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Abstract
Predicting how future earthquakes will affect structural performance in a particular region is a challenge due to the 
unpredictable nature of earthquakes and inherent uncertainties in construction materials and the geometry of 
structures. This study considers building-to-building variabilities as inputs in an existing Response Surface 
Methodology (RSM) that are based on the Design of Experiment (DoE) technique to quickly determine the 
structural fragility of a region. As it is impractical to analyse each individual structure in a region in detail, this study 
addresses the issue by collecting a set of building parameters and using screening design to evaluate the most 
significant building parameters in the overall seismic performance. Instead of performing building-to-building 
analyses, the propagation of uncertainty in building-to-building variability can now be performed using a 
polynomial response surface metamodel. The metamodel is a function of the response of the building, and a set of 
significant parameters. This study aims to obtain the fragility of a collection of buildings with the help of the 
existing RSM by considering variability in structural parameters that can represent the overall structural geometric 
and material properties within a region. A case study is conducted for the collection of reinforced concrete (RC) 
buildings in the city of Silchar, located in Northeast India, which is one of the most seismically active regions of the 
country. The fragility curve developed with significant building parameters from RSM has been compared with that 
of the conventional method using Incremental Dynamic Analysis (IDA), and the match of the result confirms the 
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accuracy of fragility assessment using RSM.

Keywords: Seismic fragility, building portfolio, reinforced concrete, response surface, design of experiment, 
metamodel, incremental dynamic analysis

INTRODUCTION
The conditional probability of exceeding specific limit states at a certain level of seismic intensity is known 
as seismic fragility[1]. A fragility curve, obtained by integrating the probability of failure across various 
seismic intensity levels, shows the likelihood of a building sustaining damage as the seismic hazard 
increases. Since earthquakes are complicated natural events and no two earthquakes are alike, it is difficult 
to predict how well a building would perform in the event of a future earthquake[2]. As the construction 
material qualities and geometrical configurations differ from building to building within an area, the 
building itself is another source of uncertainty. Generic fragility curves are usually employed to quantify 
damage assessment of buildings which fall under similar types[3]. However, fragility curves may vary among 
buildings in the same classification due to variability in geometric configurations, material properties, age of 
the building, etc. Therefore, fragility evaluation for a collection of buildings is required for a more accurate 
damage estimation in the region. Property owners, insurance firms, capital lending institutions, and local 
government agencies are particularly interested in quantifying the potential effects of earthquakes on a 
collection of buildings in seismically-prone locations. Each such stakeholder is likely to have a distinct 
perspective and needs. For instance, insurance firms and corporate risk managers are often interested in the 
behaviour of a collection of structures scattered over an area. In this situation, the Federal Emergency 
Management Agency (FEMA) guidelines and its practical implementation in a performance-based 
assessment approach, e.g., the Performance-Based Earthquake Engineering (PBEE) framework[4] over 
building-specific fragility models would be more appropriate and should be the preferred choice. Although 
performing nonlinear time history analyses (NLTHA) can yield building-specific fragility curves, the 
simulation requires enough time for each building. Therefore, taking building-to-building variability into 
account for fragility evaluation becomes unfeasible when such simulations are done for a range of buildings.

Seismic fragility analysis (SFA) is not a new method for predicting the probability of damage to a building at 
various earthquake intensities. Numerous studies on SFA can be found in the literature[5-10]. Analytical 
fragility curves or damage probability matrices (DPM) are typically used to represent fragility[11,12]. DPM 
indicate the relationship between ground intensity measure and probability of damage to be discrete, while 
the analytical fragility curve indicates the same relationship to be continuous. Early studies on fragility[13,14] 
relied on the capacity spectrum approach with nonlinear static analysis, while more recent studies[1,15-17] use 
the Incremental Dynamic Analysis (IDA) procedure[18] to obtain the capacity. An extensive review of 
fragility derivation methodologies can be found in[19,20].

Epistemic uncertainties arising from specific modelling of buildings can be effectively addressed by using 
numerous statistical models. However, few studies have addressed the seismic fragility modelling by 
considering building-to-building variability for seismic risk assessment across a portfolio of buildings 
scattered over an area[11,21-23]. A study conducted a case study on a group of wood-frame houses in Canada to 
illustrate the current approaches for quantifying risk[24]. The study introduced a concept of building 
portfolio fragility function (BPFF), which was defined as the probability that a building portfolio, as an 
aggregated system, fails to achieve prescribed performance objectives given scenario hazards. The function 
was used to characterise the vulnerability of a building portfolio[25]. To determine the most appropriate 
analytical fragility curves for each building class and geographic area, an extensive investigation was 
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conducted to examine the procedures and methodologies for evaluating the seismic vulnerability of the 
existing building stock in Europe. This involved collecting and reviewing numerous analytical fragility 
curves from the technical literature in depth[26]. For Nepali unreinforced masonry (URM) school typologies, 
a spectral-based methodology was used to construct fragility curves, which considered both in-plane and 
out-of-plane damage within a single and simple analytical framework[27].

In recent years, there have been efforts to address the uncertainty in building properties within SFA. One 
such effort involved the creation of a web-based application that enables users to categorise a specific 
building stock based on key structural parameters[28]. The authors also described the development of an 
analytical fragility model that covers the most typical building classes globally. This is achieved through time 
history analyses conducted on Equivalent Single Degree of Freedom (ESDOF) oscillators. Extensive field 
surveys were carried out to determine building-to-building variability, and some representative buildings 
were identified for fragility analysis using time history analyses[29]. However, this simulation technique 
requires a high computational cost to obtain the desired output. To mitigate the computational demands, 
researchers discovered the effectiveness of the Response Surface Methodology (RSM), which may substitute 
complex models with high processing requirements[30]. The nonlinear dynamic response of the structure 
needed for SFA was explored with an effective Moving Least Square Method (MLSM)-based RSM[31]. By 
integrating this approach as one of the predictors in the seismic response prediction model and using it as a 
control variable, it was suggested that it could be used wisely to avoid the need for the repeating of intensity 
for the full fragility curve development. To account for building-to-building variability in simulation-based 
seismic risk assessment of a portfolio of buildings, Gaussian process regressions were employed to create 
flexible and precise metamodels[22]. It is also noteworthy that the simulation-based SFA used the Monte 
Carlo Simulation (MCS) framework for probabilistic experimentation and Latin Hypercube Sampling 
(LHS) approach for generating RSM[32].

The present study offers several novel aspects that address the limitations of previous RSM studies. These 
aspects are highlighted below:

• The variability in parameters across buildings that influence the response is taken into account to depict 
general building characteristics within a specific region.

• The number of ground motions selection criteria for performing nonlinear time history analysis is based 
on American Society of Civil Engineers (ASCE) version 7-16 code guidelines rather than arbitrary selection. 
The ground motions are selected from FEMA P-695, which suggested standardised ground motion records 
to obtain fragility based on epicentral distance, focal depth, magnitude, attenuation, and slip distribution.

• With the help of the fragility curve developed through RSM for a specific building, the fragility curve of 
any other arbitrary building can be predicted without calculation, provided that the most significant 
parameters obtained from the screening design have identical values for both buildings.

The study was conducted at a test site in Silchar, a city in North-Eastern India. Rapid Visual Screening 
(RVS) and expert opinions have been employed to gather information on building input variables to 
account for building-to-building variability. The overall methodology involved six-step key points, as 
described below (see Figure 1):

1. Data collection of building-to-building variability according to the age of construction.
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Figure 1. Flow chart of the overall methodology.

2. Screening of the collected data to identify the most significant building parameters.

3. The Design of Experiment (DoE) approach is then used to efficiently create building parameter samples, 
specifying a collection of building model cases. NLTHA are performed on each case.
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4. The building parameter samples and the resulting outputs (Inter-Storey Drift (IDR) ratio) are then 
subjected to least-square regression analysis to form a metamodel in the form of a polynomial response 
surface function.

5. The metamodel is subjected to MCS by repeatedly computing the responses while randomly choosing 
values for the input variables based on their assumed probability density.

6. The probability of exceeding limit states for a specific level of intensity measure is calculated by dividing 
the number of times the computed response exceeds the limit state thresholds by the total number of 
simulation trials. This process is repeated for various levels of intensity measures to produce the fragility 
curve.

DESCRIPTION OF THE METHODOLOGY
Step 1: collection of building inventory data
In large-scale fragility studies of a region through an analytical approach, a crucial aspect is the building 
inventory data, particularly the understanding of the distribution of the attributes that mainly affect seismic 
fragility. The parameters may include building typology, force-resisting mechanism, construction material, 
age of the building, building configuration, percentage of reinforcement, ductility, seismic design level, 
number of stories, and load characteristics.

Macro seismic intensity measures, such as the Medvedev-Sponheuer-Karnik (MSK-64) scale, were first used 
to collect the building data. Buildings were initially divided into three distinct vulnerability classes, A, B, and 
C, based on their material and types of load-bearing systems on the MSK-64 scale. The European Macro 
Seismic Scale (EMS) later adopted the MSK-64 classification system, classifying structures into six categories 
(from A to F), depending on the type of construction material used and the level of code design[33]. Later, the 
Hazard United States (HAZUS) methodology proposed classifying the existing building stock into several 
Model Building Typologies (MBTs) based on structural type, height range, and codal provisions[3].

When developing a building inventory data, different approaches can be followed depending on the data 
availability and resources. At the regional scale, information coming from remote sensing, satellite imagery, 
national housing databases, RVS from field surveys and expert judgements are commonly utilised[11]. For the 
present study, RVS data and expert opinions have been considered to collect the building-to-building 
variability data, as information from other data sources cannot be extracted for this region. Inventory data 
can be in the form of 32 MBTs, as proposed by the HAZUS building classification[3]. Each type comes with 
inherent variability in its geometrical and material properties over a region. The ability of a building to 
withstand an earthquake is greatly influenced by the seismic design requirements that it complies with. 
Therefore, the assumption in the present study is that the seismic design requirement corresponds to the 
construction year of a structure. There are four Indian Standard (IS) codes: IS 1893:1962 (covering the years 
from 1964-1984), IS 1893:1984 (1984-2002)[34], IS 1893:2002 (2002-2016)[35], and IS 1893:2016 (2016-
present)[36]. Pre-1984, building data is almost unavailable; thus, only three codes are considered. Therefore, 
the “Low-Code” (LC), “Mid-Code” (MC), and “High-Code” (HC) are assigned to buildings with 
construction years in the intervals of “1984-2002”, “2002-2016”, and “2016-present”, respectively.

Step 2: screening design
When there are multiple variables or input parameters for a building, screening is used to limit the number 
of variables by selecting the most important ones that have an impact on the seismic performance of the 
building as a whole. This reduction allows one to focus on the process improvement efforts connected with 
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the few really important factors. Screening designs provide an effective way to consider a large number of 
variables in a minimum number of experimental runs or trials (i.e., with minimum computation cost). 
There are mainly two types of screening design, Definitive screening design and Plackett-Burman screening 
design. A definitive screening design can be used to study the effects of main effects, two-factor interactions, 
and quadratic effects, whereas the Plackett-Burman screening design enables one to study the main effects 
only. For example, if there are ten variables, a definitive screening design helps to identify the significance of 
all the ten variables as an individual and the interaction of any variable. Additionally, the Plackett-Burman 
design does not consider the interaction effect. A detailed discussion of this concept can be found in the 
literature[37-39].

The present study incorporates the Plackett-Burman screening design as its primary purpose is to identify 
significant variables rather than the interaction effect, which is assumed to be of lesser importance. In this 
design, only two levels of the variables (lower bound denoted by -1 and upper bound by +1) are used to 
construct a sample of various building cases. For example, if there are four variables, a, b, c, and d, the first 
sample case assigned -1 to a and b and +1 to c and d, then the first case of the building will be constructed 
by using the lower bound value of a and b and upper bound value of c and d. The response is then evaluated 
for all the cases by performing computational analysis. To determine the impact of each input variable on 
the output, a first-order regression model is to be created, as shown in Equation (1)[2].

where y = response and βi (i = 1 to 4) are coefficient estimates. Minitab statistical software (Minitab 
19.2020.1) has been used in the present study to carry out the screening design. The statistical validation of 
the regression model is to be checked for adequacy and reliability. The output of the screening design is 
presented in the form of bar columns, indicating the decreasing order of significance[40]. The variable with 
the longest bar has the greatest impact on the output. Even a slight change in the input value of the 
significant variable has a substantial effect on the calculation of the output, assuming all other input 
variables remain constant.

Step 3: design of experiment
A complex computational analysis must be performed to obtain the response because the precise 
relationship between a response and a set of input variables is implicit. The alternative approach is to 
develop a metamodel (also known as RSM), which is a statistical approximation of the relationship. This 
approach estimates the response as a function of the input variables, thereby making the computation 
easier. The DoE method provides the necessary framework for this crucial stage of RSM[40]. The responses 
must be estimated at an efficient set of experimental sampling points, as defined by the DoE. Each sampling 
point indicates a specific building model case. The DoE creates a variety of combinations at which the 
outputs are computed while taking into account a variety of input variable ranges. Care must be taken while 
selecting meaningful ranges for the input variables. The ranges must be large enough to encompass all 
feasible parameter spaces while being constrained enough to allow for easy matching of the response 
surfaces by regression to the actual response. Many types of DoEs can be used for this purpose, such as the 
Full Factorial Design (FFD), Central Composite Design (CCD), Box-Behnken design, the Space-Filling 
design, and Taguchi’s orthogonal arrays[41]. However, FFD and CCD are the most frequently used[40]. In the 
present study, CCD has been used as it requires fewer sampling points while keeping respectable prediction 
accuracy. A detailed discussion regarding the DOE techniques can be found in[38,40]. Minitab statistical 
software has been used in the present study to generate sampling points with the help of CCD.



Page 7 of Roy et al. Dis Prev Res 2023;2:6 https://dx.doi.org/10.20517/dpr.2023.08 22

Response simulation by computational analysis
To obtain accurate damage statistics for structures, repetitive nonlinear dynamic analyses, i.e., NLTHA, 
need to be done. Since three codal provisions have been selected for the evaluation of the response of 
buildings, three different sets of sampling points are developed by using CCD, according to the building 
inventory data collected for the three codal provisions.

Building inventory data considers structural parameter uncertainty. Earthquake ground motion records are 
incorporated into the NLTHA on each sampling point or building model case to account for uncertainty in 
seismic loading, as the overall seismic performance of the building depends on both structural parameters 
and the intensity of the earthquake it is subjected to. Therefore, to define building-to-building variability, 
earthquake intensity measure or Peak Ground Acceleration (PGA) is added as another variable. Sampling 
points are then generated with the help of CCD. PGA is selected because it is one of the most prominent 
earthquake intensity parameters for the estimation of damage states and derivation of fragility curves[1,42-45].

A collection of earthquake records is used to account for the uncertainty in seismic inputs. Historical 
seismic events should be used to derive the ground motions in a suite with randomly varying parameters, 
such as the epicentral distance, focal depth, magnitude, attenuation, and slip distribution[46]. Hence, to 
consider the variability in seismic inputs, earthquake records are to be selected. FEMA, 2009[47] suggested 22 
robust far-field ground motions that were selected based on large magnitude events, source type, site 
conditions, source-to-site distance, and the number of records per event. These records are useful for the 
collapse assessment of buildings. However, according to the American Society of Civil Engineers (ASCE) 
guidelines[48], 11 earthquake records are sufficient to obtain a reliable estimate of seismic responses, 
considering record-to-record variability. Therefore, the present study considered 11 earthquake records 
from the suggested 22 ground motions by FEMA, 2009, which are shown in Table 1. These 11 records are 
considered based on the magnitude range of Mw (6.5-7.6) and PGA range of 0.24-0.82 g.

Now, each sampling point defines a building model case which is subjected to the 11 ground motions, 
scaled to a particular earthquake intensity measure (PGA, herein). Models for predicting response at 
specific levels of PGA are developed by analysing the response surface at various PGA values. The PGA 
variable is used in the same manner as other input variables when developing a response surface model. 
Definitions must be made for the lower, centre, and upper bound of PGA. In this study, the values of 0.1 g 
and 0.6 g denote the lower and upper bound, respectively, for PGA, while the centre value is assigned as 
0.35 g. The upper bound of 0.6 g is based on the hazard level for Maximum Considered Earthquake (MCE) 
obtained from a hazard analysis study conducted for Silchar City[49,50]. There are three sets of 11 scaled 
ground motions. For a lower bound case, the first batch of accelerograms has PGA values scaled to 0.1 g. 
The centre (0.35 g) and upper bound (0.6 g) are used for the second and third batches, respectively.

Next, NLTHA is performed on a building model defined by the DoE step. The buildings are designed 
according to the codal provisions. Each of the scaled record batches is used as loading input for this analysis, 
and the seismic response is extracted from each sampling point. The process is then repeated for each 
sampling point defined in the DoE step. Therefore, each sampling point will have 11 responses. SAP2000 
software has been used to carry out rigorous NLTHA.

Step 4: response surface function
The definition of a damage measure is necessary for quantifying earthquake responses. The various damage 
measures for structures exposed to earthquake loadings have been suggested by several researchers. Some 
researchers used the maximum roof drift ratio to determine the extent of the damage[51], while others 
employed metrics based on the energy that relates the amount of hysteretic energy to the damage[52]. Some 
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Table 1. Summary of ground motion records considered

S.No. Magnitude (Mw) Year Location Recorded PGA (g)

1 6.7 1994 Northridge 0.48

2 7.1 1999 Duzce 0.82

3 7.6 1999 Chi-Chi 0.51

4 6.5 1979 Imperial Valley 0.38

5 6.9 1995 Kobe 0.24

6 7.5 1999 Kocaeli 0.36

7 7.3 1992 Landers 0.24

8 6.9 1989 Loma Prieta 0.56

9 7.4 1990 Manjil 0.51

10 6.5 1987 Superstition Hills 0.36

11 7 1992 Cape Mendocino 0.55

studies combined the above two components to create new damage measures, such as damage 
indices[51,53-55]. The best way to assess seismic damage has not been quantified consistently, though. In the 
present study, the maximum IDR is used as a response parameter to evaluate the performance of the 
structure and the severity of structural component damage, as the drift is well-correlated with seismic 
damage[56,57]. IDR is defined as the difference in sway between adjacent floors to the height of the storey. The 
IDR is generally expressed in percentage.

As each sampling point has 11 values of IDRs, the mean and standard deviation of IDR for each sampling 
point are computed. This is a method of the dual response surface concept[58]. Now, an appropriate model 
has to be fitted to describe the relationship between the output and the input. A mathematical polynomial 
function is often used in response surface function. In this study, the response surface model is a second-
order polynomial function. The response function, considering the second-order polynomial model, is 
shown in Equation (2)[31].

where  = the response under consideration,

xi, xj = the input variables,

bo, bi bii, bij = unknown coefficients to be estimated using regression analysis, and

k = the number of input variables.

In this study, a least-square regression analysis of the data is used to calculate the unknown coefficients of 
the polynomial function. If a denotes the vector of building input variables, b denotes seismic intensity 
measure, and y denotes the response, then metamodels for the mean and standard deviation of the building 
responses are shown in Equations (3) and (4), respectively[31].
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where  and  are the response surface metamodels developed using least-square regression analysis for 
deriving the mean and standard deviation of the responses. Minitab statistical software has been used for 
this purpose. Equation (5) shows the general response surface model for predicting the response[31].

Where z( ) denotes the random variation in earthquake response from the expected mean response. The 
normal distribution of this random variable is assumed to have a mean of zero and a standard deviation of 

, and it can be written in the form of N[0, ]. The statistical validation of the regression model should 
be done to evaluate the adequacy of fit of the model. There are a number of statistical measures that can be 
used to verify the model, such as coefficient of determination (R2), adjusted R2 (RA)2, Average Absolute Error 
(%AvgErr), and Root Mean Square Error (%RMSE)[2,59]. For the model to be adequate, R2 and (RA)2 should 
be closer to 100%, while (%AvgErr) and %RMSE should be closer to 0%.

Step 5: Monte carlo simulation
Monte carlo simulation (MCS) is a simple method of statistical analysis to provide a probabilistic 
description of the response. It is a simulation technique that generates random values of input variables to 
model problem scenarios. These values are derived from the probability distribution of input variables (e.g., 
uniform distribution, normal distribution, lognormal distribution, etc.). To create various scenarios, the 
random selection procedure is repeated. Each time input variable values are chosen randomly, a building 
model case is created, and the solution to the problem is then assessed. For deriving response statistics, the 
MCS approach is used on the metamodels, with the selection procedure repeated hundreds or thousands of 
times.

To obtain the fragilities of the buildings, the response surface functions or metamodels must be developed 
at distinct levels of seismic intensity. Therefore, metamodels are dependent on distinct levels of seismic 
intensity. The overall response surface is obtained in this case at each 0.02 g increment of the PGA (starting 
from 0.1 g up to 0.6 g, as described in step 3) while randomly selecting building input variables. For 
predicting response conditioned on particular intensity levels, this process generates 26 different polynomial 

models. The outcome is calculated by obtaining both response surface models (  and ) in 26 distinct 
polynomial models 10,000 times and finally combining them according to Equation (5) to get 10,000 
numbers of  for each level of PGA.

Step 6: development of fragility curves
The plot depicting the relationship between the probability of exceeding a specific limit state and the 
corresponding seismic intensity is referred to as a fragility curve. For each seismic intensity, the ratio 
between the number of times the computed response exceeds the thresholds of the limit state and the 
overall number of simulation trials (10,000 trials) can be used to determine the probability of exceeding 
limit states. Since the present study focuses on IDR as the response measure, it is necessary to define the 
limit state thresholds. Proposed three performance levels or damage levels that are based on the IDR of the 
building[56,60]. These three standard performance levels are as follows: Immediate Occupancy (IO), which 
involves limited damage; Life Safety (LS), which involves substantial damage but no immediate threat to life; 
and Collapse Prevention (CP), which indicates significant damage to both structural and non-structural 
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components, with the structure being the verge of collapse. In this study, IO performance level has been 
considered to range between 1% to 1.5% IDR, LS performance level between 1.5% to 2.5% IDR, and CP 
performance level beyond 2.5% IDR[1,61,62].

The probability of exceeding a limit state for a given level of seismic intensity can be determined by dividing 
the number of times the computed response exceeds that limit state (1% drift for IO, 1.5% drift for LS, and 
2.5% drift for CP) by the total number of simulation trials (10,000 trials). The probability of exceeding some 
values is calculated by repeating the method for all earthquake intensity levels. These probabilities are 
plotted against the corresponding intensity level to construct the fragility curves for the portfolio of 
buildings. Each curve corresponds to a certain limit state or level of performance.

SEISMIC FRAGILITY ANALYSIS OF PORTFOLIO OF RC BUILDINGS
In this section, a city-level study is performed to demonstrate the effectiveness of the methodology. The 
chosen study area is Silchar City, located in the North-Eastern region of India. Due to the distribution of 
epicentres and tectonic properties, Northeast India is known for its high seismicity[63].

Building inventory data
As mentioned earlier, both RVS data and expert opinions have been utilised to collect the building 
inventory data for Silchar City. Based on the RVS conducted during the field survey, MBTs found in this 
region are RC, unreinforced masonry (URM), and houses with wooden beams and columns with net plaster 
as infill wall, along with corrugated galvanised iron sheets as roof coverings, typically known as Assam-type 
buildings. The samples are shown in Figure 2. Since the analytical approach is used in this study, only RC 
buildings have been considered, as the other two typologies cannot be designed and analysed using 
conventional computational methods. The variables considered to describe building-to-building variability 
are listed in Table 2. Although other factors, such as structural irregularities and type of foundation, might 
have been taken into account, the lack of necessary data prevented their inclusion in the analysis.

In practice, a collection of RC buildings typically consists of structures with varying heights, and each of 
these buildings will respond differently to earthquakes. To predict damage, a different response surface 
model is required for each individual building. However, in the case of Silchar City, only buildings up to 4 
stories are available. Therefore, this study will focus only on 4-storey buildings, specifically the class of mid-
rise concrete frame with unreinforced masonry infill walls (C3-M according to HAZUS building 
classification)[3]. The low-rise buildings are not chosen, as the substantial difference is not seen in the 
building properties between 4-storey buildings and those with fewer stories. The range of each variable, as 
shown in Table 3, is created by specifying the operating range of each input variable so that the range mostly 
encompasses the region where the probability density of the structural parameters is highest. The range of 
each variable is according to the observation from RVS data and expert opinions.

Screening of variables
The selected input variables must be tested to ensure that only the most significant input variables are taken 
into consideration when building the model while excluding other variables from further analysis. This 
increases the efficiency of the RSM. The Plackett-Burman screening design is used to construct a sample of 
various building cases, considering the variables mentioned in Table 2. The maximum inter-story drift 
values (in per cent), represented by the outputs (IDR), are calculated by performing NLTHA on each 
building model case. A first-order regression model has been generated with these output values to identify 
the most significant variables. The generated building cases, along with the outputs and the resulting 
regression equation, are discussed in the Supplemental Materials. Table 4 lists the statistical validation of the 

5417-SupplementaryMaterials.pdf
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Table 2. Building parameters considered

S.No. Variables

1. Width of beam (WB)

2. Beam depth (BD)

3. Column width (CW)

4. Column depth (CD)

5. Concrete grade (fck)

6. Rebar grade (fy)

7. Bay width (BW)

8. Number of bays (NB)

9. Ground floor (GF) height

10. Other floors' (OF) height

11. Live load (LL)

12. Percentage of steel (PS)

Table 3. Observed lower bound and upper bound values of each input variable

Variables Range Value

WB 250-350 (mm)

BD 250-450 (mm)

CW 250-450 (mm)

CD 300-600 (mm)

fck M15-M30

fy Fe250-Fe500

BW 3-6 (m)

NB 3-8

GF 3.5-4.5 (m)

OF 3-3.5 (m)

LL 2-5 kN/m2

PS 1.5%-3%

Table 4. Statistical validation measures for the model.

Statistical measure Percentage (%)

R2 81

(RA)2 78

%AvgErr 6.7

%RMSE 5.3

regression model developed, and it has been observed that the level of error in the model is low, indicating 
the prediction accuracy of the regression model. Figure 3 displays a plot of actual IDR values from the 
NLTHA versus the values predicted by the regression model. The trendline represents a strong 
correspondence between the actual and the predicted values.

A screening design has been conducted, and based on Figure 4, it has been observed that among these 12 
input variables, BW is the most significant variable, while NB has the least importance. In this study, the 
first seven parameters (BW, fck, LL, CD, BD, PS, and CW) are considered since they account for over 80% 
of the total response. As a result, only these seven parameters are considered as variables, and the remaining 
five parameters are assigned deterministic values.
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Figure 2. Observed MBTs (A) RC, (B) unreinforced masonry, and (C) Assam-type buildings at Silchar City.

Figure 3. The plot of actual versus predicted IDR.

Response surface model generation
As previously discussed, three codal design provisions are considered to account for the age of the building. 
The codal provision IS 1893:1984[34] is used to design buildings constructed between 1984 and 2002. 
Similarly, IS 1893:2002[35] and IS 1893:2016[36] are used to design buildings constructed between 2002 and 
2016 and from 2016 to the present, respectively. Therefore, three response surface metamodels are 
developed. Table 5 shows the lower-upper bound values of the input variables according to the construction 
age of the building. Table 6 shows the deterministic values of the five parameters that are excluded after 
screening.

As previously mentioned, the PGA variable is also added to the existing set of seven variables, resulting in a 
total of eight variables (BD, CW, CD, BW, fck, LL, PS, and PGA). For each response surface metamodel, 
three sets of sampling points or building model cases are constructed using CCD with these eight variables. 
Each set consists of 81 building model cases, amounting to a total of 243 cases. NLTHA is carried out on all 
243 building cases, with each building case subjected to 11 ground motions (as outlined in Table 1) scaled to 
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Table 5. Lower bound and upper bound values as per age of the building

Variables HC MC LC

BD 350-450 mm 300-350 mm 250-280 mm

CW 400-450 mm 300-400 mm 250-300 mm

CD 450-600 mm 400-500 mm 300-350 mm

BW 3.5-6 m 3.5-4.5 m 3-3.5 m

fck M20-M30 M15-M25 M15-M25 

LL 2-5 kN/m2 2-5 kN/m2 2-5 kN/m2

PS 2%-3% 1.5%-2.5% 1.5%-2%

Table 6. Fixed values of the non-significant parameters

Parameters HC MC LC

WB 300 300 250

NB 4 × 4 4 × 4 4 × 4 

GF 4 m 4 m 4 m

OF 3.2 m 3.2 m 3.2 m

fy Fe 500 Fe 415 Fe 415

Figure 4. Significance of input variables.

either 0.1 g (lower bound), 0.35 g (centre bound), or 0.6 g (upper bound) based on the generated cases. 
Eleven IDRs are extracted for each case, and the mean and standard deviation of IDR is obtained as 
discussed. Second-order polynomial response functions or metamodels are generated for the mean (µ) and 
standard deviation (σ) of IDR using least square regression analysis for HC, MC, and LC and are shown in 
the Supplemental Materials. Equation (6) represents the response surface metamodel for HC, which utilises 
significant input variables to predict the IDR of the building based on the input parameters of the building 
and the seismic intensity. This approach facilitates the rapid evaluation of damage measures for buildings. 
However, the strategy proves more effective in a fragility assessment approach when considering a 
collection of buildings.
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Where IDRHC is the overall response surface metamodel of a collection of buildings designed according to 
HC, IDRμHC represents the metamodel for the mean of the response, and N[0, IDRσHC] incorporates 
unpredictability in seismic excitations by representing the dispersion among earthquakes in response 
calculation. Table 7 lists the statistical validation of the regression models, and it has been observed that the 
level of error in the model is extremely low, indicating the prediction accuracy of the regression model. 
Figure 5 displays a plot of the actual IDR values obtained from the NLTHA compared to the values 
predicted by the regression model. The trendline represents a good fit between the actual and the predicted 
values.

Response simulation
MCS is now performed using the metamodel shown in Equation (6) to obtain various values of IDRs, 
replacing the need for time-consuming NLTHA. The Probability Density Function (PDF) is used to 
represent the distribution of input variables during MCS. Probability distributions of the input variables are 
defined as shown in Table 8, allowing for the simulation of different values of IDR. The units of variables 
are specified in Table 3. As the building inventory data is based on RVS data and expert opinions, it is 
difficult to identify the probability distribution of the input variables due to the unavailability of realistic 
statistical data. As a result, the mean values of the variables are assumed based on the values in Table 5, 
while the probability distributions of the variables and their measures of dispersion are gathered from 
previous investigations[64-67].

The Monte Carlo sampling is used to choose input variable values according to their probability 
distributions. Each simulation step combines these input variables to represent a building model case with 
corresponding properties. The IDR value is then obtained by evaluating both metamodels (IDRμHC and 
IDRσHC) and summing them according to Equation (6). Similarly, 10,000 times repeated random 
combinations were used to generate IDR response statistics.

As discussed, the metamodels are evaluated at specific intensity levels to determine the IDR value. For 
example, at PGA = 0.1 g, MCS is performed 10,000 times using Equation (6) by random selection of the 
values of input variables based on their assumed probability distribution [Table 8]. The IDR is obtained 
10,000 times through this process. The exceeding probability of limit states (1% drift for IO, 1.5% drift for 
LS, and 2.5% drift for CP) is obtained by dividing the number of times the computed response exceeds the 
limit state thresholds by the total number of simulation trials (10,000 trials). This process is repeated till 
0.6 g, with an interval of 0.02 g. Therefore, the probability of exceeding values is obtained for each PGA 
level, as shown in Table 9, and these probabilities are then plotted to get the fragility curve for the portfolio 
of buildings, as shown in Figure 6. The same procedure is repeated for metamodels representing MC and 
LC.

RESULTS AND DISCUSSIONS
The fragility curves in Figure 6 present the overall damage levels of a collection of RC buildings in Silchar 
City. It is observed that the probability of exceeding 1%, 1.5%, and 2.5% drift is higher for buildings designed 
according to the lower version of code compared to those designed according to newer versions. It indicates 
the fact that older buildings are more vulnerable to damage due to strength degradation than newer ones. It 
is interesting to note how the construction age of the buildings plays a crucial role in the damage 
assessment. However, it is worth noting that according to FEMA, 2009[47] guidelines, the probability of 
failure of any individual building at the specified hazard level should be less than 20%. Silchar City, located 
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Table 7. Statistical validation measures for the models

Statistical measure HC (in %) MC (in %) LC (in %)

R2 98.79 98.7 99.78

(RA)2 97.34 97.14 99.52

%AvgErr 7.66 8.33 3.18

%RMSE 7.29 6.36 2.55

Table 8. Input variables and their probability distribution parameters

HC MC LC
Variables Distribution µ σ µ σ µ σ
BD Normal 400 8 325 6.5 265 5.6

CW Normal 425 63.75 350 52.5 275 22

CD Normal 500 130 450 117 325 81.25

BW Uniform 4.75 0.52 4 0.083 3.25 0.0208

fck Normal 25 3.75 20 3 20 1.6

LL Lognormal 3 1.56 3 1.56 3 1.56

PS Normal 2.5 0.1 2 0.08 1.75 0.07

Table 9. Probability of exceeding values for three limit states (HC)

PGA IO LS CP

0.1 g 0.0278 0.0089 0.0026

0.2 g 0.2331 0.0361 0.0038

0.3 g 0.7444 0.2836 0.0139

0.4 g 0.9174 0.7435 0.1191

0.5 g 0.9537 0.9059 0.4566

0.6 g 0.9649 0.9467 0.7754

in seismic Zone V in Northeast India, adopts the MCE hazard level of 0.36 g for HC and MC and 0.4 g for 
LC[34,36,37] in the design of the buildings. As the CP damage level corresponds to substantial damage and 
indicates a moment close to collapse, reaching the CP level drift is considered a failure. Therefore, Figure 6 
demonstrates that none of the buildings in Silchar City shows a probability of failure corresponding to their 
respective hazard levels for which they were designed.

Each fragility curve corresponds to the three drift limit states for a particular design code provision: HC, 
MC, and LC. These curves show the damage levels for a collection of buildings. It is not possible to obtain 
the damage level for a specific building using the metamodel, as described in Equation (6). There is a need 
to modify the metamodel so that it can be applied on an individual basis. This is where the assessment of 
building-specific fragility curves using RSM comes into the picture. Unlike the conventional method of 
performing NLTHA on each building, RSM can now be used as a tool to derive the fragility curve for an 
individual building by performing a simulation on the modified metamodel.

The metamodel applicable to a specific building is obtained by using values of the variables specific to that 
building in Equation (6). Subsequently, MCS is performed following the same procedure as described 
earlier. Table 10 shows four specific buildings with their own geometric and material properties, all 
designed according to the same code (HC). The purpose is to observe the variation in the fragility curves 
among the buildings designed with the same code.
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Table 10. Characteristics of the buildings designed according to IS 1893:2016 (HC)

Building name BD CW CD fck BW LL PS

B1 450 450 550 20 3.5 3 2.5%

B2 400 400 500 30 5 2.3 3%

B3 450 450 550 30 6 2.5 2.5%

B4 350 400 450 20 5 3.5 3%

Figure 5. The plot of actual versus predicted IDR for (A) HC, (B) MC, and (C) LC.

It is evident from Figure 7 that although the beam, column sizes, and PS are the same for B1 and B3, the 
fragility curve differs for all the limit states due to variations in BW, fck, and LL. These variables are the 
most significant based on the screening design shown in Figure 4. A similar observation can be made for B2 
and B3, as their fragility curves exhibit a high degree of similarity. This can be attributed to the fact that the 
relatively significant variables (BW, fck and LL) have almost identical values for these two buildings. 
Therefore, by referring to the existing fragility curve developed using RSM, it is possible to predict the 
fragility curve of any building if the relatively most significant parameters are the same for both buildings.

To validate this rapid method of obtaining the fragility curve, a thorough investigation is carried out on 
building B1 using traditional nonlinear time history studies. IDA has been performed to derive the fragility 
curve for building B1. The detailed analysis procedure of IDA can be found in[1,16,18]. Figure 8 shows the 
comparison of fragility curves derived using RSM and IDA. The resemblance of the fragility curves obtained 
using IDA with RSM validates the accuracy of the rapid fragility assessment using RSM.
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Figure 6. Fragility curves representing the overall damage level of the portfolio of buildings constructed during the year (A) 2016-
present, (B) 2002-2016, and (C) 1984-2002.

Figure 7. Fragility curve of buildings, (A) IO, (B) LS, and (C) CP limit states.
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Figure 8. Comparison of RSM and IDA.

CONCLUDING REMARKS
With the aid of a simulation-based statistical method known as response surface metamodel, this study has 
considered building-to-building variability for determining the fragility of the portfolio of RC buildings in a 
region. The fragility curve indicates the probability of exceeding the damage state while considering 
uncertainty in both the building properties and earthquake forces. Although the uncertainty in earthquake 
forces is usually addressed by considering various ground motions, the complexity arises when building-to-
building variability within a region needs to be considered. The computational efficiency reduces when the 
analysis needs to be done for every building located in a region. However, by incorporating building-to-
building variability as input parameters within the existing RSM framework, the need for complex nonlinear 
analyses can be replaced with a more computationally efficient approach. The RSM establishes a 
relationship between the response of the building, the building input parameters, and ground motion 
intensity using simple polynomial functions or metamodels. A case study is performed on Silchar, a city in 
Northeast India, and several key findings of the study are as follows:

• The buildings in the city are classified according to their construction age, which is represented by 
different codal design provisions. This classification is done to take into account the strength degradation of 
RC buildings over time.

• Out of the 12 building input parameters considered, the width of the bay is found to be more significant, 
and the number of bays is less significant in the overall response (IDR) of the building.

• Using the metamodel developed, fragility curves are efficiently obtained, representing the damage level for 
a collection of buildings of three construction age classes of buildings.

• The old-aged buildings are found to be more vulnerable to damage, as the probability of exceeding the 
limit states for various seismic intensity levels is higher as compared to the newly constructed buildings.
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• When examining the fragility of the four specific buildings, it is found that if the relatively significant 
building parameters (as obtained from screening design) are similar, the fragility curve shows similarities, 
even if the non-significant parameters vary.

• The RSM approach is validated against the conventional method, such as IDA, and it is found that both 
approaches show similar results, indicating the accuracy of rapid fragility assessment using RSM.

However, this methodology does have a limitation. The metamodel developed with this approach is 
applicable for a certain building class based on its height. The same metamodel cannot be applied to low-
rise or high-rise structures. This shortcoming can be overcome by accommodating the building height as a 
variable, along with other building input parameters. However, the DoE techniques do not allow for the 
inclusion of building height as a variable. It is because when generating sampling points or building model 
cases using DoE, it does not account for the fact that high-storey buildings generally have a different range 
of values of input parameters compared to low-rise structures. Further investigation is needed to be done to 
overcome this limitation.
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