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Abstract
This review offers an expert perspective on biomarkers, CDK4/6 inhibitor efficacy, and therapeutic approaches for 
managing hormone receptor-positive (HR+), human epidermal growth factor receptor-negative (HER2-) advanced 
breast cancer (ABC), particularly after CDK4/6 inhibitor progression. Key trials have demonstrated that combining 
CDK4/6 inhibitors with endocrine therapy (ET) significantly improves progression-free survival (PFS), with median 
durations ranging from 14.8 to 26.7 months, and overall survival (OS), with median durations reaching up to 
53.7 months. Actionable biomarkers, such as PIK3CA and ESR1 mutations, have emerged as pivotal tools to guide 
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second-line treatment decisions, enabling the use of targeted therapies like alpelisib and elacestrant and 
emphasizing the important role of biomarkers in guiding the selection of therapy. This overview aims to provide 
clinicians with a practical and up-to-date framework to inform treatment decisions and improve patient care in the 
context of this challenging disease. Additionally, we review emerging biomarkers and novel treatment strategies to 
address this difficult clinical landscape.
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INTRODUCTION
In recent years, cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i), including palbociclib, ribociclib, and 
abemaciclib, have been approved for the treatment of hormone receptor-positive (HR+), human epidermal 
growth factor receptor-negative (HER2-) advanced breast cancer (ABC)[1]. These approvals were based on 
results from several phase III clinical trials (PALOMA 2 and 3, MONALEESA 2, 3, and 7, and MONARCH 
2 and 3), which demonstrated that combining CDK4/6i with endocrine therapy (ET) significantly improves 
progression-free survival (PFS) compared to ET alone and may delay the need for subsequent 
chemotherapy (CT)[2-9]. Furthermore, follow-up analyses confirmed that combining CDK4/6i and ET 
provides an overall survival (OS) advantage, with reported median OS (mOS) values ranging from 
34.9 months with palbociclib and fulvestrant in the PALOMA-3 trial to 53.7 months with ribociclib and 
fulvestrant in the MONALEESA-3 trial and 46.7 months with abemaciclib and fulvestrant in the 
MONARCH 2 trial[5,8,10-13]. However, the efficacy of these inhibitors varies among patients. Some tumors 
exhibit intrinsic resistance and progress rapidly, while others develop acquired resistance with prolonged 
use. Despite accumulating knowledge on the factors contributing to CDK4/6i resistance, this information 
has yet to be widely translated into clinical practice. Consequently, patients are often treated without 
considering this valuable biological information that could guide therapy[14].

CDK4/6i (palbociclib, ribociclib, and abemaciclib) have become a cornerstone in the management of HR+/
HER2- ABC. The combination of a CDK4/6i with ET is the standard-of-care first-line therapy for patients 
with HR+/HER2- ABC[15] based on evidence from pivotal phase III trials, which demonstrated significant 
improvements in PFS and OS. This approach delays the need for CT and maintains patients’ quality of life 
(QoL), offering a significant advancement in therapeutic options. Despite these benefits, variability in 
treatment response and the development of acquired resistance remain significant challenges, highlighting 
the importance of integrating biomarkers and personalized approaches to optimize clinical outcomes.

This review aims to analyze the prognostic and predictive roles of clinical and tumor biomarkers in HR+/
HER2- ABC, examining the most relevant evidence and clinical applications. We propose treatment 
algorithms for patients resistant to CDK4/6i and provide an overview of emerging biomarkers.

METHODS
To provide an up-to-date overview of therapeutic approaches for HR+/HER2- ABC, we conducted a 
comprehensive literature search in PubMed and Scopus databases. The search primarily focused on studies 
published between 2016 and 2024 to ensure the review reflects the most current evidence and 
advancements. Earlier publications (e.g., 2002 and 2003) were also included when they provided 
foundational insights or remained relevant to specific aspects of HR+/HER2- advanced breast cancer (ABC) 
and its management. Search terms included combinations of keywords such as “HR+/HER2- ABC”, 
“molecular subtypes” (e.g., luminal A, luminal B, HER2-enriched), “CDK4/6 inhibitors”, “biomarkers” (e.g., 
PIK3CA, ESR1, BRCA1/2), “targeted therapies”, “endocrine therapy (ET)”, “cancer drug resistance”, 
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“mechanisms of resistance”, “endocrine resistance”, “prognosis”, “clinical outcomes”, “progression-free 
survival (PFS)”, or “overall survival (OS)”, among others. Articles written in English that addressed 
mechanisms of drug resistance in cancer and therapeutic strategies to overcome resistance were included. 
Study selection was based on alignment with the objectives of this review and the methodological quality of 
the studies.

MOLECULAR BREAST CANCER SUBTYPES
The histopathological classification of HR+/HER2- breast cancer (BC) does not reflect its biological 
heterogeneity. The classification based on specific gene expression profiles identified four main intrinsic BC 
subtypes, which are biologically distinct: luminal A, luminal B, HER2-enriched (HER2E), and basal-like[16].  
Each of these intrinsic molecular subtypes can be identified in each classical pathology-based classification, 
albeit with different proportions. In fact, this surrogate classification has limited ability to distinguish 
between PAM50 luminal A and B[17]. Moreover, this molecular classification of BC has prognostic and 
predictive implications beyond classical classification. Cumulative evidence highlights the clinical value of 
the two non-luminal subtypes (HER2E and basal-like) in HR+/HER2- disease as representative of hormone-
resistant disease[18].

In the last few years, several phase III clinical trials (EGF30008, BOLERO-2, PALOMA-2, PALOMA-3, 
MONALEESA-2, MONALEESA-3, MONALEESA-7 and PEARL) have analyzed the molecular profile of 
HR+/HER2- ABC. These studies have demonstrated that the majority of tumors were luminal A and 
luminal B (62%-85%), both of which were associated with better prognosis. However, HER2E and basal-like 
tumors were also detected[19-22], showing poorer response to treatment with CDK4/6i with worse PFS and OS 
outcomes[22-25].

Intrinsic subtypes can shift between primary tumors and metastases. Thus, the basal-like subtype maintains 
100% concordance, while HER2E and luminal B maintain 76.9% and 70% concordance, respectively. 
Interestingly, in the metastatic setting, only 44.7% of luminal A cases maintained their subtype, with 40.4% 
switching to luminal B and 14.9% to the HER2E subtype[20]. Accordingly, the PEARL study[24] revealed a 
higher presence of non-luminal subtypes in metastatic biopsies (14%) compared to primary samples (4%), 
which was confirmed by data from the AURORA project[26]. This underscores the importance of 
considering the origin of the tumor sample when evaluating the prognostic and predictive value of intrinsic 
molecular subtypes in BC.

As discussed below, various clinical and molecular biomarkers have been identified as valuable prognostic 
and predictive markers for luminal ABC [Table 1].

CLINICAL BIOMARKERS
In HR+/HER2- ABC, the level of ET sensitivity plays a critical role in determining the efficacy of first-line 
treatment with CDK4/6i combined with ET. The current criteria for classifying a patient as endocrine-
sensitive or resistant are those established in the 5th ESMO-ABC Guidelines[79]. These consensus criteria 
classify patients into three groups:

· Primary ET resistance (1ET-R): defined as relapse within the first 2 years of adjuvant ET, or progressive 
disease (PD) within the first 6 months of first-line ET for ABC. 
· Secondary ET resistance (2ET-R): defined as relapse after the first 2 years of adjuvant ET, relapse occurring 
within 12 months of completing adjuvant ET, or PD ≥ 6 months after initiating ET for ABC. 
· ET sensitivity: patients relapsing after 12 months of completing adjuvant ET or presenting with de novo 
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Table 1. Main prognostic and predictive biomarkers in luminal breast cancer

Biomarker Prevalence Prognostic/predictive value Targeted therapy References

PIK3CA (mutated) Primary tumor: 45% 
Metastases: 53%

Poor prognostic biomarker 
Predictive biomarker of response to specific PI3KCAi 
Predictive biomarker of resistance to fulvestrant 
Early change in mutated copies of PIK3CA after 15 days of treatment 
predict worse clinical outcomes with CDK4/6i (palbociclib)

PI3Ki (alpelisib) 
PI3Ki (inavolisib) + CDK4/6i (palbociclib) + ET 
(INAVO-120 trial; FDA-approved for first-line 
treatment)

[27-38]

ESR1 (mutated) Primary tumor: 3.5% 
Metastases: 20%-48% 
Up to 50% after 1 year of AI 
+ CDK4/6i treatment

Poor prognostic biomarker 
Predictive biomarker of response to CDK4/6i + fulvestrant after AI 
progression 
Predictive biomarker of resistance to AI + CDK4/6i (accelerated 
onset of AI-palbociclib resistance) 
Predictive biomarker of resistance to SERD (fulvestrant) - ESR1 
Y537S

New SERDs (elacestrant, and under research: 
camizestrant, giredestrant, amcenestrant) 
PROTAC estrogen receptor degrader (ARV-471) 
Fulvestrant + CDK4/6i (palbociclib) after AI 
progression

[29,39-52]

HER2 (mutated) Primary tumor: 2% 
(mutated) 
Metastases: 3%-5% 
(mutated); 5%-8% 
(enriched) 
Lobular BC: 15% (enriched)

Prognostic biomarker 
Predictive biomarker of response to neoadjuvant CT, ET, anti-HER2 
therapy and CDK4/6i

For mutant HER2/3 ABC (neratinib + fulvestrant + 
trastuzumab) 
Anti-HER2 (TKi: neratinib)

[53,54]

HER2-low Primary tumor: 34% 
Metastases: 37%

Predictive biomarker of response to ADC ADC (T-DXd, SG) [55-59]

ACTIONABLE 
BIOMARKERS

BRCA1/2 
(mutated)

Primary tumor: 5% 
(germline mutation) 
Metastases: 5% (germline 
mutation)

Germline mutations are predictive biomarkers of response to PARPi PARPi (talazoparib, olaparib) [60-64]

RB1 (loss of 
function)

Primary tumor: 0%-3% 
Metastases: 11,5% (after 
CDK4/6i)

Predictive biomarker of resistance to CDK4/6i 
Potential predictive biomarker of resistance and poor clinical 
outcomes to CDK4/6i and/or ET 
Predictive biomarker of response to specific PI3KCAi

- [29,65-68]

Cyclin D (CCND1) 
(amplified)

Primary tumor: 20% 
Metastases: 17%

Potential prognostic biomarker (poor) 
Potential predictive biomarker of response to CDK4/6i

- [32,69,70]

Cyclin E (CCNE1) 
(amplified)

Primary tumor: NA 
Metastases: NA

Prognostic biomarker 
Predictive biomarker of resistance to CDK4/6i and or AI 
Predictive biomarker of response to CT (capecitabine)

- [22,24,71-76]

NO ACTIONABLE 
BIOMARKERS

TP53 (mutated) Primary tumor: 18% 
Metastases: 28%

Prognostic biomarker (poor) - [4,69,70,77,
78]

ABC: Advanced breast cancer; ADC: antibody-drug conjugate; AI: aromatase inhibitor; BRCA: breast cancer gene; CDK4/6i: cyclin-dependent kinase 4/6 inhibitors; CT: chemotherapy; ERS1: estrogen receptor 1; ET: 
endocrine therapy; HER2: human epidermal growth factor receptor 2; NA: not available; PARPi: PARP inhibitors; RB: retinoblastoma; SERD: estrogen receptor downregulator; SG: sacituzumab govitecan; T-DXd: 
trastuzumab deruxtecan; TKi: tyrosine kinase inhibitor.
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metastatic disease are considered to have ET-sensitive disease.

These criteria have demonstrated significant prognostic impact and are crucial for guiding first-line and 
subsequent treatment choices. Patients with ET-sensitive disease, characterized by relapse more than 12 
months after completing adjuvant ET or presenting with de novo metastatic disease, achieve significantly 
better outcomes, including prolonged PFS and OS.

A comprehensive analysis of over 6,000 HR+/HER2- early BC patients across four phase III trials revealed 
critical insights. Among 493 patients with distant relapse, the mOS was 27.2 months for those with 1ET-R, 
38.4 months for 2ET-R, and 43.2 months for ET-sensitive relapse[80].

The AURORA study demonstrated significant differences in median PFS (mPFS) and OS (mOS) in first-
line CDK4/6i + ET therapy based on adjuvant ET sensitivity [81]. Similar findings were reported in the 
GEICAM_REGISTEM study, which assessed 800 HR+/HER2- primary tumors that relapsed following 
adjuvant ET. This study further confirmed significant differences in mPFS (months; P < 0.0001), which were 
also reflected in mOS (years; P = 0.02) across the same subgroups[82]. Key results from both studies, 
including mPFS and mOS values for patients with 1ET-R, 2ET-R, ET-sensitive relapses, and de novo/naïve 
ABC, are summarized in Table 2.

In alignment with these findings, the PARSIFAL LONG study reported consistent data underscoring the 
significance of ET-sensitive disease or de novo ABC as a prognostic biomarker associated with OS. Thus, 
patients who progressed after 12 months of first-line palbociclib therapy achieved a notable mOS of over 80 
months, while those who progressed within 12 months had a shorter mOS (24 months)[83]. Furthermore, the 
GEICAM_REGISTEM study found that approximately 30% of patients with ET-sensitive relapse to 
adjuvant ET progressed during the first 12 months of first-line CDK4/6i + ET. The mOS was 1.2 years for 
those progressing within the first 6 months, 3.6 years for those progressing between 6-12 months, and 5.2 
years for those progressing after 12 months (P < 0.001)[82].

These findings highlight that defining ET sensitivity - whether based on the time to relapse following 
adjuvant ET or the response to first-line therapy for ABC - can stratify HR+/HER2- patients into distinct 
prognostic groups with varying sensitivity to CDK4/6 inhibitors. These definitions should be considered in 
clinical decision-making and clinical trial design to ensure homogeneous patient populations.

ACTIONABLE GENOMIC BIOMARKERS
PIK3CA
The PIK3CA gene encodes the catalytic subunit of phosphatidylinositol 3-kinase (PI3K). Mutations in this 
gene occur in 30%-40% of HR+/HER2- BC[84], leading to hyperactivation of the canonical PI3K/AKT/mTOR 
pathway, which drives cell metabolism and proliferation. The prevalence of PIK3CA mutations may differ 
between primary tumors and metastases and can also be altered by treatment. While mutations were 
traditionally associated with better outcomes in early BC[85], their prognostic value is poor in advanced 
stages[34]. Notably, PIK3CA mutations do not predict response to CDK4/6i[5,86,87]. In the PALOMA-3 study, 
circulating tumor DNA (ctDNA) sequencing identified the emergence of PIK3CA driver mutations during 
treatment. A relative change in PIK3CA ctDNA levels after 15 days of treatment strongly predicted PFS with 
palbociclib and fulvestrant[28,29]. Activation of the PI3K pathway is linked to resistance to ET in metastatic 
luminal BC. This finding led to the development of inhibitors targeting PI3K/AKT/mTOR pathway and 
their incorporation into clinical practice[31,36,88].
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Table 2. mPFS and OS for HR+/HER2- ABC patients stratified by ET subgroups

Subgroup mPFS (months) mOS (months/years)

1ET-R 6.6-8.4 20.4/3.7 

2ET-R 14.6-19.3 38.2/3.9 

ET-sensitive relapse 26.3-27.9 55.6/4.85

De novo/naïve ABC 27.3 44.7 

PFS: Progression-free survival; OS: overall survival; HR: hormone receptor; HER2: human epidermal growth factor receptor; ABC: advanced breast 
cancer; ET: endocrine therapy; 1ET-R: primary ET resistance; 2ET-R: secondary ET resistance; mOS: median overall survival; mPFS: median 
progression-free survival.

Thus, the phase III SOLAR-1 trial comparing alpelisib plus fulvestrant to fulvestrant alone in HR+/HER2- 
ABC patients demonstrated a prolonged mPFS in those with PIK3CA mutations, without significant impact 
on OS[31,33]. Additionally, the phase II BYLieve trial highlighted the benefit of alpelisib plus fulvestrant after 
prior CDK4/6i (reporting a mPFS of 8 months)[89]. These findings, along with real-world data[90,91], support 
the use of alpelisib in routine clinical practice after first-line CDK4/6i.

In the phase II FAKTION trial[92] and the confirmatory phase III CAPITELLO-291 study[93], capivasertib 
combined with fulvestrant significantly increased mPFS compared to placebo plus fulvestrant, following 
first-line CDK4/6i therapy in patients with alterations in the PI3K/AKT/PTEN pathway[93-95].

Combinations of CDK4/6i with PI3K inhibitors (PI3Ki) and ET have been studied, though initial results 
indicated toxicity or limited efficacy[96]. To address these challenges, more selective PI3Ki are being 
investigated to minimize toxicity and enhance combination therapy approaches[97,98]. The phase III 
INAVO120 trial demonstrated improved PFS with the combination of inavolisib, palbociclib, and 
fulvestrant compared to fulvestrant plus palbociclib [15.0 months vs. 7.3 months, respectively; HR (hazard 
ratio): 0.43; 95%CI (confidence interval): 0.32-0.59] in patients with either primary or 2ET-R and mutated 
PIK3CA[37,38]. Based on these results, inavolisib was recently approved by the US Food and Drug 
Administration (FDA) for the first-line treatment of PIK3CA-mutated, HR+/HER2-, locally advanced or 
metastatic breast cancer. This approval marks a pivotal advancement in expanding therapeutic options for 
this subgroup of patients.

These findings highlight the importance of molecular testing to identify patients with HR+/HER2- ABC 
who may benefit from PI3K pathway inhibitors[99]. PIK3CA mutations, detectable through tumor tissue or 
ctDNA testing, are central to this approach. The concordance between tissue and blood genotyping is 
extremely high for tumors with a high DNA fraction, which generally makes ctDNA testing the preferred 
method. However, in cases of low ctDNA fraction or a negative result, tissue testing should be performed. 
Recent studies show that comprehensive genomic profiling detects a broader range of PIK3CA mutations 
beyond the standard SOLAR-1 trial set (which targets 11 mutations identified by the therascreen® kit), with 
approximately 20% of patients exhibiting non-SOLAR1 mutations. These patients may still benefit from 
alpelisib treatment, underscoring the importance of comprehensive genomic profiling for enhancing 
treatment personalization and improving patient outcomes[100].

ESR1
The ESR1 gene encodes estrogen receptor (ER) alpha, a ligand-dependent transcription factor. Under 
therapeutic pressure, particularly from aromatase inhibitors (AI) in the metastatic setting, ESR1 mutations 
markedly increase as a mechanism of resistance and are detected in up to 48% of pretreated patients[101]. The 
incidence of acquired ESR1 mutations can reach up to 50% after one year of first-line treatment with CDK4/
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6i plus AI. However, when CDK4/6i in combination with fulvestrant is used as the first-line treatment, there 
appears to be no increase in ESR1 mutations post-progression[51]. Activating mutations in the ER ligand-
binding domain have significant clinical implications in HR+/HER2- ABC. These mutations are associated 
with AI resistance, greater sensitivity to fulvestrant in comparison to AI[102], and greater benefit with new 
oral selective estrogen receptor downregulators (SERDs)[43,103].

In the phase III SoFEA and EFECT trials, which explored the efficacy of ET monotherapy in the advanced 
setting, the detection of ESR1 mutations in baseline ctDNA was associated with inferior PFS and OS in 
patients treated with exemestane vs. fulvestrant[41]. This suggested ESR1 mutations as a potential biomarker 
for fulvestrant selection. A similar pattern was observed in patients receiving combined CDK4/6i with either 
AI or fulvestrant[40,42].  An exploratory analysis of the PADA-1 trial demonstrated that patients with ESR1 
mutations had a significantly shorter PFS than those without mutations, suggesting that baseline ESR1 
mutation could accelerate the onset of resistance to AI-palbociclib[40]. Furthermore, a recent study revealed 
that patients with ESR1 mutation receiving first-line AI plus CDK4/6i had less favorable PFS and OS 
compared to those without ESR1 mutation. However, no differences were observed in patients treated with 
fulvestrant plus CDK4/6i[49,52]. Thus, the presence of ESR1 mutations confers resistance to AI plus CDK4/6i 
but not fulvestrant plus CDK4/6i. In fact, the PADA-1 trial demonstrated that switching from an AI to 
fulvestrant upon detecting an ESR1 mutation, even in the absence of radiological progression, resulted in 
significant clinical benefits. This finding highlights the need for adaptive treatment strategies[50]. However, 
ctDNA sequencing at baseline and at the end of treatment in the PALOMA-3 trial revealed that some 
specific mutations, such as ESR1 Y537S, also promoted acquired resistance to fulvestrant[29]. This 
detrimental effect appeared to be relatively overcome by new oral SERDs. In the EMERALD trial, 
elacestrant demonstrated a significant improvement in PFS compared to the standard-of-care, particularly 
in the ESR1 mutated population[43] and in the previously CDK4/6i sensitive population (more than 18 
months)[104]. Similar results have been observed with other next-generation SERDs[44,50], and new adaptive 
trials investigating this strategy are currently underway[48].

A recommendation of ESR1 mutation testing at recurrence or progression on ET in HR +/HER2- ABC has 
been incorporated into the latest American Society of Clinical Oncology (ASCO) guidelines[105]. Thus, the 
analysis of ESR1 mutational status should be performed after progression to at least one ET line; plasma 
ctDNA measurement is the preferred testing method, given that ESR1 mutations are frequently subclonal 
and polyclonal at progression and are better captured through ctDNA assays.

ERBB2 (HER2)
HER2-low expression in BC has been recently identified as a new therapeutic target. Approximately 45%-
55% of HER2- ABC cases are HER2-low, defined by a score of 1+ or 2+ on immunohistochemical (IHC) 
analysis and negative in situ hybridization results[106]. The prevalence of HER2-low expression is 
approximately 34% in primary tumors and 37% in metastases, with an overall HER2 discordance rate of 
40%-50% between primary tumors and matched distant metastases[56,57]. In this context, ET combined with a 
CDK4/6i remains an effective first-line treatment, irrespective of HER2 status (HER2-low/HER2-zero)[107].

HER2-low BC is a biomarker for new antibody-drug conjugates (ADCs) such as trastuzumab deruxtecan 
(T-DXd). The DESTINY-Breast04 and DESTINY-Breast06 clinical trials have demonstrated significant 
benefits. The DESTINY-Breast04 trial showed superior PFS and OS with T-DXd compared to the 
physician’s choice of CT in HER2-low ABC patients, including those who had previously received CDK4/6i 
(70.4% of patients; mPFS of 10 months)[55]. Furthermore, the DESTINY-Breast06 trial has confirmed this 
benefit in patients who had received at least one endocrine-based therapy and had not received prior CT for 
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metastatic breast cancer (MBC). The primary results showed significantly improved PFS with T-DXd 
compared to the physician’s choice of CT in HER2-low patients (13.2 months vs. 8.1 months, respectively; 
HR: 0.62; 95%CI: 0.51, 0.74)[58], including patients with 1ET-R (13.1 months vs. 6.8 months; HR: 0.56, 
95%CI: 0.40, 0.78)[59]. More recent studies have further explored the implications of HER2-low status in 
ABC. The DEBBRAH trial highlighted the intracranial activity of T-DXd in HER2-low ABC patients with 
active brain metastases, demonstrating promising response rates in heavily pretreated individuals[108]. In 
addition, recent findings suggest that resistance to T-DXd in HER2-low BC may involve circular RNA 
(crVDAC3). Targeting this pathway has shown potential in restoring T-DXd sensitivity, offering a new 
strategy to enhance treatment outcomes in HER2-low ABC patients[109].

ERBB2 mutations are rare but more prevalent in invasive lobular carcinoma. Mutations comprise hot-spot 
activating missense mutations (e.g. S310F/Y, L755S and V777L) and in-frame insertions exon 20 (Ex: 
Y772_A775dup) which occurs in 2%-4% of BC patients[110,111]. In luminal ABC, HER2 activating mutations 
are likely acquired under the selective pressure of ER-targeted treatments (including ET alone or combined 
with CDK4/6i), as previously described[112]. In the phase II SUMMIT basket trial, neratinib-based therapy, 
specifically the combination of neratinib + fulvestrant + trastuzumab (N + F + T), provided HR+ HER2/3-
mutant MBC patients with an objective response rate (ORR) of 39% and a mPFS of 8.3 months, all of whom 
had progressed after prior CDK4/6i. The ORR in ductal and lobular MBC with ≥ 1 HER2 mutation or 
concomitant HER3 mutation was 39% and 41%, respectively[53].

BRCA1 and BRCA2
Somatic (s) and germline (g) alterations of tumor suppressors BRCA1 and BRCA2 are linked to homologous 
recombination deficiency (HRD) with implications for cancer inheritance[113]. Pathogenic variants (PV) of 
gBRCA1, BRCA2, and other HRD-associated genes have prognostic significance in BC and correlate 
independently with poor outcomes in CDK4/6i-treated patients[114,115]. Real-world evidence[116] suggested that 
HR+ ABC patients with BRCA1 and BRCA2 PV had a worse prognosis with palbociclib , as demonstrated in 
the exploratory analyses of the randomized phase II Young Pearl study for BRCA2[117].

Poly ADP-ribose polymerase inhibitors (PARPi) such as olaparib or talazoparib demonstrated superiority to 
CT in HER2- ABC with gBRCA1/2 mutations in terms of PFS but not OS[60-63,118]. The phase III OlympiAD 
trial showed that olaparib significantly improved PFS compared to CT (7.0 months vs. 4.2 months; HR: 0.58; 
P < 0.001) in patients with HER2- ABC and gBRCA1/2 mutations[61]. Similarly, the phase III trial EMBRACA 
demonstrated a benefit of talazoparib in this population with a mPFS of 8.6 months compared to 5.6 
months with CT (HR: 0.54; P < 0.001)[60]. These findings underscore the importance of identifying BRCA1/2 
mutations to guide treatment strategies. Although both trials included HR+ and triple-negative BC patients, 
subgroup analyses suggested similar benefits for PARPi in HR+/HER2- ABC. Additionally, the TBCRC 048 
phase II study reported promising ORR and PFS with olaparib in HER2- ABC with gPALB2 and sBRCA1/2 
mutations[64].

There is a lack of evidence regarding PARPi efficacy after CDK4/6i, but the poor prognostic impact of 
BRCA1 and BRCA2 alterations (and other mutated HRD-genes) in CDK4/6i responses has prompted the 
search for alternatives to circumvent resistance. Current Clinical Practice Guidelines (CPG) recommend 
PARPi treatment for gBRCA1/2 and as an option for sBRCA1/2 and gPALB2 mutations[15,119] and, 
consequently, testing for HRD-gene alterations to guide treatment decisions[79]. Analysis of gBRCA1 or 
BRCA2 status can be conducted through next-generation sequencing (NGS) on blood, saliva, or tumor 
tissue[120].
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NON-ACTIONABLE BIOMARKERS
Retinoblastoma
Retinoblastoma (RB) is a tumor suppressor protein encoded by the RB1 gene and plays a crucial role in cell 
cycle regulation[121]. In tumors reliant on the cyclin D1-CDK4/6-RB axis for growth, treatment with CDK4/6i 
reduces RB phosphorylation and induces cell cycle arrest. The loss of RB function represents a specific 
vulnerability for therapeutic intervention as it has been clearly associated with ET and CDK4/6i resistance 
in in vitro analyses[122]. Emerging evidence suggests that this phenomenon could extend to the clinical 
context as well[29,65,67,68], although current CPG do not restrict the use of CDK4/6i solely based on pathogenic 
RB1 mutations. RB1 alterations are rare in CDK4/6i-naïve BC patients (0%-3%) but have been detected in 
up to 11.5% upon progression to CDK4/6i treatment, and are commonly associated with subclonal 
variants[65,123].

Several genetic anomalies linked to RB loss of function include complete or partial loss of alleles, gene 
deletions, promoter methylation, and minor inter- or intragenic mutations, whose detection is challenging 
and hampered by technical limitations in the clinical setting. The assessment of copy number losses, 
particularly through liquid biopsy assays, lacks sufficient sensitivity to be routinely adopted[124]. 
Furthermore, identifying these alterations through metastatic tissue analysis can be complicated due to their 
polyclonality and intertumor heterogeneity. On the other hand, the detection of RB loss through IHC or 
mRNA expression analyses in BC samples from clinical trials has failed to predict response to 
CDK4/6i[23,125]. Notwithstanding, gene-expression signatures focusing on inactivation of the RB pathway 
have been shown to be prognostic in BC as well as potentially predictive of response to CDK4/6i[126].

Cyclin D
The cell cycle regulator cyclin D1, encoded by the CCND1 oncogene, serves as a common downstream 
effector of different proliferation signals, converging at the nuclear level through the allosteric activation of 
CDK4/6 and, subsequently, RB. Cancers with cyclin D activation have shown particular sensitivity to 
CDK4/6i[127]. Clinical trials revealed that tumors with CCND1 amplification did derive significant benefits 
from palbociclib relative to those without amplification[128]. CDK6 gene amplification results in marked 
CDK6 overexpression in abemaciclib-resistant HR+ and palbociclib-treated ER+ BC, as shown in in vitro 
analyses[129,130].  However, increased CDK6 mRNA expression has not been associated with resistance to 
CDK4/6i in clinical samples[23,24].

CDK2-Cyclin E signaling
CCNE1 encodes cyclin E, which, upon binding to CDK2, regulates S phase entry[131]. Cyclin E1 amplification 
and overexpression are associated with poor prognosis in BC[132], while CCNE1 amplifications[71,133], cyclin E1 
upregulation[73], and an elevated CCNE1/RB1 ratio[74] correlate with CDK4/6i resistance. Various preclinical 
studies[74,96,134] and subgroup analyses from the PALOMA-3 and PEARL clinical trials[22,24] found that high 
CCNE1 mRNA levels predicted palbociclib resistance, although nuclear cyclin E1 analysis does not 
specifically predict CDK4/6i resistance[135]. Cytoplasmic cyclin E protein, indicative of low-molecular-weight 
cyclin E isoforms, is a biomarker of aggressive BC, potential resistance to AIs and CDK4/6i[75,76], and 
increased sensitivity to capecitabine[136].

Studies of cell lines and gene dependencies have shown that BC cells that are RB1-proficient but not 
dependent on CDK4/6, rely heavily on CDK2 and cyclin E1 for survival and proliferation. Therefore, CDK2 
inhibition represents a promising therapeutic alternative for cancers with CDK2/cyclin E-dependency[137,138].
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TP53
TP53 encodes the P53 protein, a critical tumor suppressor that responds to cellular stress by regulating 
various cellular processes, leading to cell cycle arrest, apoptosis, DNA repair, and metabolic changes. TP53 
mutations are strongly associated with primary endocrine resistance in early HR+ BC[139] and advanced 
disease, where they are linked to poor prognosis, irrespective of ET or CT[77]. However, there is currently no 
validated predictive value for treatment selection based on TP53 mutations. In the MONALEESA-7 trial, 
ribociclib demonstrated similar efficacy irrespective of TP53 status, although TP53-altered tumors had 
shorter PFS[32]. Similarly, the PALOMA-3 trial revealed that palbociclib plus fulvestrant was associated with 
more favorable PFS and OS outcomes compared to placebo plus fulvestrant, regardless of mutations in 
ESR1, PIK3CA, or TP53, although a better prognosis was observed in patients without mutations. High 
circulating tumor fraction was associated with worse PFS[4,78]. While TP53 mutations are not actionable 
targets in standard practice, they should be included in NGS panels for prognostic purposes, especially in 
clinical research centers conducting ongoing clinical trials with available targeted treatments.

RESISTANCE: WHICH ARE THE BEST BIOMARKERS AND WHICH ARE THE OPTIONS
Combined ET and CDK4/6i should be a first-line treatment for most HR+/HER2- ABC patients 
[therapeutic algorithms are shown in Figures 1 and 2], given the clinically meaningful benefits in PFS and 
OS, manageable toxicity, and maintenance or improvement in QoL observed in several phase III 
trials[2,6,140-142], and in line with current CPG recommendations[15,143]. Re-biopsy of metastases at recurrence, if 
feasible, is recommended in CPG[15,143] due to intrinsic subtype changes and inconsistent HER2 expression. 
NGS performed on tumor tissue or liquid biopsy in metastatic disease is essential for comprehensive 
molecular profiling, including ESR1 and PIK3CA gene assessments, among others. NGS is typically utilized 
in the second-line setting following progression on ET and CDK4/6i. However, findings from the recent 
INAVO-120 trial (NCT04191499) and the identification of early-relapsing patients post-adjuvant CDK4/6i 
therapy, coupled with the increased frequency of ESR1 mutations reported in the AURORA trial[81], might 
support considering earlier NGS implementation, at least in the first-line setting for endocrine-resistant 
disease. Therapeutic decisions are complex upon disease progression following first-line ET + CDK4/6i. 
There is still a limited understanding of predominant resistance mechanisms and the availability of clinically 
validated biomarkers.

Below we outline potential therapeutic options and highlight useful biomarkers to consider in the post-
CDK4/6i setting. In addition, a summary of umbrella clinical trials exploring second-line treatments in this 
setting is provided in Supplementary Table 1.

(1) Switching ET and discontinuing CDK4/6i. The use of novel oral SERD in this setting is supported by the 
results of the EMERALD trial, which demonstrated improvements in PFS and QoL with elacestrant vs. 
standard of care (SOC). In patients with mutated ESR1, the duration of prior CDK4/6i was a potential 
predictor of efficacy, as a longer duration of prior CDK4/6i therapy was positively associated with 
prolonged PFS with elacestrant vs. SOC[43]. The trials SERENA-2 with camizestrant[44], acelERA with 
giredestrant[45], and AMEERA-3 with amcenestrant[35] have also supported this approach.

Monotherapy with a selective proteolysis-targeting chimera protein degrader (ARV-471) in the phase II 
dose-expansion VERITAC study showed an enhanced clinical benefit rate (CBR) in HR+/HER2- advanced/
MBC, particularly in patients with ESR1 mutation[46]. The phase III VERITAC 2 study (ClinicalTrials.gov 
NCT05654623) is evaluating ARV-471 vs. fulvestrant at progression after CDK4/6i.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cdr70169-SupplementaryMaterials.pdf
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Figure 1. Management of endocrine-sensitive or de novo luminal ABC patients. For luminal ABC, endocrine-sensitive with or without 
targeted therapy remains the mainstay of treatment. Prior lines of therapy should be exhausted before initiating CT. Preferred 
therapeutic options are represented for women harboring specific gene mutations or without identified mutations. AI: Aromatase 
inhibitor; BRCA: breast cancer gene; CDK4/6i: cyclin-dependent kinase 4/6 inhibitors; CT: chemotherapy; ERS1: estrogen receptor 1; ET: 
endocrine therapy; ERBB2: v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2; mut: mutated; PD: progressive disease; 
PFS: progression-free survival; SG: Sacituzumab govitecan; T-DXd: trastuzumab deruxtecan; wt: wild type; ABC: advanced breast cancer.

(2) Switching ET upon progression and continuing CDK4/6 inhibition has been particularly explored with 
palbociclib. The PADA-1 trial also suggested the benefit of early switching to a SERD at molecular 
progression upon detection of a rising ESR1 mutation in ctDNA[50] while awaiting further validation. The 
phase III SERENA-6 (NCT04964934) trial is evaluating the efficacy and safety of switching from AI to 
camizestrant while maintaining the same CDK4/6i[48]. The phase II PACE[123] and phase III PALMIRA 
studies[144] showed no PFS benefit with palbociclib continuation after progression. Conversely, the phase II 
MAINTAIN trial suggested switching CDK4/6i, as patients previously treated with palbociclib experienced 
improved PFS with ribociclib[145]. This could be due to the different CDK4/6i dosing received after 
progression in each of the trials. While patients in the PALMIRA and PACE trials were re-treated at 
progression with the same palbociclib dose, patients in the MAINTAIN trial started ribociclib at the highest 
dose (600 mg) at progression on palbociclib. Observational data support switching to abemaciclib[133,146,147], 
even upon detection of mutated ERS1[148]. This is further validated by the post-MONARCH phase 3 trial, 
which showed a significant PFS improvement with abemaciclib plus fulvestrant compared to placebo plus 
fulvestrant in HR+/HER2- ABC at progression after CDK4/6i + ET (HR: 0.73; 95%CI: 0.57, 0.95 ), with PFS 
rates at 6 months of 50% vs. 37%, respectively. The effect was consistent across major subgroups, including 
patients with baseline ESR1 or PIK3CA mutations[149].

No validated biomarkers are available to guide decisions in this scenario. However, in the MAINTAIN trial, 
ESR1 or PIK3CA mutations were associated with a lack of benefit after switching from first-line-palbociclib 
to ribociclib after progression[145], consistent with the clonal evolution observed in patients with late 
progression in the PALOMA-3 trial[29,150]. The BIOPER study identified RB loss and increased cyclin E as 
markers of resistance[125].
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Figure 2. Management of endocrine-resistant luminal ABC patients. Similar to the endocrine-sensitive scenario, endocrine-resistant with 
or without targeted therapy remains a core treatment approach. Prior lines of therapy should be used before initiating CT. Preferred 
therapeutic options are represented for women harboring specific gene mutations or without identified mutations. All therapies included 
are evidence-based unless otherwise noted. AI: Aromatase inhibitor; BRCA: breast cancer gene; CDK4/6i: cyclin-dependent kinase 4/6 
inhibitors; CT: chemotherapy; ERS1: estrogen receptor 1; ET: endocrine therapy; ERBB2: v-erb-b2 avian erythroblastic leukemia viral 
oncogene homolog 2; mut: mutated; PD: progressive disease; PFS: progression-free survival; SG: Sacituzumab govitecan; T-DXd: 
trastuzumab deruxtecan; wt: wild type; ABC: advanced breast cancer.

(3) Targeting the PI3K/AKT/mTOR pathway post-progression to first-line CDK4/6i. Three groups of drugs 
are currently available:

· mTOR inhibitors: Everolimus plus exemestane showed improved PFS in CDK4/6i naïve patients [151], with 
similar benefits after CDK4/6i according to observational data[152]. 
· PI3K inhibitors: Alpelisib plus fulvestrant vs. fulvestrant demonstrated prolonged PFS in patients with 
PIK3CA, as supported by the SOLAR-1 and BYLieve trials[31]. Data from the BYLieve trial and real-world 
evidence[89-91] confirmed the utility of PI3Ki as a next-line treatment following CDK4/6i or even 
everolimus[153]. 
· AKT inhibitors: The AKT inhibitor capivasertib, approved for use with fulvestrant as a second-line therapy 
option following first-line CDK4/6i, demonstrated increased PFS in patients with AKT, PTEN, and PIK3CA 
alterations, as confirmed by the phase II FAKTION trial[92,94] and the confirmatory phase III CAPITELLO-
291 study[93].

(4) ADC. T-DXd and sacituzumab govitecan (SG) have shown significant survival benefits in HR+/HER2- 
and HER2-low BC patients, respectively, refractory to ET[55,154]. Although restricted to patients with at least 
one prior CT line, ADC therapy is impacting luminal BC outcomes[35,50,55,155], offering innovative treatment 
options. Several ADCs are currently under development, such as datopotamab deruxtecan and patritumab 
deruxtecan[44]. HER2 is the sole validated biomarker for identifying HER2-low tumors for T-DXd 
treatment[55]. Trop-2 expression is not deemed a reliable predictive marker for survival benefit with SG[156].
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Considering all the above, in the context of resistance to first-line combined treatment with ET plus 
CDK4/6i, biomarker determination is highly valuable, with a high level of evidence (ESCAT I)[157]. Current 
CPG recommend the profiling of gBRCA1/2 and PIK3CA mutations[99,143]. Additionally, the identification of 
other ESCAT II alterations, such as ESR1 and AKT1 mutations, may also be considered.

The clinical scenarios should guide both the indication and timing for determining these biomarkers and 
the criteria for making decisions based on their results.

RECOMMENDATIONS: FROM EVIDENCE TO CLINICAL PRACTICE
The following specific recommendations can be considered in the setting of progression to first-line 
treatment:

· Testing for gBRCA1/2 mutations is recommended for ABC patients who are potentially eligible for PARP 
inhibition after ET failure. 
· PIK3CA mutations should be tested in patients progressing ≥ 6 months on first-line treatment for 
consideration of second-line alpelisib. Screening for AKT, PIK3CA, and PTEN mutations is advisable to 
evaluate eligibility for capivasertib. 
· ESR1 mutations should be determined by liquid biopsy in patients on first-line AI-based ET progressing at 
≥ 6 months (preferably ≥ 12 months) to guide treatment with elacestrant or other SERD. 
· Although no clear biomarkers are available to identify candidates for switching CDK4/6i, the absence of 
both PIK3CA and ESR1 mutations might support this strategy, especially with slow disease progression at 
first-line (≥ 12 months). Patients without PIK3CA/ESR1 mutations may also benefit from ET plus 
everolimus. 
· Finally, NGS with extensive gene panels is recommended only in clinical research centers evaluating 
targeted treatments within clinical trials. The likelihood of finding genomic alterations indicating specific or 
agnostic molecular targets in luminal ABC is low, and the clinical utility of ET resistance markers such as 
TP53 mutations is yet to be demonstrated[136,139]. Furthermore, performance in the identification of PV in g 
DNA was poorer[158]. However, the recent incorporation of ESR1 and PIK3CA mutations as validated 
markers fulfills other guidelines, suggesting that in instances where multiple biomarker-targeted therapies 
are approved for the patient’s condition, multigene panel-based assays should be employed[159]. Thus, 
current guidelines in this setting may evolve in the future.

UPCOMING BIOMARKERS AND FUTURE THERAPEUTIC DIRECTIONS
Despite the significant advancements achieved with CDK4/6i in HR+/HER2- ABC, several limitations 
persist. These include primary and acquired resistance, which ultimately limit their long-term efficacy in a 
substantial proportion of patients. Mechanisms of resistance, such as cyclin E overexpression, RB1 
mutations, and bypass signaling pathways, highlight the complexity of tumor biology and the need for 
alternative therapeutic strategies. The toxicity associated with combination therapies, often required to 
address multiple mechanisms of resistance, presents an additional barrier, limiting their tolerability and 
feasibility. These challenges underscore the urgent need to identify novel biomarkers and develop next-
generation targeted therapies to overcome resistance and improve outcomes.

CDK7
Cyclin-dependent kinase 7 (CDK7) regulates transcription and the cell cycle and, once phosphorylated, 
activates estrogen and androgen receptors[160]. CDK7 overexpression in BC leads to CDK4/6i resistance and 
poor prognosis[161,162]. Preclinical studies have demonstrated the sensitivity of many cancers to novel selective 
CDK7i[163]. Recently, samuraciclib, an oral CDK-7i, has demonstrated clinical activity in a phase I clinical 
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trial, particularly in luminal BC patients with no TP53 mutations, with a CBR of 47.4%[164].

HRD and PALB2 mutations
Loss-of-function mutations in genes involved in homologous recombination repair (HRR) can sensitize 
tumors to double-strand break (DSB)-triggering agents such as PARPi and platinum-based chemotherapy 
(PT-CT), exploiting synthetic lethality through HRD [165]. Besides BRCA1 and BRCA2, PALB2 or RAD51D 
alterations in s or g cells are associated with HRD. In addition, HRD assessment through the genomic HRD 
score (e.g. Myriad myChoice) or functional tests like RAD51 foci has proven to be more effective in 
predicting response to PARPi or PT-CT in HER2- BC[166,167].

The next generation of CDKi: beyond CDK4/6i
CDK4 expression in BC samples is higher than CDK6, suggesting a pivotal role for CDK4 in BC cell 
proliferation, as these cells depend more on CDK4 than CDK6 for growth[74,168]. The CDK4 to CDK6 
inhibition ratio could influence drug sensitivity and resistance. Preclinical studies indicate that palbociclib 
binds similarly to CDK4/cyclin D3 and CDK6/cyclin D complexes, while ribociclib and abemaciclib show a 
higher affinity for CDK4/cyclin D3[74]. The relatively lower inhibition of CDK6 by abemaciclib, compared to 
palbociclib or ribociclib, may explain its lower incidence of myelosuppression, enabling continuous 
administration.

PF-07220060, a potent, selective CDK4 inhibitor in early development, is likely less myelotoxic than 
currently approved CDK4/6i, and has shown promising activity in combination with ET after progression 
on previous CDK4/6i[169].

Future therapeutic strategies are focusing on the development of specific CDK2 inhibitors (CDK2i). Cyclin 
E is a predictor of poorer OS and response to CDK2i and is associated with CDK4/6i resistance. PF-
07104091, a novel selective CDK2i, has demonstrated good tolerance and antitumor activity in heavily 
pretreated HR+/HER2- ABC patients who have progressed on previous CDK4/6i[170]. Preclinical studies 
suggest that co-inhibition of CDK2 and CDK4/6 may be necessary to overcome intrinsic cell-cycle 
plasticity[171,172]. An ongoing phase I/IIB trial is currently evaluating the combination of CDK2 and CDK4 
inhibition in advanced solid tumors, including BC (NCT05262400).

KAT6
KAT6 is a histone lysine acetyltransferase that regulates lineage-specific gene transcription through H3K23 
acetylation. A recent phase I study evaluating PF-07248144, a novel selective catalytic inhibitor of KAT6A 
and KAT6B, showed a tolerable safety profile and durable efficacy in heavily pretreated HR+/HER2- MBC 
patients, both with and without ESR1 or PIK3CA/AKT1/PTEN mutations[173].

In summary, the upcoming biomarkers and next-generation therapeutic strategies discussed above offer 
promising solutions to the limitations of current CDK4/6i. CDK7i, such as samuraciclib, target 
transcriptional dependencies and bypass mechanisms, thereby addressing resistance linked to 
transcriptional plasticity. Biomarkers like HRD scores and PALB2 mutations enhance patient stratification 
for PARPi or platinum-based therapies, optimizing treatment selection. Meanwhile, selective CDK4i and 
CDK2i aim to refine the specificity of cell-cycle targeting, reducing toxicity and overcoming resistance 
mechanisms such as cyclin E overexpression. Collectively, these advancements not only expand therapeutic 
options but also hold the potential to significantly improve patient outcomes by addressing both efficacy 
and tolerability challenges.
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Advances in artificial intelligence, particularly deep learning (DL), have shown significant potential in BC 
diagnosis, prognosis, and treatment response prediction[174]. DL has also emerged as a transformative tool 
for identifying cancer biomarkers by integrating multi-omics data and imaging features, enabling patient 
stratification and therapy response prediction [175,176]. For instance, a machine learning model using clinic-
pathological features was developed to identify HR+/HER2- ABC patients likely to respond poorly to first-
line CDK4/6i, showcasing its utility for guiding personalized clinical interventions[177]. Furthermore, such 
approaches hold promise for guiding second-line treatment decisions in HR+/HER2- ABC after the failure 
of ET and CDK4/6 inhibitors by identifying biomarkers predictive of therapeutic response.

CONCLUSIONS
In summary, the approval of CDK4/6i represented a significant advancement in the treatment paradigm for 
ER+/HER2- ABC, supported by robust evidence from phase III trials demonstrating improved PFS and OS 
outcomes when combined with ET. Key trials have reported mPFS values ranging from 14.8 to 26.7 months 
and median OS extending up to 53.7 months. Despite their efficacy, challenges such as variable drug 
response and the development of resistance mechanisms persist, highlighting the need for further research 
into personalized treatment strategies. Integrating identified biomarkers into clinical practice is crucial for 
tailoring therapeutic approaches and optimizing patient outcomes. For instance, therapies like alpelisib have 
demonstrated a mPFS improvement of up to 11 months in patients with PIK3CA mutations. Moreover, the 
ongoing exploration of alternative therapeutic options for refractory patients underscores the continuous 
efforts to enhance treatment efficacy. With emerging biomarkers alongside advancements in next-
generation CDKi and targeted therapies, there is tangible optimism for the future of ER+/HER2- BC 
management. Moreover, the use of NGS panel tests utilizing tissue and/or blood has the potential to provide 
clues for overcoming drug resistance and improve tailored treatment.
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