
features. The 90 kD, 838aa polymerase protein of 
HBV (reverse transcriptase/RT/Pol/P) is made up of 3 
functional domains and a variable spacer region. At the 
N-terminus is the terminal protein (TP) domain, which is 
important for multiple facets of the initiation of genome 
replication. This region, despite its important role in 
P binding to the pgRNA, RNA packaging, and protein-
priming,[62-64] is a unique domain that is not shared by any 
non-hepadnavirus RTs. A variable spacer separates the 
TP domain from the RT domain, and studies have shown 
that nearly all aa within the variable spacer region can 
be mutated without altering P function.[65] In fact, only 
3 cysteine residues within the C-terminal end of the 
spacer region, along with a fourth in the N-terminal side 
of the RT domain, are thought to be important for RT/pol 
function.[66] 

The RT domain is responsible for genome replication by 
reverse transcribing the pgRNA to form the (-)-strand of 
the DNA genome and subsequent use of the (-)-strand 

as a template for synthesis of the (+)-strand of the 
DNA. This domain shares significant homology to the 
RT of other retroviruses.[67] The RT domain is the only 
current anti-HBV therapeutic target,[12] which is based on 
the efficacy of nucleoside analogs to inhibit the human 
immunodeficiency virus (HIV) RT.[68] In fact, portions of 
HBV RT can be replaced by homologous portions of HIV 
RT; this can generate an active RT that can function to 
produce mature HBV virions.[69]

The final domain, P, is the RNase H domain. This domain 
is responsible for degrading the pgRNA template 
during synthesis of the (-)-strand of the DNA genome. 
Coordination of metal ion binding, which is important 
for RNase H activity, is achieved through 4 conserved 
carboxylates.[70] Studies of the RNase H domain have also 
shown that purified recombinant RNase H domain is 
functional in vitro and that the RNase H domain of P is 
important for pgRNA packaging.[71] Further information 
on the HBV RT/pol, including a detailed description of the 
RT domain active sites and binding motifs, can be found 
in the literature.[68,72]

X protein
HBx is the only regulatory protein encoded by HBV. It is a 
154aa, 17 kD protein that is encoded by the smallest HBV 
ORF. Various studies have provided considerable evidence 
that HBx plays an essential role during HBV replication. 
Specifically, studies have shown that HBx is bound to 
cccDNA,[73] that HBx is required for transcription from 
cccDNA,[28,74] and that downstream HBx-mediated effects 
are required for HBV replication. Importantly, studies of 
other mammalian hepadnaviruses have also supported 
the role of their respective X proteins in viral replication. 
For example, two different studies demonstrated that 
the WHV X protein is required for WHV replication in 
vivo,[25,27] although another study did show a low level 
of viral replication from a WHx-deficient WHV mutant 
in infected woodchucks.[75] Similarly, viral replication 
was detected from tg mice expressing either wild-type 
or an HBx-null HBV mutant; however, when the HBx-
null mice were crossed with HBx-tg mice, levels of HBV 
replication surpassed those seen in wild-type HBV-tg 
mice.[76] A similar experiment using hydrodynamic tail 
vein injection of a plasmid encoding either the wild type 
HBV genome or an HBx-deficient mutant HBV showed a 
significant decrease in the levels of HBV replication in 
the absence of HBx, which could be restored through 
co-injection of the HBx-deficient mutant HBV and a 
plasmid encoding HBx.[26] This indicates that while HBx 
may not be absolutely required for HBV replication in 
these systems, it undoubtedly enhances the levels of 
replication. Moreover, studies of direct HBV infection 
of mice with humanized livers demonstrated that only 
infection with wild type HBV, and not HBx-deficient virus, 
could result in HBV replication.[29,77] A similar requirement 
for HBx in HBV replication has been shown in human 
HepG2 hepatoblastoma cells[78-82] and in primary rat 
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hepatocytes.[83-86] Importantly, the requirement for HBx 
was also confirmed in primary human hepatocytes 
directly infected with either wild-type or HBx-deficient 
HBV.[28]

The lack of a single accepted model for studies of HBV 
and HBx has created some confusion about the overall 
consequences of HBx expression for HBV replication and 
hepatocyte physiology. HBx-related studies have often 
been performed in transformed or immortalized cell 
lines and with different levels of HBx expression, leaving 
the impact of HBx on a normal hepatocyte incompletely 
understood.[87] While HBx is generally considered to have 
oncogenic potential, it is yet to be determined if it is 
directly oncogenic or simply acts as a co-factor in HCC 
development, as both effects have been demonstrated 
in different HBx-tg mouse models.[88-91] It is important 
to recognize that a strongly oncogenic HBx would not 
be consistent with the biology of HBV-associated HCC, 
which involves decades of a chronic HBV infection, and 
it is more likely that HBx plays a cofactor role in the 
development of HBV-induced liver cancer. The hypothesis 
that HBx-induced subtle changes in hepatocyte 
physiology sensitize cells to other oncogenic signals, 
while facilitating HBV replication, is more consistent 
with the biology of HBV-associated HCC.[92] Peripheral 
evidence for the oncogenic potential of HBx comes from 
the fact that hepadnavirus-associated HCC seems to be 
restricted to mammalian hepadnaviruses, which each 
express a form of the X protein. Avian hepadnaviruses, 
which do develop a chronic infection but do not cause 
HCC, either do not express an X protein or express a 
highly divergent form.[78,93]

HBx is a multifunctional protein that can modulate 
many hepatocyte signaling cascades and factors that 
have also been linked to mechanisms that underlie 
cellular transformation. For example, HBx can modulate 
calcium,[84,85] apoptosis,[83,86] and proliferation signals, 
among other pathways, and can activate numerous 
transcription factors, including activator proteins 1[94] 
and 2[95] (AP-1 and AP-2), nuclear factor of activated T cells 
(NFAT),[96] and nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB).[97-99] HBx can also regulate 
cellular signaling factors, such as Wnt/β-catenin,[100] 
p53,[101] and Akt,[86,102] that have been implicated in HCC. 
Recently, modulation of miRNA expression has also been 
included in the functions of HBx. It is possible that the 
many functions attributed to HBx could actually be the 
result of a few fundamental upstream HBx functions 
that can affect multiple downstream cellular signal-
transduction pathways in a context-dependent manner. 
Interestingly, while HBV replication in established HBV-
associated HCCs is typically absent, a number of groups 
have shown that these tumors can still express HBx from 
fragments of the HBV genome that have integrated into 
the host genome. The presence of HBx in these cells 
could mean that HBx might be active in these HCC cells, 

even in the absence of replicating HBV, and potentially 
contribute to HCC development or maintenance.

HBV LIFE CYCLE

Studies have shown that the species specificity and 
hepatotropic nature of HBV are due to at least two 
different layers of cellular factors. The first is the 
hepatocyte-specific expression of the recently described 
HBV receptor, human sodium taurocholate cotransporting 
peptide (hNTCP/SLC10A1) [Figure 2]. hNTCP is only 
expressed on human hepatocytes, and mouse NTCP 
cannot be bound by HBV, which correlates with the 
inability of HBV to directly infect mouse hepatocytes.[42] 

The second level of cell-specificity of an HBV infection 
is controlled by hepatocyte-specific transcription factors 
such as HNF1α and HNF4α; these control post-entry, 
downstream stages of the HBV life cycle. Evidence for 
the additional role of intracellular factors for controlling 
the cell-specificity of an HBV infection comes from the 
observation that humanized-mouse NTCP, in which 
the binding residues from mouse NTCP are replaced 
by hNTCP, allows binding of HBV to the receptor but 
does not result in a productive HBV infection when 
expressed in mouse cells.[103] Studies using hepatitis 
D virus (HDV), which is a satellite virus requiring HBV 
envelope proteins for entry into a cell, demonstrated 
that the 75 aa at the N-terminal portion of the PreS1 
domain of L-HBsAg are required residues responsible for 
binding to the viral receptor.[104] In addition, it was shown 
that N-myristylation of the PreS1 domain is required 
for infectivity, but not HBV virion assembly.[105] In fact, a 
myristylated peptide consisting of only the first 47 aa of 
the preS1 domain is able to bind to hNTCP and inhibit 
the binding of HBV.[41] Additional studies have suggested 
a role for heparin sulfate proteoglycans in the initial 
stages of HBV binding to hepatocytes,[106] including the 
recent identification, using an RNAi-based screen in Huh7 
cells stably expressing hNTCP, of glypican 5 as an HBV 
and HDV entry factor.[107]

Although amino acid sequences of both preS1 and hNTCP 
that affect binding of HBV to hNTCP are known, the lack 
of an effective model system that mimics a robust natural 
infection has hampered a complete understanding of 
aspects of the HBV life cycle immediately following 
receptor-binding. The observation that preS1 binds 
to clathrin heavy chain and the adapter protein AP-2 
in immortalized primary human hepatocytes, and that 
knockdown of these proteins inhibits infection, suggests 
that the HBV-hNTCP complex may enter the cell through 
clathrin-mediated endocytosis.[108] Once in the cell, the 
HBV DNA is delivered into the nucleus by mechanisms 
that remain unclear. One potential mechanism is the 
active transport of the nucleocapsid through nuclear 
pores.[109] Another potential mechanism involves CTD 
phosphorylation of the core protein, which is thought 
to expose nuclear localization signals,[49] leading to 
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nucleocapsid disintegration at the nuclear pore and 
transfer of the polymerase-bound, relaxed circular (rc) 
form of the HBV DNA into the nucleus.[110,111] The single-
stranded gaps in the rcDNA are repaired either through 
(+)-strand extension by the HBV polymerase or through 
repair activity of host proteins, and cccDNA is formed as 
a nucleosome-bound minichromosome in the nucleus. 
The observations that some HBV-tg mice do not produce 
cccDNA,[112] and that nucleoside analogues that inhibit 
the RT function of polymerase do not prevent cccDNA 
formation,[113] suggest that the production of cccDNA 
likely involves specific host factors. In addition to 
studies suggesting a role for cellular histones in cccDNA 
formation, evidence also exists showing that cccDNA is 
bound to both core protein[53] and HBx[73] and that this 
influences the structural arrangement of the cccDNA 
episome and the epigenetic regulation of cccDNA. 
Although multiple studies have suggested that HBx is not 
required for cccDNA formation, transcription of viral RNA 
from cccDNA is lost in the absence of HBx,[28,114] and HBx 
has been suggested to regulate levels of cccDNA histone 
acetylation and methylation.[115] Host RNA polymerase II 
uses cell-specific transcription factors and cccDNA, which 

serves as the template for all viral transcripts, to produce 
5’-capped and 3’-polyadenylated RNA transcripts. 
Translation of the viral transcripts occurs in the cytoplasm 
following nuclear export.

While a portion of the pgRNA is translated, forming 
the pool of core and polymerase proteins, pgRNA also 
serves as the template for reverse transcription [Figure 2]. 
This requires encapsidation of pgRNA by 120 dimers 
of core protein to form the nucleocapsid. This occurs 
through a complex cascade of events involving multiple 
viral and host proteins. Specifically, the 5’ end of the 
pgRNA contains an encapsidation signal, termed ε, 
which is recognized and bound by polymerase. Studies 
have also shown that the 5’ cap structure is required for 
packaging of the pgRNA;[116] however, polyadenylation is 
not required.[117] In addition, interaction of pgRNA-bound 
polymerase with the 5’ cap and host eIF4E leads to 
encapsidation of this entire RNP complex,[118] resulting in 
cellular eIF4E within the viral nucleocapsid. Cellular heat 
shock proteins have also been suggested to play a similar 
role in stabilizing the binding of polymerase to ε.[119]

Figure 2: Life cycle of hepatitis B virus (HBV). Mature HBV virions enter hepatocytes through the sodium taurocholate cotransporting polypeptide receptor 
on the cell membrane. After release from the viral envelope, the nucleocapsid is then transported to the nucleus where the genome is repaired to form 
covalently-closed circular DNA (cccDNA). Using cccDNA as the template, viral RNAs are transcribed and exported into the cytoplasm where they are 
translated to form the viral proteins. Additionally, pregenomic RNA (pgRNA) is packaged by core protein, along with the polymerase protein, and the viral 
genome is replicated through reverse transcription of the pgRNA to form the - strand, followed by partial synthesis of the + strand. Mature nucleocapsids 
can then either be recycled back to the nucleus to maintain a pool of cccDNA, or enveloped and secreted through the ESCRT pathway. See text for a more 
detailed description of viral life cycle
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Once packaged, reverse transcription is initiated 
through priming by the polymerase from a specific 
tyrosine residue within the N-terminal, TP domain of 
the polymerase[63,64] [Figure 1a]. A bulge region within ε 
supplies the template for the first 3-4nt of the (-)-DNA 
strand before translocation to a matching acceptor motif 
in the 3’ direct repeat 1* (DR1*).[120] This strand is then 
extended until completion, resulting in a unit length 
(-)-DNA strand copy of the pgRNA that contains an 
additional 10nt terminal redundancy (r). The majority of 
pgRNA is degraded during DNA synthesis by the RNase H 
activity of polymerase, with the remaining bases serving 
as the 5’ primer for synthesis of the (+)-strand.[121] Direct 
extension of this primer from its 5’ position results in 
a double-stranded linear form of the genome that is 
replication incompetent.[122] This double-stranded linear 
form does, however, seem to play a role as the main 
form of HBV DNA that can be integrated into the host 
genome.[123] Instead of direct extension of the RNA primer 
from its 5’ location, successful rcDNA formation can 
occur only after the RNA primer is translocated to the 3’ 
DR2 sequence. Once on DR2, the RNA primer is extended 
towards the 5’ end of the (-)-DNA strand. Because r on 
the other end has the same sequence, exchange of the 
two ends allows (+)-strand synthesis to continue. As 
with the previous translocations, additional cis-
acting elements are likely playing a role in long-range 
base-pairing, which allows the close juxtaposition of 
these donor and acceptor sites that can otherwise 
be separated by kilobases of sequence.[124,125] In 
addition, recent evidence has suggested a role for core 
protein in regulating DNA synthesis, as mutations in core 
protein inhibit the synthesis of the (+)-strand of DNA.[126] 

The complex process of reverse transcription has been 
reviewed in more detail elsewhere.[30,31,68]

Replication occurs in core particles in the cytosol of 
an HBV-infected hepatocyte, and the final product of 
DNA synthesis is the encapsidated, partially double-
stranded rcDNA with the polymerase still bound to the 
5’ end of the (-)-DNA strand [Figure 2]. This nucleocapsid 
can then proceed in one of two directions. The first is 
shuttling of the nucleocapsid back to the nucleus to 
amplify and maintain a stable pool of cccDNA.[127,128] 

The levels of envelope proteins influence this recycling, 
with decreased amounts of HBsAg promoting shuttling 
of the nucleocapsid to the nucleus.[129] In particular, 
levels of L-HBsAg directly influence shuttling back to 
the nucleus,[130] and these findings correlate well with 
the early establishment of a cccDNA pool, followed by 
identification of secreted infectious HBV.[127] The result is 
a pool of cccDNA that contains a fluctuating number of 
copies (typically less than 10) of cccDNA per cell,[131-133] 
which can be maintained in the cell for years. Additionally, 
it has been suggested the half-life of a single cccDNA 
molecule is between 33 and 57 days,[132,134] underscoring 
the role of cccDNA in maintaining HBV persistence.

The second potential HBV nucleocapsid-associated 
process is envelopment by HBV envelope glycoproteins 
residing in the ER membrane [Figure 2]. Interestingly, 
mechanisms exist that may limit envelopment of 
capsids containing immature HBV genome; however, 
these mechanisms remain incompletely understood. 
For example, it has been suggested that only mature 
rcDNA-containing nucleocapsids are enveloped, while 
ssDNA or RNA containing nucleocapsids are not 
secreted from the cell.[135] Studies utilizing an RNase 
H-deficient polymerase, which renders the virus unable 
to initiate (+)-DNA strand synthesis, have suggested 
that only completion of the (-)-DNA strand is required for 
envelopment,[136] and specific mutations in core protein 
can allow envelopment of immature nucleocapsids.[137] 

The mechanisms associated with this selectivity are 
unknown, although the phosphorylation state of core 
protein, likely influenced by the nucleic acid species 
inside the capsid, could be playing a role. Specifically, 
studies have shown that core protein isolated from DNA-
containing capsids is dephosphorylated (after the prior 
phosphorylation required for pgRNA packaging and 
reverse transcription) in a specific C-terminal region, 
while immature nucleocapsids remain phosphorylated 
at at least 6 different sites.[50] The overall secretion of 
infectious HBV Dane particles has been hypothesized 
to be as little as 1-10 virions per cell per day,[138] which, 
because of the large number of cells in the liver, can 
account for high in vivo HBV titers, but can hinder in vitro 
research requiring isolation of large amounts of infectious 
virus. Secretion of Dane particles was originally thought 
to follow the same secretory pathway as the much more 
abundant SVP, with the envelope proteins residing within 
the ER-golgi intermediate compartment from where 
they could bind the DNA-containing capsid, enter the 
lumen, and be secreted from the cell. Recent evidence 
has suggested, however, that mature HBV virions are 
secreted from the cell using a pathway that is dependent 
on proteins involved in the endosomal sorting complex 
required for transport (ESCRT) pathway, which forms 
multivesicular bodies.[139] One characteristic that needs to 
be considered regardless of the pathway of HBV secretion 
is the seemingly contradictory conformations of L-HBsAg, 
with the domains required for both interaction with the 
nucleocapsid and hNTCP being needed on opposite sides 
of the membrane. This is addressed by the fact that nearly 
half of L-HBsAg changes transmembrane conformation 
after translation, to expose the preS domains within the 
ER lumen.[140] 

MODEL SYSTEMS USED IN THE STUDY OF HBV

Each member of the hepadnavirus family has a narrow 
host range that is thought to be defined primarily by 
the interaction between the virus and a specific cell-
surface receptor that is present on host hepatocytes.[11,90] 
Available cell culture systems for studying the life cycle 
of the Hepadnaviridae are limited. Typically, members of a 
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hepadnavirus family can only directly infect hepatocytes 
within the liver of their respective avian or mammalian 
hosts or cultured, well-differentiated primary hepatocytes 
that are derived from these hosts. This has hampered 
the capabilities of researchers to study a natural HBV 
infection. An overview of the in vivo model systems that 
exist for studying HBV biology is provided below.

Due to the limited host range of HBV, few suitable 
animal models exist for studying an in vivo HBV infection. 
Closely related viruses, such as DHBV[60] and WHV,[141] have 
been used in their respective host animals as surrogate 
models for understanding overall hepadnavirus biology. 
These studies have been instrumental in establishing 
our understanding of the viral life cycle, including 
the identification of DNA replication through an RNA 
intermediate,[61] the establishment of a pool of cccDNA as 
a mechanism for maintaining chronic infection,[142,143] and 
the course of both acute[144-146] and chronic[147-149] infection.

The treeshrew, Tupaia belangeri, is a small animal 
model and is one of the very few animals that can be 
experimentally infected with HBV.[150] Genomic analysis 
has placed the treeshrew phylogenetically between 
humans and rodents,[151,152] and this similarity to primates 
has spurred its use as a model for a broad range of studies, 
including as a model for viral hepatitis.[16,153] Specifically, 
Tupaia belangeri has been used as a model to study the 
immediate effects of HBV infection on gene expression in 
the liver[16] and to identify genes potentially contributing 
to the development of HBV-associated HCC.[154] In fact, 
freshly isolated primary treeshrew hepatocytes were 
recently used in multiple studies in which hNTCP was 
identified as the HBV receptor.[42,155] Recent studies also 
suggest that neonatal exposure of treeshews to HBV can 
lead to a disease progression similar to what is seen in 
humans, with development of a chronic infection leading 
to the eventual development of HCC.[156] Unfortunately, 
a relatively low HBV infection efficiency and lack of 
genetically uniform tree shrew strains has limited their 
use.[157]

The chimpanzee is the only non-human primate model for 
HBV infection and, along with the tree shrew, represents 
one of the only animal models that can be directly infected 
with HBV. HBV can establish both acute[158] and chronic 
infections[159] in chimpanzees, and this model has been 
used most often for modeling the immune response to 
HBV and the interaction between the virus and host.[160-

164] Studies in chimpanzees have helped to establish the 
relationship between the innate and adaptive immune 
response to HBV infection, demonstrating minimal early 
activation of innate immune mediators[160] and a reliance 
on CD8+ T cells for viral clearance through interferon γ- 
and tumor necrosis factor α-dependent mechanisms,[161] 
in agreement with previous work in HBV-tg mice.[165,166] 

Another important use of the chimpanzee model has 
been as a surrogate model for preclinical drug and 

vaccine testing.[167-170] The ethical issues and high costs 
associated with non-human primate use, however, have 
limited the use of this model and the recent reevaluation 
in the United States (one of only two countries to allow 
chimpanzee research) of the need for chimpanzees in 
preclinical research[171] will likely diminish their future use 
even further.

A number of mouse models exist for the study of 
HBV, and have been reviewed more extensively in 
the literature.[157,172] Typically these models can be 
separated into two categories: HBV-/HBx-tg mice, which 
constitutively express HBV or HBx, respectively, and mice 
that are delivered the HBV genome or an HBx-expressing 
plasmid by hydrodynamic tail-vein injection. Although 
mouse hepatocytes cannot be directly infected with HBV, 
the use of tail-vein-delivered DNA or HBV-tg mice allows 
studies of the impact of HBV replication on hepatocyte 
physiology; HBx-tg mice similarly aid in the study of HBx-
mediated effects. While these mouse models are valuable 
tools, they do have their drawbacks. For example, there 
is no inflammatory response against HBV in an HBV-tg 
mouse, which could alter the cellular pathways activated 
in these models compared to a natural HBV infection. 
Additionally, because some HBV-tg mice do not produce 
HBV cccDNA, there is some concern over whether this 
system accurately mimics all aspect of HBV replication 
in humans.[112] Despite this, mouse models have been 
instrumental in determining a number of important 
aspects of the HBV life cycle, including the requirement 
for HBx in HBV replication[26] and the oncogenic potential 
of HBV[173] and HBx.[89,91] 

More recently, two additional mouse models have been 
described that may greatly enhance our understanding 
of the HBV life cycle and HBV-associated disease. The 
first of these systems is the humanized mouse model, 
in which the majority of the mouse liver is repopulated 
with either primary human hepatocytes or human 
induced pluripotent stem cells. The use of these animals 
represents a significant advancement, as they support 
direct infection with HBV and can develop a chronic HBV 
infection,[174,175] thereby allowing studies of the impact 
of an HBV infection on the liver in a cellular context 
more similar to that seen in the human liver. Some of 
these chimeric mouse models include both a humanized 
liver and humanized immune cells, offering the unique 
opportunity to study the human immune response in a 
small animal model. Although different techniques for 
the development of the humanized mouse model exist, 
a number of groups have adapted their use for the study 
of HBV. These studies cover a broad range of aspects 
of HBV biology, including studies of the HBV-mediated 
immune response,[175,176] investigation of potential HBV 
therapeutics,[177,178] and aspects of the HBV life cycle such 
as particle formation,[179] receptor binding,[180] and cccDNA 
regulation.[181]
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Another recently described mouse model expresses 
hNTCP to allow receptor binding by HBV. Currently these 
mice are limited in their utility for studying HBV, as 
multiple groups have shown that while HBV can bind to 
hNTCP expressed in mouse cells, the HBV life cycle does 
not appear to proceed beyond receptor binding.[103,182,183] 
Conversely, HDV utilizes HBV envelope proteins for its 
envelopment, and hNTCP-expressing mice have been 
used for the study of HDV infection.[184] Further work 
with hNTCP-expressing systems may help to determine 
species-specificity factors that could ultimately lead to 
the development of an hNTCP-expressing mouse model 
useful for the study of HBV infection. Together with 
the humanized-liver model, these mouse models could 
greatly contribute to our understanding of the early 
stages of an HBV infection, including entry, HBV genome 
transport to the nucleus, and genome repair.

The paucity of in vivo models for studying direct HBV 
infections, and the limited availability of cultured 
primary human hepatocytes, has lead many researchers 
to study HBV replication and the activities of HBV-
encoded proteins in immortalized or transformed liver 
cell lines and in cultured primary hepatocytes derived 
from small-animal models such as rats or mice.[11,92] Use of 
these systems necessitates bypassing the initial receptor-
mediated infection of the cell by direct transfection of 
the HBV DNA genome. Although primary hepatocytes 
derived from small-animal models, namely rat and mouse, 
cannot be directly infected with HBV, they can support 
HBV replication and serve as a surrogate model system 
for studying the effects of HBV replication and HBV 
proteins on cellular physiology.[86,185,186] Here we provide a 

summary of the available cell culture model systems that 
are used to study HBV biology, each one possessing its 
own benefits and limitations.

Most hepatocyte cell lines that are used in HBV-related 
studies are tumor-derived and thus are transformed. Since 
cellular signaling pathways are significantly altered in 
cancer, cell lines derived from tumors do not recapitulate 
the physiology of normal hepatocytes. While the results 
obtained by using transformed cell lines may be valid in 
a specific cellular context, caution should be exercised 
in the interpretation of such results because they may 
not necessarily represent the effects of HBV on cellular 
physiology in normal, untransformed hepatocytes, the 
authentic site of an HBV infection. In addition to tumor-
derived cell lines, some cell lines have been specifically 
derived from HBV-positive tumors. Examples of cell lines 
isolated from HBV-positive tumors include the PLC/PRF/5 
cell line and the Hep3B cell line, which are human HCC-
derived cell lines containing multiple copies of HBV DNA 
integrated into the host DNA. While the PLC/PRF/5[187] and 
the Hep3B[188] cells are active in HBsAg production, they 
do not produce HBV virions and display no indicators of 
HBV replication,[187,189-192] so results of studies using these 
cell lines require careful interpretation.

In an attempt to establish a system to study the biology 
of HBV, and specifically HBV replication, the results of 
numerous studies demonstrated that HBV DNA could be 
transfected into many different cell lines, including the 
hepatoblastoma-derived cell line HepG2[15,193] and the 
hepatoma-derived cell line Huh7[188,194,195] and that HBV 
could replicate efficiently in these cells. Consequently, 

Figure 3: The natural history of an hepatitis B virus (HBV) infection. Infection with HBV can result in an acute, self-clearing, or chronic HBV infection; the 
development of a chronic HBV infection positively correlates with younger age. A chronic infection usually follows a long-term course in which the virus 
replicates at high levels, followed by immune-mediated control of viral replication associated with liver inflammation. Seroconversion and maintenance 
of undetectable or low levels of viral replication are markers of a favorable prognosis, but long-term disease can lead to the development of cirrhosis and 
hepatocellular carcinoma. (See text for additional details)
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HepG2 and Huh7 cells expressing HBV DNA are frequently 
used in the study of HBV biology. While HepG2 cells and 
Huh7 cells support HBV replication, similar to nearly all 
existing human liver cell lines, they cannot be directly 
infected with HBV, partly due to the low expression levels 
of hNTCP, the functional cellular receptor for HBV.[42] In 
order to analyze differences between cells with and 
without replicating HBV, HepG2.2.15 cells have sometimes 
been compared to HepG2 cells. HepG2.215 cells were 
originally derived from HepG2 cells and stably express 
HBV from two integrated head-to-tail dimers of the HBV 
genome.[196] Results obtained by comparing HepG2.215 
cells to the parental HepG2 cells, however, need to be 
interpreted with caution; because of the continuous 
passaging of HepG2.215 cells since their development in 
1987, dissimilarities beyond the expression of HBV may 
exist between HepG2.2.15 cells and the parental HepG2 
cells. Due to these dissimilarities, phenotypic differences 
that are observed between HepG2.215 and HepG2 cells 
might not be an exclusive consequence of replicating HBV.

Together, the use of exogenously delivered HBV DNA into 
established cell lines, such as HepG2 and Huh7, and the 
use of cell lines stably expressing HBV, such as the HepG2-
derived cell lines HepG2.2.15 and HepAD38,[196,197] make 
up the majority of the studies that have been conducted 
to understand HBV biology. While these cell culture 
models have proven extremely valuable to study HBV 
DNA replication, viral assembly, and virion secretion, they 
have limitations that prevent them from recapitulating all 
the aspects of an authentic human HBV infection.[198] 

Some recent developments have lead to increased 
optimism for the development of an effective in vitro 
system to study the complete HBV life cycle. For example, 
fusion of primary human hepatocytes with hypoxanthine-
guanine phosphoribosyltransferase null [HGPRT(-)] 
HepG2 cells led to the establishment of the immortal cell 
line, HepCHLine-4/-7, that may provide a model system 
for HBV infection. This cell line supports HBV replication 
and is susceptible to HBV infection when incubated with 
serum from HBV-positive patients.[199,200] However, an 
uncertain genetic stability during maintenance hampers 
the use of this system.[198] In addition, the HepaRG cell 
line, a human hepatoma cell line, can also be directly 
infected with HBV and supports HBV replication. While 
this cell line is often used in studies of HBV infection, its 
use is limited by a low HBV infection efficiency of only 
about 10-20% and the need to induce differentiation 
prior to infection, which involves the maintenance of 
cells in 2% DMSO for 2 weeks before the induction of 
differentiation.[198,201]

The recent discovery of hNTCP as the functional HBV 
receptor has important implications for basic HBV 
research and antiviral development. In particular, 
identification of hNTCP has opened new avenues for the 
establishment of novel cell culture model systems that 

can be utilized to understand the effects of natural HBV 
infection. HepG2 cells expressing hNTCP (HepG2-hNTCP), 
theoretically, provide a convenient in vitro system for HBV 
infection. The exogenous expression of hNTCP in HepG2 
cells does render them susceptible to HBV infection; 
however, low levels of infection, typically around 10%, and 
a requirement for large viral inoculums limit their use. 
Infection-based studies are hampered even further by the 
low levels of virus released by HBV-infected cells, believed 
to be around 1 virion per day, making it difficult to produce 
the large quantities of virus needed for these types of 
studies. Despite these issues, HepG2-hNTCP cells provide 
a valuable in vitro model system for elucidating the effects 
of natural HBV infection, investigating the complete HBV 
life cycle including the early steps of an HBV infection, and 
identifying novel therapeutic options.[42,103,172,198,202-204]

As the natural target of an HBV infection, primary human 
hepatocytes would be the ideal in vitro system for 
studies of HBV. Unfortunately, cultured primary human 
hepatocytes lose susceptibility to HBV infection within 
days of isolation and culture, potentially because hNTCP 
expression rapidly decreases over time in culture.[42,198,205] 
Interestingly, Rice and colleagues recently reported that 
induced pluripotent stem cell-derived hepatocytes(iPSC-
derived iHeps) can support HBV infection, opening 
potential new avenues to study HBV biology and virus-
host interaction and to test antiviral candidates. However, 
a long induction process involving differentiation of the 
iPSCs is required prior to HBV infection, and viral markers 
of infection can only be detected more than a week after 
inoculation.[198,205,206]

Although studies in immortalized or transformed cells 
have served as powerful models for studying various 
aspects of HBV replication and the functions of HBV-
encoded proteins, these studies have also demonstrated 
that HBV-mediated activities, particularly those 
associated with HBV proteins such as HBx, may vary in 
different cellular contexts.[92,207] Alternatively, studies in 
cultured primary hepatocytes have begun to clarify HBV 
replication strategies and the function of HBV proteins 
in a more relevant context.[92] Recently, cultured primary 
rat hepatocytes have been used to study HBV replication 
and functions of the HBx protein;[83-86,208] HBx activities 
in cultured primary rat hepatocytes were similar to 
HBx activities in cultured primary human hepatocytes, 
supporting the use of cultured primary rat hepatocytes 
as a model system for studying the impact of HBV on 
hepatocyte physiology.[86,185,186]

HBV NATURAL HISTORY

HBV infection can lead to high viral titers in the blood 
of HBV-infected individuals, with levels of HBV virions 
reaching as high as 1010 particles/mL.[209] Because of 
these high titers of HBV in blood, the main mechanism 
for the transmission of the virus is through the blood. 
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In particular, exposure during childbirth from an HBV-
infected mother is the leading global cause of HBV 
infections, with the potential of vertical transmission 
being as high as 90% in some parts of Asia. Additional 
routes of exposure to bodily fluids from infected 
individuals, such as sexual contact or sharing of needles, 
are also common routes of transmission.[11]

The natural history of HBV has been divided into two 
types of infection [Figure 3]. For about 90-95% of HBV 
infections in adults, the result is “acute hepatitis” where 
the infected individual resolves infection to the point of 
undetectable viral DNA and the presence of antibodies 
against HBsAg. Symptomatic HBV-infected individuals 
present with inflammation of the liver, which is known 
as hepatitis, and associated nausea, jaundice, abdominal 
pain, and vomiting. For many cases of HBV infection, the 
infected person is asymptomatic, and acute infections 
are generally cleared within 6 months. In models of 
acute infection in WHV-infected woodchucks and HBV-
infected chimpanzees, the first several weeks of infection 
are typically characterized by minimal innate[160,210] 

or adaptive[211] immune activation, with viral spread 
throughout the entire hepatocyte population.[145,211] 
Eventually, the activation of an effective antiviral 
response, including activation of cytotoxic T lymphocytes 
(CTLs), results in inflammation in the liver and killing of 
the majority of HBV-infected hepatocytes over the length 
of a few weeks. Interestingly, studies of integrated WHV 
DNA in woodchucks treated with clevudine, a viral 
polymerase inhibitor, demonstrated that repopulation 
of the liver seems to occur from the population of 
infected hepatocytes and not from a smaller population 
of uninfected hepatocytes.[212] Clearance appears to be 
mostly mediated by antiviral cytokines, with CTLs directly 
killing HBV-infected hepatocytes once the viral load has 
dropped below specific levels.[213,214]

Approximately 5-10% of cases of HBV-infected adults, and 
a significantly higher percentage of HBV-infected infants 
and children, develop a chronic HBV infection[215] as 
indicated by continued, detectable expression of HBsAg 
for at least 6 months after the initial infection. More 
recently, the application of more sensitive detection 
techniques, such as polymerase chain reaction (PCR)-
based methods that can detect < 250 HBV virions/mL, 
has also shown that many individuals who were believed 
to be HBV-free following purported HBV clearance 
(indicated by the absence of detectable levels of HBsAg 
expression) actually have low levels of detectable serum 
and liver HBV DNA. In fact, low levels of HBV DNA can 
be detected in up to 30% of patients with liver disease 
of previously unknown etiology.[215-217] This result has led 
to the recognition of occult HBV infections, in which the 
level of virus is persistently low and below the level of 
detection by traditional HBsAg detection techniques. 
Because of the relatively recent identification of this group 
of HBV-infected individuals, the risk factors associated 

with an occult HBV infection remain incompletely 
understood, although some evidence does suggest that 
occult infections retain much of the same risk factors as 
chronic HBV infection.[218]

Clinically, a chronic HBV infection can be divided into 
multiple phases,[11,209,215,219] though not all patients 
progress through each stage. The “immune tolerant” 
phase is characterized by high titers of HBV DNA (> 
100,000 copies/mL), the presence of HBeAg, and little 
liver disease. This phase can last decades, especially in 
perinatally infected patients, but is typically short or 
absent in childhood- and adult-acquired HBV.

The “immune clearance” phase also has high levels of 
HBV, though usually less than is present in the immune 
tolerant phase, as well as HBeAg expression, but is 
also characterized by more advanced liver disease with 
increased inflammation and progression of fibrosis. In 
addition, this phase is associated with spikes in levels of 
aminotransferases, which are believed to be a result of an 
HBV-specific cytotoxic T-cell-mediated immune response 
and destruction of HBV-infected hepatocytes.[220] This is 
important, as a longer duration of this phase and higher 
frequency/severity of the HBV flares are associated with 
the development of cirrhosis and HCC.[221] Typically this 
phase can last from several weeks to years and likely 
represents immunological attempts to control HBV levels. 
Seroconversion from HBeAg to anti-HBe is considered 
an important clinical outcome of the immune clearance 
phase, with immune control of the virus leading to very 
low or undetectable levels of serum HBV along with 
normal aminotransferase levels. Importantly, HBeAg 
seroconversion is associated with a favorable long-term 
outcome and with decreased risk of developing cirrhosis 
or HCC.[37] 

The “inactive HBsAg carrier” phase is characterized by 
multiple changes to the disease state. Specifically, there is 
a loss of HBeAg expression corresponding to an increased 
presence of anti-HBe. Spontaneous seroconversion from 
HBsAg to anti-HBs and low to undetectable levels of serum 
HBV DNA are also hallmarks of this phase. Additionally, 
aminotransferase levels remain consistently normal; low 
to mild hepatitis and fibrosis may be observed based 
on the length of the immune clearance phase. The 
inactive carrier phase could potentially be maintained 
indefinitely and is associated with a favorable clinical 
outcome;[215,219] however, some individuals in the inactive 
HBV carrier phase enter a “reactivation/HBeAg-negative 
chronic hepatitis B” phase during which HBV replication 
rebounds either spontaneously or as a result of immune 
suppression. These patients are HBeAg negative/anti-HBe 
positive and have elevated liver enzymes with increased 
necroinflammation. Serum HBV DNA levels can reach 
as high as 108-109 copies/mL, though levels are typically 
lower than in HBeAg-positive patients.[44,209,215,219]
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Ultimately, for many patients the end result of a chronic 
HBV infection is the development of HBV-associated 
HCC. While seven therapeutics are currently approved for 
the treatment of chronic HBV, none has proven successful 
at achieving an “absolute cure” or a complete loss of 
HBV DNA and a lifetime risk of development of HCC 
equal to natural clearing of the infection. Five of these 
therapeutics are nucleoside analogs, designed to directly 
inhibit the RT. The other two, standard and pegylated 
interferon-α, function as antiviral cytokines, signaling 
through the interferon receptor to activate the JAK-STAT 
pathway.[11,219] While generally effective at lowering viral 
load, the fact that none of these anti-HBV therapies 
is curative means these therapies must be life-long 
treatments, which eventually leads to the development 
of HBV mutants that are resistant to these therapies. 
Because of this, specific guidelines have been developed 
for when to use antiviral therapy and which therapeutic 
to use.[219]

HBV AND HCC

HCC, which accounts for 80-90% of all liver cancers, is one 
of the most common and most deadly cancers worldwide. 
Globally, liver cancer is the sixth most common and second 
deadliest cancer, with an incidence to mortality rate near 
1.[222] Epidemiological studies have identified chronic HBV 
infection of the liver as the leading risk factor for HCC 
development.[223,224] Despite the availability of a vaccine, 
350-500 million people worldwide are chronically infected 
with HBV and, depending on age and route of infection, 
as many as 25% of these individuals could go on to 
develop HBV-associated HCC.[224,225] The number of cases 
of HCC that are attributed to HBV will likely increase as 
occult infections become both better reported and better 
understood.

The molecular mechanisms that link a chronic HBV 
infection to HCC development are incompletely 
understood but are likely subtle considering that HBV-
associated HCC usually occurs in the context of a decades-
long chronic HBV infection. Studies have focused on three 
main factors that may be involved in the development of 
HBV-associated HCC: chronic inflammation accompanied 
by destruction and regeneration of hepatocytes, 
consequences of HBV DNA integration into host genome, 
and the potential effects of HBV proteins such as 
HBx.[88,92,93,225,226] Some potential mechanisms that might 
link an HBV infection to HCC development have already 
been described above. Here we summarize additional 
mechanisms that have been suggested to link a chronic 
HBV infection to the development of HCC.

One particularly important intermediate aspect of 
a decades-long chronic HBV infection includes the 
development of HBV-associated cirrhosis prior to HCC 
development.[219] It is generally accepted that the majority, 
potentially as much as 70-90%, of all HCC occurs in the 

context of decompensated cirrhosis,[224] and a strong 
relationship exists between chronic HBV infection and 
cirrhosis. In fact, a recent cohort study demonstrated that 
the cumulative lifetime risk of developing HBV-associated 
cirrhosis is 41.5% for chronically infected patients, 
with a cumulative risk of developing HCC of 21.7%.[209] 
Therefore, establishing a clearer understanding of the 
cellular mechanisms associated with the intermediate 
stages of chronic disease, particularly development of 
cirrhosis, could enhance the overall understanding of 
causes of HBV-associated HCC.

Numerous aspects of an HBV infection could be playing 
a role in the development of HCC. It is logical to assume 
that hepatotropic viruses such as HBV, which alter 
hepatocyte physiology as part of, or a consequence of 
their replication, may disrupt normal hepatocyte and 
overall liver functions. Many of these disruptions and 
alterations, either through viral replication or activities 
of viral proteins such as HBx, could be playing a role 
in the development of downstream HBV-associated 
HCC and have been extensively reviewed elsewhere 
in the literature. For example, HBV has been shown 
to disrupt cell cycle regulation,[227,228] alter apoptotic 
pathways,[229] alter hepatocyte metabolism,[33] and alter 
miRNA expression and miRNA-mediated regulation.[230] 
Many of these studies have focused on multiple cellular 
signal transduction pathways, including those involving 
Ras/mitogen-associated protein kinases (MAPK),[231] 
mechanistic target of rapamycin (mTOR),[232] PI3K/
Akt,[86,233] and NFκB,[229] among many others. Each of 
these pathways and factors, while also important for HBV 
replication, are main mediators of hepatocyte functions. 
As such, disruption can have a major impact on hepatocyte 
physiology, which has generated a considerable amount 
of interest in their potential role as mechanisms for the 
development of HBV-associated HCC. The results of some 
of these studies are summarized here.

HBV and the cell cycle
As with many viruses, HBV must optimize the cellular 
environment for viral replication. In the case of HBV, 
this involves inducing hepatocytes to exit quiescence 
and enter into an active cell cycle, and the status of cell 
proliferation pathways can have a significant impact 
on HBV replication.[91] For example, in primary rat 
hepatocytes, HBV moved cells from G0 into and through 
G1, but stalled progression before the hepatocytes 
were able to reach S phase, and this regulation of the 
cell cycle is required for HBV replication in primary rat 
hepatocytes.[85] Studies in cell lines suggest a similar HBV-
mediated regulation of cell cycle progression, with HBV 
stalling progression of the cell cycle before entry into S 
phase in both Huh7 cells expressing HBV and the HBV-
expressing HepG2.2.15 cells.[234] Interestingly, studies 
have also shown decreased proliferation of HepG2.2.15 
cells, in comparison to HepG2 cells, along with HBV-
mediated alteration of cell cycle regulators leading to a G1 
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phase arrest.[235] Another study, however, in Huh7 cells and 
primary marmoset hepatocytes, demonstrated an HBV-
mediated stall in the G2 phase of the cell cycle.[236] While 
somewhat contradictory, these results together correlate 
well with the results of other studies showing that HBV 
replication is increased when the cell cycle is arrested in 
either G1 or G2, but HBV replication is decreased during 
S phase, when cellular DNA synthesis would be higher, 
potentially depleting the pool of nucleotides that would 
be available for HBV replication.[237,238]

Much of the HBV-mediated regulation of the cell 
cycle appears to be through the activity of the HBx 
protein. Multiple studies in primary hepatocytes have 
demonstrated that HBx alters cell cycle regulators, 
including decreasing p15 and p16 expression, 
decreasing DNA synthesis, and increasing p21, p27, 
cyclin D1, and cyclin E expression.[85,185,239] Together 
these results suggest that HBx drives hepatocytes into 
the cell cycle but increases expression of inhibitors 
that prevent progression beyond G1. This HBx-
mediated regulation of the cell cycle could have a 
long-term impact on hepatocyte physiology, altering 
hepatocyte proliferation pathways and contributing to 
the development of HBV-associated disease and HCC.

HBV and metabolism
Because of the primary role of the liver as a metabolic 
organ, a growing body of research has begun to investigate 
the impact of HBV infection on metabolic pathways in 
HBV-infected cells. In fact, HBV has been referred to as 
a “metabolovirus” due to the perceived intersection 
between HBV gene expression and control of cellular 
metabolism.[206,240] Specifically, a number of groups have 
examined the role of HBV in lipid metabolism, especially 
considering the well-established link between hepatocyte 
lipids and various stages of the HCV life cycle[241] and 
the recent identification of a bile salt transporter as a 
functional receptor for HBV.

The influence of HBV infection on hepatocyte metabolism 
was recently brought to the forefront with the identification 
of hNTCP, the primary bile salt transporter in hepatocytes, 
as a functional HBV receptor. Interestingly, the binding of 
HBV, specifically the preS1 domain of L-HBsAg, to hNTCP 
directly interferes with the normal function of hNTCP 
suggesting competition for binding motifs within the 
receptor. Furthermore, point mutations in hNTCP that 
abolished binding of preS1 also blocked the ability of 
the receptor to bind taurocholate,[242] suggesting that by 
binding to hNTCP, HBV could dramatically alter hepatic bile 
acid uptake.

Recently, HBV-mediated inhibition of normal hNTCP 
function was extended further using a biochemical 
profiling approach in which human liver chimeric mice 
were infected with HBV, and the impact on cholesterol 
metabolism was determined. Indeed, this study was able 

to demonstrate overall modest HBV-mediated changes 
in lipid metabolism, but specific factors involved in both 
cholesterol and bile acid metabolism were significantly 
altered. Interestingly, similar results were seen in a 
comparison of HBV-infected humanized mice, mice 
treated with the HBV entry inhibitor Myrcludex-B, which 
mimics the preS1 domain and binds to hNTCP to block 
HBV infection, and liver biopsy samples from chronically 
HBV-infected individuals.[180] Together these results 
indicate that the binding of HBV to hNTCP inhibits bile acid 
uptake, which stimulates bile acid synthesis pathways. 
One interesting caveat to these studies is the relatively 
novel use of a direct infection system, which drastically 
alters the question being asked in the experiment. For 
example, by also using the preS1 mimic Myrcludex-B, the 
studies are specifically addressing the impact of receptor 
binding by HBV, and not the cellular impact of HBV 
replication. This is in contrast to some previous work, 
which has typically been done using systems that bypass 
the infection step. An example of the importance of this 
distinction is that while the study using HBV-infected 
human-liver chimeric mice demonstrated that by binding 
to hNTCP, HBV alters the levels of nuclear farnesoid X 
receptor (FXR) and small heterodimer partner (SHP), 
previous work in an HBV-tg mouse model (which bypasses 
the infection step, among other differences) showed that 
depletion of FXR and SHP signaling did not diminish 
viral replication or transcription.[243] This suggests that 
although HBV binding to its receptor alters the expression 
of these transcription factors, this alteration might not 
affect HBV replication. Further research would be needed 
to determine the relevance of similar contrasting results 
within different model systems.

In addition to the functional inhibition of a major bile salt 
transporter, evidence from other studies has suggested 
that HBV replication may be intimately associated with 
central metabolic pathways. For example, multiple 
transcription factors associated with hepatic metabolic 
processes, including HNFs,[244,245] peroxisome proliferator-
activated receptors (PPARs),[245-247] and FXR[248-250] can all 
be recruited to the HBV genome.[33] Moreover, studies in 
vitro have shown that exogenous addition of bile acids to 
HBV-expressing cells can increase HBV replication.[250,251] 

Induction of gluconeogenesis enhances HBV 
replication,[252] and HBx has been shown to increase 
expression of multiple gluconeogenic genes,[253] 
potentially contributing to the central role of HBx 
in HBV replication. Recent RNA-seq analyses of HBV-
expressing Huh7 cells[254] and primary rat hepatocytes[186] 
also detected decreased expression of GLUT2, the main 
hepatic glucose transporter. Investigation of the effect 
of fasting glucose levels on HBV replication revealed 
a link, albeit minor, between the metabolic state of 
the cell and the level of HBV replication,[245] and both 
gluconeogenesis and lipogenesis are under the same 
transcription factor control as HBV replication.[255] Studies 
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have linked metabolic changes to effects of HBV proteins. 
For example, some of the earliest functions attributed 
to HBx involved its regulation of metabolic pathways, 
such as HBx-mediated activation of the Ras-Raf-MAPK 
pathway,[256,257] a central pathway involved in the 
response to nearly all changes that affect metabolism.[258] 
Protein kinase C (PI3K) is also activated by HBx,[259,260] 
which correlates with recent results suggesting HBV 
and HBx activate the PI3K/Akt pathway, reducing HBV 
replication.[86,233] In addition, studies have shown that 
mutant L-HBsAg can activate mTOR signaling,[261-263] 
ultimately causing increased lipogenesis.[262]

When considered in combination, these studies support 
the characterization of HBV as a “metabolovirus”, and 
HBV responds to and causes significant metabolic 
changes in the cell. While the clinical impact of this 
altered metabolic regulation remains unknown, some 
studies have suggested that HBV can “help” reduce 
fatty liver disease.[264] The overall link between HBV and 
metabolic syndrome remains less clear; however, studies 
that consider the impact of direct infection through 
a major metabolic receptor may help to enhance our 
understanding of the link between HBV and metabolic 
pathways, and how this relationship may impact the 
metabolic state of the liver and the development of HBV-
associated disease and HCC.

HBV and apoptosis
Despite the many studies that have investigated the effect 
of an HBV infection and expression of HBV proteins on 
hepatocyte pro- and anti-apoptotic signaling pathways, 
the interplay of an HBV infection and hepatocyte 
apoptotic signaling pathways remains incompletely 
understood. Because an HBV infection is non-cytopathic, 
it would be expected that HBV either inhibits or has little 
effect on apoptotic pathways. Evidence has suggested, 
however, an HBV-mediated effect on cellular apoptosis 
that is cell-type- or cell-context-dependent. Some of 
these differing effects can be attributed to HBx activities, 
which often have divergent functions depending on 
context. In the case of apoptosis, some studies have 
shown that HBx can inhibit apoptosis[86,265-269] or have 
no effect on apoptosis,[99,270,271] while other studies have 
shown that HBx can activate apoptotic pathways[272-276] 
or sensitize cells to pro-apoptotic stimuli.[277-279] The 
context-dependent apoptotic effects of HBx were clearly 
shown by studies demonstrating that HBx sensitized 
dedifferentiated hepatocytes to apoptosis, while HBx-
expressing hepatocytes that remained differentiated 
were resistant to apoptotic stimuli.[279] This underscores 
the importance of using relevant cell systems for studying 
the cellular impact of HBV replication and protein 
expression on cell physiology. HBx was also shown 
to have divergent apoptotic functions in the context 
of HBV replication. Studies in primary hepatocytes 
demonstrated that HBx can have both a pro- and anti-
apoptotic effect, depending on the cellular context of 

HBx expression. Specifically, inhibition of apoptosis was 
linked to HBx-mediated activation of NFκB; however, 
when activation of NFκB was blocked, HBx induced 
apoptosis through pathways involving the mitochondria 
permeability transition pore (MPTP), a critical pore that 
spans the inner mitochondrial and outer mitochondrial 
membranes and affects numerous mitochondrial 
functions, including mitochondrial control of 
apoptosis.[83] Whether HBV, through functions of HBx, 
regulates apoptosis as a mechanism for regulating 
viral replication or enhancing viral spread is currently 
unknown. Although activation of apoptosis may impact 
both viral spread,[280,281] and immune evasion,[93] recent 
evidence suggests that alteration of apoptosis during 
HBV infection is unlikely to impact viral spread.[282] 

Due to the regenerative nature of hepatocytes, it is 
also possible that the impact of HBV on apoptosis may 
fluctuate during the course of infection, as regenerating 
hepatocytes have different active signaling pathways 
than quiescent cells, and these could have differing 
influences on apoptotic stimuli.[280,283,284] Interestingly, 
both the activation and the inactivation of apoptosis 
could be playing a role in the long-term development 
of HBV-associated HCC: enhanced regeneration 
associated with HBV-mediated activation of apoptosis 
could lead to selection of apoptosis-resistant cells,[285] 
while inhibition of apoptosis could lead to unchecked 
proliferation and the accumulation of transforming 
mutations.[93] Although the exact mechanisms that 
underlie HBV and HBx regulation of apoptosis remain 
incompletely understood, the cellular impact of altered 
apoptotic signaling could significantly contribute to the 
downstream development of HBV-associated disease 
and HCC.

HBV and microRNAs
Potentially spurred by the discovery of the required 
role of miR-122 in successful HCV replication,[286,287] 

multiple groups have begun to investigate how cellular 
miRNAs may impact various aspects of HBV biology, and 
alternatively, how HBV may impact the expression of 
cellular miRNAs.  These effects have been reviewed in 
more detail elsewhere.[230,288]

While a wide range of cellular miRNAs has been 
investigated for their role in regulating or being regulated 
by HBV, none has been studied as extensively as miR-
122. This miRNA, which makes up 50-70% of the total 
miRNA pool in hepatocytes[289,290] has been shown to have 
many different roles in the context of HBV replication. 
Although conflicting reports do exist, it seems that miR-
122 functions as an antiviral miRNA, potentially through 
multiple mechanisms. These mechanisms include direct 
targeting of viral RNAs through miR-122 recognition sites 
in the HBV genome[291,292] and altered miR-122-mediated 
regulation of cellular factors involved in regulation of 
HBV replication, such as heme oxygenase-1,[293] cyclin 
G1,[294,295] and pituitary tumor-transforming gene 1 
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binding factor (PBF).[292] Importantly, multiple studies 
have also shown an HBV-mediated decrease in the 
levels of functional miR-122,[291,292,296-299] although the 
mechanism for this reduction remains unclear. One 
potential mechanism is a sponge effect, where the HBV 
transcripts act as a sponge to divert miR-122 away from 
endogenous targets,[291,292] although it is unclear whether 
the levels of HBV transcripts in the cell reach the high 
levels of target required for this sponge effect to have 
a biological impact.[300] Interestingly, primary tree shrew 
hepatocytes, which can be directly infected with human 
HBV, showed an increase in the levels of miR-122 in 
response to HBV infection.[301] Further research will be 
needed to determine if this effect is the result of using a 
more biologically relevant system, with direct infection, 
or is an inherent difference between tree shrew and 
human hepatocytes.

Other miRNA families have also been assessed for 
their role in HBV replication, including miRNAs with 
well-established roles as either oncomirs or tumor 
suppressors. For example, the let-7 family, which function 
as tumor suppressor miRNAs and are downregulated in 
multiple cancers including HCC,[302] are decreased in the 
context of HBV replication, HBx expression, and HBV-
associated HCC.[303-307] The miR-15 family,[305,307-312] mir-125 
family,[303,305,310,313,314] miR-17/92 cluster,[289,303,307,310,315] and 
miR-199a-3p[289] are all HCC-related miRNAs that multiple 
groups have studied in the context of HBV. Although the 
field is still developing and contradictory reports exist, 
when taken together these reports support the overall 
impact of HBV on cellular miRNAs. How these miRNAs 
impact HBV replication, and ultimately HBV-associated 
disease and development of HBV-associated HCC, 
remains incompletely understood.

CONCLUSION

Hepatocytes are the main target of an HBV infection, and 
a chronic HBV infection is the major global cause for the 
development of HCC.[92,207] While the association between 
chronic HBV infections and HCC is well established, there 
are still gaps in our understanding of how a chronic 
HBV infection can lead to HCC development. The high 
worldwide prevalence of chronic HBV infections, the 
limited therapeutic options currently available for the 
treatment of chronic HBV infections, the increased global 
incidence of HCC, the high mortality rate of individuals 
with HCC, and the close correlation between chronic 
HBV infections and HCC development have generated 
considerable interest in understanding HBV biology and 
elucidating the molecular mechanisms that underlie 
the development of HBV-associated HCC. In this article, 
we provided a review of HBV biology and highlighted 
the potential mechanisms that could underlie the 
development of HBV-associated HCC. These mechanisms 
are thought to involve a combination of continuous 
immune-mediated destruction of HBV-infected 

hepatocytes and concomitant hepatocyte regeneration, 
the activities of certain HBV proteins such as the HBx, 
and potential consequences of HBV genome integration 
into the host genome.[92,207] 

Although there are treatments for a chronic HBV infection, 
resistance to currently available anti-HBV drugs, which 
develops due to the emergence of HBV mutants, is one 
major drawback of continuing nucleoside analog therapy. 
Moreover, existing antiviral treatments can control but 
not entirely eliminate HBV because of the persistence 
of HBV nuclear-localized cccDNA, and the persistence 
of cccDNA remains a major obstacle for the treatment 
and cure of chronic HBV infections.[316-320]  While there has 
been substantial progress in identifying mechanisms that 
underlie HBV infection, replication and clearance, there 
are still gaps in our understanding of the HBV lifecycle. The 
paucity of cell culture model systems that can recapitulate 
all the aspects of a human HBV infection and the scarcity 
of in vivo models for studying direct HBV infections has 
impeded our understanding of HBV biology. The recent 
discovery of hNTCP as the functional HBV receptor has 
provided new opportunities for the creation of novel cell 
culture model systems that can be used to understand 
the outcomes of a natural HBV infection. It would also 
be interesting to utilize tg mice expressing a hNTCP to 
study HBV biology and examine the activities of HBV-
encoded proteins. However, currently, hNTCP tg mice 
do not permit the establishment of a productive HBV 
infection and it is likely that identification of additional 
species-specific determinants of HBV infection will be 
required before small rodent models of HBV infection 
and pathogenesis can be fully utilized.[103,182,183] Although 
mice with humanized-livers and immune systems provide 
another promising model for studying HBV infection and 
pathogenesis, the complexity of generating these models 
have limited their use for studying HBV biology.[175] Overall, 
studies aimed at enhancing our current understanding 
of the HBV life cycle and identifying central factors 
involved in the development of HBV-associated HCC 
are still needed and remain critical for the generation 
of novel therapeutics to inhibit HBV replication and the 
development of HBV-associated HCC.
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