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Abstract
Accurate parameter identification of underwater vehicles is of great significance for their controller design and fault 
diagnosis. Some studies adopt numerical simulation methods to obtain the model parameters of underwater 
vehicles, but usually only conduct decoupled single-degree-of-freedom steady-state numerical simulations to 
identify resistance parameters. In this paper, the velocity response is solved by applying a force (or torque) to the 
underwater vehicle based on the overset grid and Dynamic Fluid-Body Interaction model of STAR-CCM+, solving 
for the velocity response of an underwater vehicle in all directions in response to propulsive force (or moment) 
inputs. Based on the data from numerical simulations, a parameter identification method using quantum particle 
swarm optimization is proposed to simultaneously identify inertia and resistance parameters. By comparing the 
forward velocity response curves obtained from pool experiments, the identified vehicle model’s mean square error 
of forward velocity is less than 0.20%, which is superior to the steady-state simulation method and particle swarm 
optimization and genetic algorithm approaches.

Keywords: Underwater vehicle, parameter identification, numerical simulation, quantum particle swarm 
optimization, dynamic fluid-body interaction
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1. INTRODUCTION
After prolonged operation, marine structures such as ships and offshore platforms may develop rust and 
corrosion on their surfaces due to biofouling and seawater corrosion[1]. Underwater vehicles have broad 
prospects for applications in the inspection, detection, cleaning, and maintenance of underwater structures 
such as ship hulls[2]. These tasks often require underwater vehicles to have stable, high-precision intelligent 
controllers to ensure stable imaging and detection operations. However, to design intelligent controllers and 
improve the control accuracy of underwater vehicles, it is often necessary to conduct parameter 
identification of underwater vehicle models to provide accurate reference models for the controllers[3]. 
Underwater vehicle model identification methods can be divided into two categories: non-parametric and 
parametric identification, including empirical formula method, constrained model test method, measured 
data identification method, numerical simulation method [e.g., computational fluid dynamics (CFD)], and 
so on. When using the empirical formula method to calculate the parameters of underwater vehicles, the 
empirical formulas of submarines and torpedoes are often borrowed for approximation calculation. 
Nevertheless, this is not applicable to open-frame underwater vehicles. The constrained model test method 
is a relatively precise approach for identifying underwater vehicle parameters. However, it suffers from 
drawbacks such as long model production cycles and high costs[4].

The experimental data identification method is to use the underwater vehicle data recorded in the 
experiment. Firstly, the data is pre-processed, and then the system identification of the underwater vehicle is 
completed by the least squares algorithm, neural network algorithm, genetic algorithm (GA), particle swarm 
optimization (PSO) algorithm, and so on[4-6]. Wang et al. utilized experimental data to construct an 
underwater vehicle model using long short-term memory (LSTM) and Q-learning[7], which is a non-
parametric identification method. Due to the existence of parametric uncertainty in underwater vehicles, 
van de Ven et al. added a neural network to predict the unknown parameters on the basis of known 
hydrodynamic parameters, which simplified the training of the neural network and allowed for online and 
parallel learning of the unknown parameters[8], but the neural network online identification model has the 
disadvantage of large computational volume. In addition, many underwater vehicles do not carry velocity 
sensors, such as Doppler velocimeters, to provide the complete data needed for parameter identification, 
and there are also problems such as varying accuracy of sensors and accuracy of data sources.

Chocron et al. conducted underwater vehicle hydrodynamic parameter identification based on genetic 
algorithm and verified the excellent robustness and global optimality-seeking characteristics of GA[9]. 
Cardenas et al. used empirical formulas to obtain the initial hydrodynamic parameters and then proposed 
an online parameter correction method based on dilated Kalman filtering through the recorded underwater 
vehicle motion data[10]. Lin et al. conducted pool experiments using Ultra-wideband (UWB) positioning and 
HWT905 electronic compass, measured the linear and angular velocity response data of the underwater 
vehicle in the horizontal plane, and proposed a parameter identification method integrating the least-
squares method and particle swarm optimization algorithm[11]. This method could only obtain the dynamics 
parameters of the underwater vehicle in the horizontal plane, but high accuracy is obtained. Prawin et al. 
proposed a quantum PSO method for nonlinear system parameter identification[12,13], but its potential 
application to underwater vehicles remains an open research direction.

The use of numerical simulation methods to handle viscous flow problems for underwater vehicle 
parameter identification offers advantages such as low cost and ease of implementation. The accuracy of 
numerical simulation methods is greatly related to the computational effort. With the improvement of 
computer performance and the development of industrial software, the speed and accuracy of the dynamic 
mesh technology and dynamic process numerical solutions have been effectively enhanced. Consequently, 
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an increasing number of researchers are employing numerical simulation methods to conduct 
hydrodynamic parameter identification for underwater vehicles. Based on STAR-CCM+, Zhou et al. 
proposed a numerical simulation method to address the identification of drag coefficients, including 
rotation, and obtained a high-precision model for controller design[14]. Hong et al. validated the 
hydrodynamic characteristics of a micro underwater vehicle by CFD[15]. Bentes et al. used CFD methods to 
carry out parameter identification of an underwater vehicle, but the acceleration parameters were obtained 
using an empirical method based on analytic methods[16]. Similarly, Wang et al. used slice theory to solve for 
the added mass and employed the CFD method to obtain resistance models for accessories such as the 
horizontal and vertical rudders of underwater vehicles, thereby achieving a more accurate model of the 
underwater vehicle[17]. However, the empirical formulation of slice theory is not applicable to open-frame 
underwater vehicles. Bao et al. identified the hydrodynamic parameters of the underwater vehicle based on 
the CFD and the least square method[18]. Di conducted resistance parameter identification for underwater 
vehicles using the steady-state calculation method based on STAR-CCM+[19].

Most of the CFD methods used in the above studies are limited to the parameter identification of viscous 
drag and most of them only perform single-degree-of-freedom steady-state numerical simulations after 
decoupling. STAR-CCM+ integrates geometry processing, meshing, physical solving, post-processing, etc., 
which allows for convenient fluid computations and is widely used among researchers. Therefore, this paper 
proposes a study on the identification of full parameters of inertia and resistance for underwater vehicles 
using the overlapping grid and dynamic fluid-body interaction (DFBI) model based on the STAR-CCM+. 
On the four controllable degrees of freedom of the studied underwater vehicle, external forces are applied to 
the underwater vehicle to conduct transient simulations and obtain the velocity response curves for each 
degree of freedom. Based on the computed data, a parameter identification method using quantum particle 
swarm optimization (QPSO) is proposed. Experimental validation confirms that the proposed method is 
highly accurate and meets the requirements for controller design. The innovation and contribution can be 
summarized as follows. Unlike previous studies that mainly used CFD methods to obtain viscous 
hydrodynamic parameters, this article proposes using the DFBI model to calculate the velocity response of 
underwater vehicles under different forces and torques, and using QPSO to obtain the full hydrodynamic 
parameters (inertia and viscous parameters) of underwater vehicles, making it more convenient to use CFD 
to model underwater vehicles. The proposed method has higher accuracy compared to least squares, PSO, 
and GA algorithms, with a mean square error of 0.2%, which is smaller than other methods.

2. DYNAMIC MODELLING OF UNDERWATER VEHICLES
The dynamic modeling of an underwater vehicle is the foundation for the parameter identification. The 
underwater vehicle moves under the action of the thrust from the propellers, the resistance of the fluid, the 
added mass force, etc. According to Newton’s laws, the six-degree-of-freedom dynamic model of the 
underwater vehicle can be established as[20].

Where v = [v1 v2] is the velocity of the underwater vehicle; τ = [X Y Z K M N] represents the combined force 
and torque from the propellers; MRB indicates the rigid body mass and inertia matrix; MA denotes the added 
mass and inertia matrix; CRB(v) points to the rigid Coriolis and centripetal force matrix, CA(v) stands for the 
Coriolis and centripetal force matrix generated by the added mass; D(v) corresponds to the fluid resistance 
coefficient matrix, g(η) means the combined force of gravity and buoyancy.
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Generally, after weight balancing, an underwater vehicle has only a small positive buoyancy, and its gravity 
and buoyancy forces essentially cancel each other out, set g(η) = 0. The designed underwater vehicle is 
controllable only in four degrees of freedom: x, y, z-direction translation and z-direction rotation. x- and y-
direction rotations (transverse and longitudinal rolls and tilts) are kept in equilibrium by weight balancing 
and are not controlled by driving force; therefore, in this paper, we simplify the 6-degree-of-freedom model 
into 4-degree-of-freedom dynamics model as in Equations (2)-(7).

Assuming that the center of gravity of the underwater vehicle is at the origin, with coordinates (0, 0, 0), 
then:

CRB(v) and CA(v) can be subsequently determined after the rigid mass and additional mass are determined. 
Therefore, the parameter identification for the underwater vehicle in this paper involves determining the 
rigid body mass matrix, added mass matrix, and drag coefficient matrix so that the thrust-velocity response 
of the established numerical model of the underwater vehicle matches the actual measured thrust-velocity 
response as closely as possible. The solution to Equation (2) can be set as Equation (8), and the objective 
function for model parameter identification is Equation (9), to minimize the 2-paradigm number of the 
difference between the measured speed and the model output speed.

Where v is measured velocity, and V is the calculated output of the model. In the calculation process, the 
thruster is considered as a non-rotating floating body, so the same approach to approximate simplification 
of the model as in the literature[21] is adopted for the additional mass parameters of the vehicle.

3. IDENTIFICATION OF MODE
This paper employs a CFD method to carry out the model parameter identification for underwater vehicles. 
The specific identification method and processes are described as follows.
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3.1 Rigid mass and moment
The underwater vehicle in question is a type of remotely operated vehicle (ROV). The mechanical 
components were modeled and designed using SOLIDWORKS. As shown in Figure 1, the ROV includes 
three horizontal thrusters and one vertical thruster, and is equipped with perception and navigation sensors 
such as light-emitting diode (LED) lights, a camera, a P30 ranging sonar, a depth gauge, and an electronic 
compass. The overall frame is made of 7075 aluminum alloy. In the software, the weight of each component 
is set based on the weight obtained through weighing or the corresponding material properties. This allows 
for the assessment of the ROV’s weight, center of gravity, and moment of inertia. The center of gravity is 
marked in Figure 1 as coinciding with the centerline of the horizontal side thrusters. The parameters for 
weight and moment of inertia are as follows.

3.2 Computational fluid dynamics control equations
The STAR-CCM+ software is used to calculate the added mass and drag coefficients for the ROV. The 
control equations for the numerical simulation are as follows.

3.2.1 Continuity equation
The continuity equation is given as (11), where the water flow is considered an incompressible fluid, thus 
simplifying the continuity equation to (12).

3.2.2 Navier-Stokes equation
Equation (13) is the time-averaged Navier-Stokes equation (NS equation), where ui and uj represent the 
components of the time-averaged velocity; u’i and u’j are the fluctuations in velocity; p denotes the time-
averaged pressure; fi is the body force per unit mass.

3.2.3 DFBI
In this paper, the DFBI approach is used to simulate the motion of a ROV in response to external forces and 
hydrodynamic forces generated by water flow. STAR-CCM+ calculates the resultant force and torque acting 
on the rigid body and solves the motion control equations to obtain the velocity state of the ROV.

3.3 Numerical simulation process
This paper employs numerical simulation to calculate the velocity (angular velocity) response of a ROV 
navigating underwater under the influence of driving forces (torques), aiming to obtain the parameters of 
the ROV by the optimization algorithm. STAR-CCM+ uses the SIMPLE algorithm to solve the Reynolds-
Averaged Navier-Stokes (RANS) equations, and employs dynamic mesh technology and the DFBI approach 
to solve for the ROV’s motion, achieving numerical simulation of the vehicle’s four degrees of freedom 
movement in still water. The overall solution process is presented in Figure 2. The following subsections will 
illustrate the computational domain, boundary conditions, mesh and physical continuum, and solver 
settings, taking the example of the ROV moving under the action of a forward force.
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Figure 1. 3D model of ROV created by SOLIDWORKS. ROV: Remotely operated vehicle.

Figure 2. Numerical simulation process.

3.3.1 Calculation of catchment and boundary conditions
The geometric model of the ROV was imported into the STAR-CCM+, and a flow field of 10 m × 5 m × 5 m 
was set up with the ROV placed in the middle. In the numerical simulation of forward motion, the overset 
mesh area (3.0 m × 1.4 m × 1.4 m) is set [Figure 3]. The boundaries of the flow field are all set as walls, 
where the upper boundary is set as a slip wall and the other boundaries are non-slip walls. The overset mesh 
region is geometrically subtracted from the ROV to obtain the computational domain of the internal 
motion of the ROV, which is also set as a non-slip wall, and the boundary of the internal computational 
domain is set as an overset mesh and the overset mesh intersection is established.

3.3.2 Mesh continuum setup and division
The mesh setting has a significant impact on the computational accuracy, and two sets of mesh sizes were 
set for the main fluid region and the inner domain. The surface remesh, the trimmer mesh, and the 
prismatic layer were set. The base size of the main region is 0.32 m, with 7 m × 3 m × 3 m grid encryption 
zones and 0.02 m grid size for the encryption zones. The fluid domain is reasonable. The boundaries of the 
main flow domain are essentially unaffected by the ROV’s motion, with no flow velocity. The basic mesh 
size for the inner overset domain in motion is set to 0.02 m, with mesh reconstruction enabled on the ROV 
surface at a size of 0.002 m. The prism layer mesh is 20% of the base size, with six layers and a mesh growth 
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Figure 3. Computational domain under forward force.

rate of 1.2. The template growth rates for both sets of meshes are set to very slow. The mesh division results 
are shown in Figure 4, with a total of 12,899,038 meshes generated.

3.3.3 Calculation of catchment and boundary conditions
The overset grid and DFBI method are used to obtain the velocity response of the ROV under the action of 
propulsive force, thereby identifying the inertial and resistance parameters. The physical continuum 
includes implicit non-stationary, liquid, separated flow, constant density, k - ε turbulence, etc.; motion is 
turned on for DFBI rotation and translation, set to four degrees of freedom motion. The initial parameters, 
such as center of gravity, mass, rotational inertia, and so on, are also set. At last, the external force (driving 
force) is turned on to solve the state of motion of the ROV under the action of the external force. The solver 
time step is set to 0.02 s [Δt = (0.05~0.01)L], and the other parameters are kept as default.

3.4 Numerical simulation results
The size and density of the mesh will have an impact on the accuracy of the simulation results and 
computational efficiency; the grid size and density were determined after considering the movement of the 
ROV and computational efficiency. The 90 N external force is selected to carry out the grid-independent 
analysis. We modify the mesh size to generate 5,808,310, 12,899,038, and 26,089,041 grids, respectively. We 
produced a basin larger than the geometric model, with an increase of 1 m in length, width and height, and 
the results of the calculations are shown in Figure 5, which are similar to the results of the large basin 
calculations, verifying the basin-independence. Time-independence was also investigated but was not 
shown in the figure because the resulting curves were too similar. The results of the grid set in this work are 
basically the same as the finer grid (26,089,041 grid), with a maximum speed deviation of less than 0.19 
calculation accuracy requirements. Therefore, in order to speed up the calculation, the numerical simulation 
calculation for each working condition was carried out by dividing the grid with the parameters described in 
Section 3.3.2.
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Figure 4. Grid partitioning.

Figure 5. Velocity responses of ROV under different grid quantities. ROV: Remotely operated vehicle.

The plots obtained from the calculation of 90 N forward force are shown in Figures 6 and 7, including the 
velocity and pressure plots. In the simulation of forward motion, the forward force is set as 2 N, 5 N, and 
one force is selected at 10 N intervals from 10 to 100 N, for a total of 13 calculation cases. The velocity and 
acceleration responses of the ROV under each force condition are obtained through numerical simulation, 
totaling 15,320 data, which reflect the relationship between velocity, acceleration and force.

Numerical simulations of velocity and acceleration were also carried out under the effect of transverse and 
vertical forces and turning moments. A total of 52,690 data were obtained from the numerical simulation of 
the applied forces on each degree of freedom, and the following parameter identification was carried out 
based on the data obtained from the simulation calculations.
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Figure 6. Velocity map of numerical simulation under 90 N forward force.

Figure 7. Pressure map of numerical simulation under 90 N forward force.

3.5 Parameter identification by QPSO
After determining MRB through SOLIDWORKS, the main purpose of parameter identification is to 
determine the inertia parameter and the primary and secondary drag parameters in MA, D(v) and to 
establish the dynamics model of the robot. In this paper, under the condition of four degrees of freedom 
without decoupling, the inertial parameters Xu, Yv, Zw, Nr, primary resistance parameters Xu, Yv, Zw, Nr, and 
secondary resistance parameter Xu|u|, Yv|v|, Zw|w|, Nr|r| are identified and optimized simultaneously using the 
data from numerical simulations. The fitness function for optimization is as per Equation (14), where K = 
52,690. (14) can be obtained by substituting the velocity and acceleration values into Equation (2) to obtain 
the driving force τid under that set of parameters, and comparing it with the real driving force τ of the 
corresponding velocity and acceleration.

The QPSO algorithm has few control parameters, strong global search capability, simple equations of 
particle motion, and relatively few computations per iteration. Therefore, this algorithm is selected for 
parameter identification in this paper. The QPSO algorithm parameter identification process is as follows:
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(1) Initialization: set the population size M, the dimension N, and randomly generate the initial position of 
each particle pi; 
(2) Calculate the average optimal position of all particles mbest = ∑i=1

M pi/M and fitness value of each particle; 
(3) Update the local optimal fitness value of individual particles, and update the global optimal fitness value: 
g = arg min1≤i≤M(f(pi)) and get the best particle pg; 
(4) Calculate learning tendency points: pd = φ*pi + (1 - φ)*pg, φ ∈ U (0, 1), and update particle position: 
pi = pd ± β * |mbest - pi| * ln(1/u), u ∈ U (0, 1); 
(5) Check the termination condition (usually the maximum number of iterations is reached or the fitness 
value has not been updated for many iterations); if it is satisfied, then end; otherwise, go to (2) for the next 
iteration. This section shows the main findings of our study. It may contain conclusive description, analysis, 
and comparison with other related research results, etc.

4. EXPERIMENTAL VERIFICATION
Parameter identification was carried out using the QPSO algorithm based on the data from the numerical 
simulation, and the identification results are shown in Table 1. PSO, GA, and the least squares method were 
also used to identify the parameters of the numerical simulation data, and the identification results on the 
forward direction of the robot are shown in Table 2.

Experiments in the pool were carried out to obtain the velocity response of the robot under maximum 
forward thrust in order to verify the accuracy of the identification method proposed in this paper. After the 
parameter identification, a dynamics model is established, and the velocity response under the maximum 
forward thrust is solved and compared with the experimental data.

4.1 Experimental setup
The experimental site is an open-air pool [Figure 8]. In this paper, an UWB positioning system is used to 
measure the position of the underwater vehicle, from which the speed is inferred.

As shown in Figure 8, the four base station beacons (A, B, C, and D) of the UWB localization system were 
placed at the four corners of the pool during the experiment, so that the whole pool was included in the 
measurement range of the localization system, and the localization module (E) of the UWB was equipped 
on the underwater vehicle by means of the risers, as shown on the left in Figure 9. Before using the UWB 
positioning system, the distances from base stations B, C, and D to the main base station A were recorded 
into the software, which facilitated the real-time output of the underwater vehicle’s position based on the 
distances of the four base stations. The underwater vehicle is also equipped with a nine-axis high-precision 
sensor to provide attitude angle and three-axis acceleration, which can be used to calibrate the 
experimentally acquired velocities.

Because the designed robot is not equipped with a Doppler velocimeter and there may be some errors when 
using the UWB localization module system alone. To further improve the accuracy of the experimentally 
obtained speed, this paper employs an M900 dual-frequency multibeam imaging sonar (as shown in the 
right image of Figure 9) to record the motion state of the underwater vehicle. The M900 sonar is fixed 
underwater, and its working frequency is set to 900 kHz, with a scanning opening angle set to 130°, to start 
observing the movement of the ROV. The M900 outputs an image every 200 ms, and by calculating the 
distance the ROV moves between two frames, the speed of the ROV within 200 ms can be determined. 
Thus, sonar can be used as a second source of velocity observations. This speed is then used to validate and 
integrate with the speed data measured by the positioning system.
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Table 1. Result of parameter identification

Parameter (unit) Value

Additional mass (kg); additional inertia (kg*m2) Xu = -16.04, Yv = -37.74, Zw = -83.60, Nr = -1.06

Linear resistance (Ns/m; Ns/rad) Xu = -2.41, Yv = -1.50, Zw = -21.75, Nr = -1.18

Secondary resistance (Ns2/m2; Ns2/rad2) X|u|u = -44.17, Y|v|v = -114.30, Z|w|w = -121.30, N|r|r = -2.64

Table 2. Other algorithm recognition results

Parameter (unit) PSO GA Least squares method

Additional mass (kg); additional inertia (kg*m2) Xu = -9.90 Xu = -16.15 Xu = -16.07

Linear resistance (Ns/m; Ns/rad) Xu = -3.55 Xu = -1.98 Xu = -2.21

Secondary resistance (Ns2/m2; Ns2/rad2) X|u|u = -45.30 X|u|u = -44.56 X|u|u = -44.42

PSO: Particle swarm optimization; GA: genetic algorithm.

Figure 8. Experimental environment settings.

Figure 9. ROV with positioning module and sonar. ROV: Remotely operated vehicle.

4.2 Experimental results and comparison
The forward speed response observed in the experiment is shown as the green curve in Figure 10. With the 
horizontal thrusters operating at maximum force output in the forward direction, the ROV’s maximum 
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Figure 10. Velocity response of ROV. ROV: Remotely operated vehicle.

speed is approximately 1.55 m/s. The red dotted line in the figure represents the speed response predicted 
by the ROV model established based on parameters identified using QPSO, which best fits the experimental 
data. The root mean square error of the speed is 0.2%.

Parameter identification based on PSO, GA, Q-learning[22] and the least squares method with decoupled 
ROV’s motion freedom is also carried out in this paper. The curves recognized by the Q-learning algorithm 
are not shown in the figure as they are not highly distinguishable from algorithms other than QPSO. PSO 
and GA are often considered as traditional optimization algorithms. They are still widely used in many 
fields and have their own unique advantages and application scenarios. The error of the ROV’s numerical 
simulation model built based on the least-squares method with decoupled ROV’s motion freedom is 0.55%, 
which is larger than that of the DFBI combined with the QPSO identification method proposed in this 
paper. Although PSO and GA also use the data from DFBI numerical simulation to search for the optimal 
identification of ROV models, the optimization effect is poorer than that of QPSO, and the errors of the 
established models are PSO: 1.42% and GA: 0.84%, which are prone to fall into premature or locally optimal 
solutions in the optimization search.

5. CONCLUSION
The establishment of an accurate underwater vehicle model from underwater vehicle parameter 
identification is of great significance for its controller design. In this paper, based on the DFBI numerical 
simulation method in CFD and combined with the QPSO algorithm, we propose a method to identify the 
inertia and drag parameters of the four degrees of freedom of the underwater vehicle at the same time. After 
the experimental comparison (the root mean square error is less than 0.20%). Through the comparison of 
different algorithms, the accuracy of the proposed method is verified, which can provide a reference for 
researchers to identify the hydrodynamic parameters of the ROV.
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