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Abstract
Most breast cancers are hormone-receptor positive (HR+). However, more women eventually die from HR+ breast 
cancer than from either HER2+ or triple negative breast cancer. Endocrine therapies continue to be the mainstay 
of treatment. In 40% of these cases, recurrences in early-stage disease and progression in the metastatic setting 
are largely a function of the development of endocrine resistance. A multitude of mediators and pathways have 
been associated with endocrine resistance in breast cancer including the mevalonate pathway, which is integral 
to cholesterol biosynthesis. The mevalonate pathway and the downstream activation of associated cytoplasmic 
pathways including PI3K-AKT-mTOR and RAS-MEK-ERK have been known to affect cancer cell proliferation, cell 
survival, cell invasion, and metastasis. These are important mechanisms leading to the inevitable development 
of endocrine resistance in HR+ breast cancer. Statins are a class of drugs that inhibits HMG-CoA reductase, an 
enzyme in the mevalonate pathway that plays a central role in cholesterol production. In vitro and in vitro studies 
suggest that the role of statins in blocking the mevalonate pathway effectively disrupts downstream pathways 
involved in estrogen receptor expression and cellular processes such as cell survival, proliferation, stress, cell 
cycle, inhibition of apoptosis, and autophagy. Overcoming these key mechanisms heralds a role for statins in the 
prevention of endocrine resistance.
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ENDOCRINE RESISTANCE IN BREAST CANCER
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer-related death in 
women throughout the world[1]. Roughly two-thirds of breast cancer patients have a hormone-receptor 
positive (HR+) disease for which endocrine therapy is the mainstay of treatment. Endocrine therapy agents 
function by suppressing the expression of estrogen, in many cases by antagonizing the estrogen receptor 
(ER). Selective ER modulators (SERMs) such as tamoxifen competitively bind ER, forming an inactive 
complex that blocks estrogen effect on breast tissue[2]. These drugs are demonstrated to be effective in 
both premenopausal and postmenopausal women, although are preferentially utilized in premenopausal 
women. Aromatase inhibitors (AIs) such as letrozole, anastrozole, and exemestane aim to reduce peripheral 
estrogen production through inhibition of aromatase, which facilitates its conversion. AIs are primarily 
used in postmenopausal women, although there is a role for them in conjunction with GnRH analogues in 
the premenopausal setting.

A major challenge in treating HR+ breast cancer lies in overcoming endocrine resistance, which occurs 
in approximately 40% of patients[3]. Primary endocrine resistance is defined as a relapse within 2 years 
of adjuvant endocrine treatment or disease progression during the first 6 months of first-line endocrine 
therapy for advanced or metastatic breast cancer (MBC)[4]. Secondary resistance is defined in early breast 
cancer as a relapse that occurs after at least two years of endocrine therapy and during or within the first 
year of completing adjuvant endocrine therapy. In advanced or MBC, secondary resistance is defined as 
disease progression after more than 6 months of endocrine therapy.

Multiple mechanisms of endocrine resistance have been identified including deregulation of the ER 
signaling pathway, alteration of apoptosis and cell cycle regulation, and the overdrive of pro-proliferative 
pathways[5-8]. One potential pathway implicated in the development of endocrine resistance includes 
the mevalonate pathway, which is involved in the synthesis of cholesterol and isoprenoids such as 
geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate. As a result of this process, 3-hydroxy-
3-methyl-glutaryl-CoA reductase (HMGCR) catalyzes the production of mevalonate from 3-hydroxy-3-
methyl-glutaryl-CoA. Notably, increased expression of HMGCR has been correlated with increased tumor 
aggression and poorer prognosis[9]. This has led to an increased and newfound interest in statins, a class of 
drugs known to inhibit HMGCR and classically utilized for the management of hyperlipidemia. Various 
studies using a range of tumor cell lines have demonstrated anti-angiogenic, anti-proliferative, and pro-
apoptotic properties of statins[10,11]. More importantly, statin intake has been associated with a decrease in 
breast cancer recurrence[12,13]. Herein, we review literature supporting the role for statins in the prevention 
of endocrine resistance and breast cancer recurrence.

CHOLESTEROL BIOSYNTHESIS AND METABOLISM DRIVES TAMOXIFEN RESISTANCE 
Transcriptomic analysis of tamoxifen-resistant cell lines have shown increased expression of genes 
involved in the cholesterol biosynthesis pathway [Figure 1]. Specifically, genes associated with sterol 
regulatory element-binding factor (SREBF) activation were found to be upregulated in tamoxifen-resistant 
T47D cells[14]. SREBF is a transcription factor and primary activator of the mevalonate pathway, thereby 
suggesting that transcriptional reprogramming of resistant cells may be occurring via mevalonate pathway 
intermediaries. A recent study showed that AI-resistant cells exhibited a higher degree of expression of 
small Rab GTPase family proteins. This upregulation was also reflected by a remarkable increase in exosome 
production, meaning that prolonged endocrine therapy may lead to resistance not only by increasing 
autophagosome formation but also by increased release of small extracellular vesicles. Proteomic analysis 
demonstrated a 2-fold increase in vesicle-mediated transport. Of these, RAB27B, RAB5, and RAB11 were 
found to be significantly upregulated[15]. The relevance of these small GTPases relies on their roles in tumor 
invasion and metastasis, which have previously been reported elsewhere[16-18]. Rab27B has been found to 
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promote G1 to S phase transition, proliferation, and invasion in vitro. In vitro, increased Rab27B expression 
promoted tumor invasion and lymph node metastasis in an orthotopic model, primarily via geranylgeranyl 
diphosphate[16]. By in silico analysis, Rab5A is found to be associated with poor prognosis in HR+ breast 
cancer [HR = 1.3 (1.01-1.6), P = 0.037] in multivariate analysis among tumors with Rab5A expression > 75% 
percentile[17]. Rab5A expression is also induced by hypoxia[19]. Interestingly, the hypoxic marker, HIF-1a, is 
upregulated in letrozole-treated tumors[20]. Lastly, Rab11 is involved in controlling cell surface expression 
of integrin β1, which triggers mechanotransduction signals within the extracellular matrix, allowing for 
metastatic cell seeding. Lipophilic statins impair Rab11b association and activity in the cell membrane, 
preventing breast cancer cells from adapting to the brain microenvironment and consequent seeding[18]. 
Lastly, free cholesterol and lipid droplets have been noted to accumulate in lysosomes of T47D tamoxifen-
resistant cells, reflecting impaired lipid metabolism due to deficiencies in membrane permeability[14].

Aberrant mechanisms within the phosphoinositide 3-kinases (PI3K) pathway are additionally implicated 
in tamoxifen resistance. Ras prenylation leads to phosphorylation of PI3K. The PI3K pathway is the 
most frequently implicated pathway in breast cancer[21]. Activation of PI3K results in the production of 
phosphatidylinositol 3,4,5-triphosphate (PIP3) and subsequent recruitment of AKT protein into the cell 
membrane. The activation of AKT and the subsequent intracellular cascade of phosphorylation of other 
proteins, including mammalian target of rapamycin (mTOR), is a potent driver of cell cycle progression 
and survival. Additionally, ER phosphorylation at Ser167 by AKT leads to ligand-independent activation 
of Erα, a potent mechanism in the estrogen-independent growth of breast cancer cells[22]. Multiple studies 
have demonstrated how the overactivation of the PI3K/AKT/mTOR pathway causes resistance to endocrine 

Figure 1. Mechanisms of endocrine resistance in breast cancer. Tamoxifen resistance has been associated with increased expression of 
the transcription factor SREBF (A). SREBF activates the transcription of mevalonate pathway (MVP) genes, like HMGCR  (B). Activation of 
the mevalonate pathway induces prenylation of small GTPases such as Rho, Ras, or Rab (C). Ras prenylation leads to phosphorylation of 
PI3K (D), which activates Akt and mTOR to phosphorylate the residue, Ser167, of the estrogen receptor (ERa), which decreases sensitivity 
to tamoxifen (E). This leads to continued Era-derived transcription and phosphorylation of Rb, accelerating G1/S cell cycle transition 
(F). Ras phosphorylation also activates MEK (G), which activates ERK1/2. The latter is associated to a senescence-associated secretory 
phenotype (SASP) (H). Created with Biorender.com.
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treatments such as tamoxifen and aromatase inhibitors. In one study, MCF-7 cells were infected with a 
retrovirus encoding a constitutively active AKT gene, ΔAkt-1(CA)[23]. The effects of the hormonal drug, 
4-hydroxytamoxifen (4HT), were compared between the ER+ MCF-7 and MCF7/ΔAkt-1(CA). It was found 
that the MCF7/ΔAkt-1(CA) cells were approximately 4.3-fold more resistant to the effects of 4HT than 
MCF-7 cells, implicating the importance of AKT expression on the efficacy of tamoxifen in breast cancer.

Activation of the PI3K/AKT/mTOR pathway has also been implicated in the resistance to aromatase 
inhibitors in breast cancer lines. In one study, the molecular mechanisms involved letrozole-resistant (LR) 
cell clones from ER+ aromatase-expressing breast cancer cell lines, MCF-7/AROM-1[24]. In the LR cell line, 
there was an upregulation of the PI3K/AKT/mTOR pathway, indicated by increased phosphorylation of 
AKT/mTOR and their downstream substrates, and an increase in Erα protein expression in these cells. 
In the same study, as a proof of concept in vitro, nine patients receiving letrozole alone in a neo-adjuvant 
setting for six months, developed an early increase of tumor mass in 3 months after an initial response to 
the drug. This was evidenced by breast ultrasound and Ki67 expression; the latter was done at baseline, 
after 14 days as a marker for early response, and at tumor progression. Paired tumor sections from both 
pre-treatment and post-treatment showed that there was significant upregulation of the PI3KCA, AKT1, 
and mTOR genes and their corresponding protein levels.

ANTICANCER EFFECTS OF STATINS
Multiple studies have demonstrated the role of statins in overcoming endocrine resistance [Table 1]. 
Simvastatin (SVA) is a lipophilic statin derived from lovastatin and has been found to mitigate endocrine 
resistance by a variety of mechanisms. Tamoxifen resistance, specifically, has been associated with the 
activation of retinoblastoma protein (Rb), an integral regulator of G1/S-phase cell-cycle progression. 
Deregulation of this pathway is associated with early recurrence of breast cancer following tamoxifen 
monotherapy[25]. Additionally, minichromosome maintenance protein 7 (MCM7) is a part of a larger MCM 
complex and another key regulator of the cell cycle[26]. Knockdown of MCM7 leads to abnormal replication 
of DNA during the S phase, which in turn activates the DNA damage response in order to halt cell-cycle 

Study Statin studied Lipophilic vs.  
hydrophilic Mechanism of action

Liang et al.[28] Simvastatin + 
Tamoxifen

Lipophilic Downregulates expression of MCM7 leading to DNA damage in 
tamoxifen-resistant cells

Liu et al.[31] Simvastatin Lipophilic Reduces isoprenoid intermediates of the mevalonate pathway
Reduces activity of Rho GTPases, Rac1 and Cdc42
Inhibits ERK1/2 pathway, which leads to activation of SASP

Moriai et al.[35] Lovastatin + 
Tamoxifen

Lipophilic Downregulates survivin protein expression, which increases sensitivity 
to tamoxifen-induced apoptosis

Kusama et al.[38] Fluvastatin Lipophilic Inhibition of Rho A and Rho C membrane localization, thereby 
impairing cancer cell migration and invasion into the endothelial cell 
layer

Liu et al.[39] Fatostatin + 
Tamoxfen

- Inhibitors of SREBP pathway resulting in decreased tumor cell invasion
Degradation of ER protein
PI3K-AKT-mTOR signaling disruption leading to apoptosis and 
autophagy
Enhance tamoxifen-induced apoptosis and autophagy
Enhanced tamoxifen-induced cell cycle arrest

Iizuka-Ohashi et al.[40] Fluvastatin Lipophilic Suppression of AKT activation, which decreases apoptotic resistance 
to MEK inhibitors

Miettinen et al.[44] Atorvastatin Lipophilic Induces accumulation of autophagosomes and decreased autophagic 
flux

Shojaei et al.[45] Simvastatin + 
Temozolomide

Lipophilic Blocks autophagolysosome formation and increased proapoptotic cell 
death

Misirkic et al.[46] Simvastatin Lipophilic Upregulation of autophagolysosome-associated LC3-II indicating 
induction of autophagy

Toepfer et al.[47] Atorvastatin Lipophilic Upregulation of autophagolysosome-associated LC3-II indicating 
induction of autophagy

Qi et al.[48] Simvastatin Lipophilic Upregulation of autophagolysosome-associated LC3-II indicating 
induction of autophagy

Table 1. Mechanisms of statins in prevention of endocrine resistance and cancer recurrence
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progression[27]. SVA has been shown to downregulate both Rb and MCM7 in two tamoxifen-resistant 
breast cancer cell lines, MCF7 and T47D, thereby leading to DNA damage. The addition of simvastatin to 
tamoxifen, however, demonstrates retarded growth of the tamoxifen-resistant cells leading to an induction 
of apoptosis[28]. Given that the increased prenylation signaling downstream of the cholesterol synthesis 
pathway that arguably contributes to endocrine resistance, the aforementioned data suggest that effective 
blockade of the mevalonate pathway may aid in re-sensitizing breast cancer cells.

Simvastatin can suppress breast cancer cell proliferation by affecting cellular senescence. Senescence 
represents the stress response of the cell to factors such as DNA damage and oncogene activation[29]. In 
response to these triggers, the cells acquire a senescence-associated secretory phenotype (SASP) that 
secretes different cytokines, growth factors, chemokines, and proteases, which promote inflammation and 
cancer progression[30]. In vitro, MCF7 breast cancer cells treated with fulvestrant exhibited lesser treatment 
effects upon co-culture with senescent vs. non-senescent cells[31], implicating senescence as a mechanism 
that leads to endocrine resistance. However, upon treatment of senescent cells with simvastatin, fulvestrant 
treatment effects were significantly enhanced, suggesting that simvastatin can mitigate the effects of 
senescent cells on endocrine resistance in breast cancer cells. A possible explanation for this effect involves 
an inhibitory effect on ERK1/2 pathway activation in SASP, which has been further linked with poor 
response to hormone therapy in breast cancer patients[32]. Rho GTPases, such as Rac1 and Cdc42, which 
control cell motility, adhesion, and proliferation are additionally dysregulated in SASP[33]. SVA appears to 
mitigate the effects of these key regulators that lead to SASP-induced endocrine resistance.

In a separate study, survivin was identified as a direct inhibitor of caspase-3 and caspase-7, causing a 
blunting of tamoxifen-induced apoptosis in MCF-7 and ZR-75-1 breast cancer cells[34,35]. This effect was 
diminished with lovastatin pre-treatment by the downregulation of survivin expression, thus increasing 
apoptosis.

Statins have also been shown to inhibit migration and invasion of breast cancer cells in vitro by preventing 
geranylgeranylation of Rho. The Rho family of proteins consists of GTPases including Rho A and Rho C 
that are overexpressed in breast cancer, and implicated in cancer cell migration and invasion[36]. To be fully 
functional, they require post-translational isoprenylation by specific transferases, farnesyltransferase, and 
geranylgeranyltransferase type I[37]. MDA-MB-231 cells previously treated with fluvastatin demonstrate 
decreased levels of Rho A and Rho C, which in turn leads to inhibition of transendothelial migration 
and invasion[38]. Cell invasion was further found to be impaired in MCF-7, T47D, MDA-MB-231, and 
MDA-MB-468 cells treated with both fatostatin and tamoxifen, owing to a synergistic effect between the 
agents and the ability of fatostatin to degrade ER via K-48 linked polyubiquitination. An added benefit of 
fatostatin in this study contributed to autophagy and apoptosis[39].

Statins may have a role in overcoming resistance to MEK inhibitors such as tramatenib and CH5126766. In 
a preclinical study, several cancer cell lines including the human breast cancer cells, MDA-MB-231, were 
treated with a MEK inhibitor, CH5126766, with or without statins[40]. There was a dose-dependent reduction 
in cell growth in cancer cells treated with combined CH5126766 and fluvastatin versus CH5126766 alone. 
Flow cytometric analysis of the cell cycle demonstrated that treatment with statins induced G1 arrest in 
MDA-MB-231 cells irrespective of CH5126766 administration. Activation of PI3K-AKT signaling and the 
subsequent increased expression of SREBPs following inhibition of the MEK pathway plays a role in the 
apoptotic resistance of cancer cells to MEK inhibitors. The addition of fluvastatin or simvastatin was able 
to suppress CH5126766-induced activation of AKT. Therefore, the utilization of statins in the blockade of 
the mevalonate pathway leads to the suppression of AKT activation and a decreased apoptotic resistance to 
MEK inhibitors.
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AUTOPHAGY AND STATINS
Autophagy is a recycling pro-survival process where cells breakdown the utilized cytoplasmic products, 
which are then incorporated as auto-phagolysosomes and converted into inputs of cell metabolism[41]. 
Induction of autophagy is associated with the development of therapeutic resistance in breast cancer[42]. In 
fact, previous research shows that tamoxifen induces protective autophagy and the eventual induction of 
endocrine resistance in breast cancer cells, which can become re-sensitized by inhibiting autophagy[42-43].

Autophagy is regulated by the mevalonate pathway in the form of geranylgeranylation of small Rab 
GTPases. Particularly, Rab11 has been proposed as the main link between the mevalonate pathway 
and autophagy. Inhibition of the mevalonate pathway with atorvastatin induces accumulation of 
autophagosomes and reduced autophagic flux[44]. Conversely, other studies have suggested that statin use 
does not block autophagic flux by blocking the mevalonate pathway, but rather interferes in phagolysosome 
formation[45]. Use of simvastatin in combination with temozolomide showed statin-induced accumulation 
of autophagosomes and enhanced proapoptotic cell death by temozolomide. It is important to note that the 
opposite has also been reported, suggesting that high dose statins could in fact increase autophagic flux, 
as measured by LC3II[46,47]. However, an increase in LC3II levels and autophagosomes can be seen upon 
inhibition of autophagic flux[47]. Simvastatin has also been shown to induce cytoplasmic accumulation of 
autophagic vacuoles, which was reversed by the addition of farnesyl and GGPP in a model of amyotrophic 
lateral sclerosis[48].

STATIN USE AND OUTCOMES IN CLINICAL TRIALS
In a clinical study examining postmenopausal women with early HR+ breast cancer receiving adjuvant 
AI therapy, breast cancer recurrence over a 5-year follow-up period was significantly less in patients 
concomitantly exposed to a statin[49]. The incidence rate per 1000 person-years was 10.12 (95%CI: 6.92-14.28) in 
statin-exposed patients and 13.40 (95%CI: 12.36-14.51) in the non-exposed group. Any statin exposure was 
associated with a reduced rate of 5-year breast cancer recurrence [adjusted HR 0.72 (95%CI: 0.50-1.04)]. In 
the metastatic setting, an open-labelled phase II clinical study is currently recruiting and will evaluate the 
benefit of atorvastatin addition to standard endocrine therapy in the second line setting (NCT02958852). 
While in vitro and in vitro data support an integral role for the mevalonate pathway in the development of 
resistance to endocrine therapies, larger scale analyses of clinical data are needed to guide the use of lipid 
metabolism modulators in clinical practice.

CONCLUSION
Our review demonstrates the potential role of statins in overcoming endocrine resistance, an inevitable 
challenge in the treatment of HR+ breast cancer. There are several reasons that make statins a practical 
choice in the treatment of breast cancer. They are commonly prescribed medications used primarily for 
the management of hyperlipidemia and cardiovascular disease. According to a report by the Center for 
Disease Control and Prevention, 23.6% and 38.9% of women over 45 or 75 years, respectively were taking 
statins[50]. In addition, because of their widespread popularity in the prevention of both primary and 
secondary cardiovascular diseases, generic statin medications now cost < $12/month[51]. Statins are also 
generally well tolerated medications, although it is important to acknowledge their limiting side effects 
including myopathy that precludes its use in a subpopulation of patients. Also, metabolic syndrome and 
obesity together are linked with nearly 20% of breast cancers, particularly in the post-menopausal setting[52]. 
Treating obesity and associated comorbidities such as hypercholesterolemia has shown to prevent more 
than 30% of breast cancers. All these factors make statins a logical choice and should prompt clinical trials 
to further investigate the role of statins in endocrine-resistant breast cancer.
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