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Abstract
Tumor-secreted exosomes are heterogeneous multi-signal messengers that support cancer growth and 
dissemination by mediating intercellular crosstalk and activating signaling pathways. Distinct from previous 
reviews, we focus intently on exosome-therapeutic resistance dynamics and summarize the new findings about the 
regulation of cancer treatment resistance by exosomes, shedding light on the complex processes via which these 
nanovesicles facilitate therapeutic refractoriness across various malignancies. Future research in exosome biology 
can potentially transform diagnostic paradigms and therapeutic interventions for cancer management. This review 
synthesizes recent insights into the exosome-driven regulation of cancer drug resistance, illuminates the 
sophisticated mechanisms by which these nanovesicles facilitate therapeutic refractoriness across various 
malignancies, and summarizes some strategies to overcome drug resistance.
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INTRODUCTION
Despite advancements in early detection, precision medicine, and targeted therapies, a substantial 
proportion of patients still develop resistance to chemotherapeutic agents, which often hinders successful 
treatment outcomes and compromises patient survival across multiple cancer types. Millions of new cancer 
cases and deaths occur annually, emphasizing the pressing need to understand and overcome this issue[1,2]. 
In recent years, increasing evidence has indicated that substantial cargos of information are released from 
cells via lipid bilayer-enclosed vesicles typically termed exosomes and microvesicles. It has been 
demonstrated that these vesicles are closely associated with drug resistance[3].

Exosomes are endosomal-derived nanoscale extracellular vesicles (EVs) that have become important players 
in the intricate interactions between cancer cells and their surroundings. These vesicles are released by both 
tumor and stromal cells and transport a variety of bioactive substances, such as proteins, lipids, and non-
coding RNAs (ncRNAs), which can dramatically alter the phenotypic and functional traits of recipient cells 
and foster a milieu of therapeutic evasion. Exosomes have been shown to contribute to resistance against 
chemotherapeutic, hormonal, and targeted therapies, as well as to shape the immune-suppressive 
microenvironment, promoting cancer progression and metastasis[4-6].

The details of the mechanisms by which resistance appears to occur are outlined. Exosomes from drug-
resistant cancer cells can reduce drug accumulation by interacting with chemotherapeutic agents, limiting 
their cytotoxic effects[4], facilitating the transfer of functional proteins and ncRNAs, activating pro-survival 
signaling pathways, such as epithelial-mesenchymal transition (EMT), and enhancing chemotherapy 
resistance[7,8]. Moreover, exosomes can mediate the transfer of drug resistance traits from resistant to 
sensitive cells, as exemplified by the transfer of miR-155 via exosomes, which promotes chemoresistance in 
recipient cancer cells[9,10]. Exosomes also modify the tumor microenvironment (TME) by delivering 
immunosuppressive factors, such as TGF-β and Fas ligands, triggering immune cell apoptosis or recruiting 
myeloid-derived suppressor cells (MDSCs), thus dampening antitumor immune responses[11-13]. As 
previously stated, the multifaceted function of exosomes in cancer drug resistance underscores their 
capacity as prognostic and surveillance indicators for treatment outcomes. The unique exosomal cargo 
profiles observed in drug-resistant cells and their ability to reflect the dynamic changes in response to 
therapy make them valuable candidates for liquid biopsy-based diagnostics[10].

The secretion of exosomes is an important way to influence the behavior of cancer cells (and vice versa). 
This review focuses on the role of exosomes in modulating drug resistance by influencing the different 
facets of the TME. We aspire to consolidate the current understanding of the underlying mechanisms, 
elucidate how exosomes contribute to the process of resistance, and subsequently outline potential strategies 
that could attenuate or reverse this resistance, thereby contributing to the advancement of precision 
oncology.

EXOSOMES
Exosomes, a subset of EVs[14-16], these nanoscale lipid membrane-enclosed vesicles, typically 30 to 150 nm in
diameter, are secreted by most eukaryotic cells and found in various bodily fluids[17,18]. Exosome biogenesis
involves the inward budding of the endosomal membrane, creating intraluminal vesicles (ILVs) within
multivesicular bodies (MVBs)[18,19]. The endosomal sorting complex required for transport is a complex with
membrane-severing activity that plays a major role in many membrane remodeling processes, including
endosomal trafficking, nuclear envelope organization, and cytokinesis. The process of exosome biogenesis is
governed by the endosomal sorting complexes required for transport (ESCRT)-dependent pathways[10,15,20].
MVBs can degrade with lysosomes or secrete exosomes[18], carrying diverse cargoes[20-23] based on the parent
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Figure 1. Schematic representation of the exosome production process. The biogenesis of exosomes is linked to the endosomal 
pathway, which begins with the creation of ILVs within MVBs through two mechanisms, and formed MVBs can fuse with lysosomes or 
the plasma membrane for different fates. ILVs: Intraluminal vesicles; MVBs: multivesicular bodies.

cell’s physiological state, allowing exosomes to transmit specific signals to recipient cells[24,25] [Figure 1].

Exosomes are essential for both intercellular communication and the pathophysiology of various 
diseases[26-28]. Exosomes contain a variety of materials, including lipids, proteins, nucleic acids, and even 
metabolites, which can indicate the health or pathology of the cell[29-33]. Exosomes, derived from various 
sources, contain unique proteins[28,29], lipids[27,34], genomic DNA[29,30], ncRNAs[27,29,30], and bioactive metabolites 
[Figure 2]. They can transmit genetic information between cells, alter gene expression, and transport 
bioactive metabolites, highlighting their roles in metabolic regulation and disease progression[34]. Their 
stability and targeting capabilities are influenced by these factors. The versatility of exosomal cargo extends 
to its capacity to convey immunomodulatory signals, as seen by the presence of programmed death ligand-1 
(PD-L1) on exosomes from cancer cells, which influences immune evasion mechanisms[29]. This highlights 
the potential of exosomal content for immune surveillance and therapeutic interventions[27,28].

Exosomes, through regulated cell-to-cell communication, play a crucial role in maintaining physiological 
homeostasis by delivering customized cargo to target cells, such as cancer cells promoting tumor 
progression and immune cells modulating responses[35,36]. The specificity of exosome uptake is achieved 
through various mechanisms, including surface receptor-ligand interactions and membrane fusion 
events[36]. The study of exosome-mediated communication has far-reaching implications, ranging from 
understanding fundamental biological processes to the development of novel therapeutic strategies[36,37]. 
Exosomes, as mediators of cell-to-cell communication, shuttle through the TME, are absorbed by 
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Figure 2. The different types of molecules found in exosomes, including nucleic acids (DNA, mRNA, miRNA, lncRNA, circRNA), 
proteins (TM4SF, HSPs, syntenin-1, membrane transporters), lipids (cholesterol, sphingomyelin, ceramides), and metabolites. circRNA: 
Circular RNAs.

surrounding cancer cells or stromal cells, and can transmit information by releasing contents, thereby 
causing the proliferation, invasion, metastasis and drug resistance of tumor cells.

In summary, exosomes are highly developed messengers that facilitate complex cellular communications. 
Recent studies have shown that exosomes, as mediators of cell-to-cell drug resistance signaling, play an 
important role in tumor chemotherapy resistance, metastasis, and immune evasion.

MECHANISM OF EXOSOMES REGULATING TUMOR DRUG RESISTANCE
Exosomes are essential for coordinating and spreading drug resistance pathways within the TME[11,38]. These 
EVs transfer resistance traits to cells, influencing apoptotic, metabolic, and immune responses, and 
promoting systemic resistance[39-41]. They also contribute to cancer cell chemoresistance by targeting the 
survival, proliferation, and drug response pathways[42,43] [Figure 3].

Targeting exosomal communication, particularly the exchange of resistance-inducing factors, represents an 
unexplored avenue for therapeutic intervention[44]. Understanding the specific roles and mechanisms of 
exosomal cargoes in different cancer types holds promise for developing novel strategies to overcome 
therapeutic resistance. By interrupting these exosome-mediated pathways, researchers have aimed to 
sensitize tumors to conventional treatments, thereby revitalizing the efficacy of chemotherapy and 
immunotherapy in cancer management.

Exosomes derived from tumor cells regulate tumor drug resistance
Tumor-derived exosomes (TDEs) have emerged as key mediators in the establishment and propagation of 
drug resistance, a phenomenon that poses a substantial challenge to cancer therapy[45-53]. These EVs, 
harboring a cargo of proteins, lipids, and nucleic acids, including miRNAs and lncRNAs, can transfer 
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Figure 3. The mechanism of exosomes regulating tumor drug resistance involves many factors and pathways. Exosomes derived from 
different cells (tumor cells, fibroblasts, and other cells) can regulate different mechanisms by delivering various contents, thus affecting 
tumor resistance.

phenotype[46,50,52,54,55].

In non-small cell lung cancer (NSCLC), exosomes transfer miR-4443, which induces chemotherapy 
resistance by regulating ferroptosis-related gene expression[45]. Another study highlighted the role of 
exosomal PKM2 in transmitting cisplatin resistance from hypoxic NSCLC cells to sensitive cells, implicating 
an altered cellular metabolism in the resistance mechanism[56]. Similarly, exosomes from hypoxic glioma 
cells harboring a specific fusion gene were found to disseminate pro-oncogenic signals, including miR-106a-
5p, contributing to temozolomide (TMZ) resistance[46]. In gastric cancer, exosomes from paclitaxel-resistant 
cells were shown to enrich miR-155-5p, which was transferred to sensitive cells, inhibiting apoptosis and 
mediating resistance by suppressing GATA3 and TP53INP1[51]. Exosomes from adriamycin-resistant breast 
cancer cells were found to carry miR-222-5p, which promoted macrophage M2 polarization via phosphatase 
and tensin homolog (PTEN)/Akt inhibition, fostering a tumor-permissive microenvironment and drug 
resistance[49]. Similarly, exosomal miR-9-5p from tamoxifen-resistant breast cancer cells was demonstrated 
to be transferred to sensitive cells, where it downregulated adiponectin (ADIPOQ), thereby contributing to 
drug resistance and enhanced tumor growth[48]. In glioblastoma (GBM), exosomal miR-1238 mediates the 
acquired resistance of GBM cells to TMZ by directly targeting the CAV1/EGFR pathway and affecting the 
activation of the PI3K-AKT-mTOR signaling pathway[47], while exosomal circUHRF1 was found to induce 
natural killer cell exhaustion and contribute to anti-PD1 therapy resistance[57].

Moreover, exosomes derived from pancreatic cancer cells were shown to induce apoptosis in CD8+ T cells, 
thereby suppressing immune surveillance and facilitating tumor growth[55]. Similarly, exosomes from 
NSCLC cells carry circUSP7 and modulate the miR-934/SHP2 axis, leading to CD8+ T cell dysfunction and 
resistance to anti-PD1 therapy[54]. In gastric cancer, exosomes contribute to the immunosuppressive milieu 
by suppressing CD8+ T cells and natural killer cells while expanding regulatory T cells and MDSCs[58].

resistance traits to neighboring sensitive cells or even distant sites, fostering a systemic resistant 
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TDEs, enriched with PD-L1, can engage with PD-1 on T cells, dampening immune responses and fostering 
tumor resistance to PD-1/PD-L1 blockade therapies. Strategies targeting exosomal PD-L1 could enhance 
immunotherapy outcomes[59]. Recent studies have also explored the potential of exosomes as carriers for 
immune checkpoint inhibitors, suggesting their utility in improving cancer treatment efficacy[60]. 
Additionally, an innovative approach using curvature-sensing peptides to disrupt TDEs has shown promise 
in boosting cancer immunotherapy by inhibiting TDEs-mediated immunosuppression and reshaping the 
TME[61].

These findings collectively underscore the importance of TDEs in mediating crosstalk between cancer cells 
and their microenvironment, highlighting exosome-mediated drug resistance as a complex and multifaceted 
phenomenon that spans different cancer models. Understanding the specific cargo and its targets within 
exosomes could pave the way for novel therapeutic interventions aimed at overcoming drug resistance in 
cancer therapy.

Exosomes from cancer-associated fibroblasts regulate tumor resistance
Cancer-associated fibroblasts (CAFs) have been identified as pivotal contributors to the acquisition of 
chemoresistance in cancer cells, primarily through exosome-mediated communication[62-70]. Similar to 
tumor cells, CAFs secrete exosomes loaded with diverse cargoes, including miRNAs, lncRNAs, and 
proteins, that orchestrate resistance mechanisms in neighboring cancer cells[62-65].

Previous studies have indicated that exosomes derived from gemcitabine-treated CAFs contain elevated 
levels of miR-148b-3p, which, upon transfer to bladder cancer cells, downregulates PTEN and activates the 
Wnt/β-catenin pathway, thereby promoting chemoresistance and EMT[62]. Similarly, CAFs-derived 
exosomes carrying miR-106b were found to induce gemcitabine resistance in pancreatic cancer by targeting 
TP53INP1[64]. Another study highlighted that CAF-derived exosomal miR-196a promotes proliferation and 
drug resistance in head and neck squamous cell carcinoma (HNC) cells by targeting CDKN1B and ING5[63]. 
Additionally, CAFs secrete exosomes that highly express miR-3173-5p, which inhibits ferroptosis by 
targeting ACSL4, thereby promoting gemcitabine resistance in pancreatic cancer cells[66]. Moreover, 
exosomes from CAFs facilitate colorectal cancer (CRC) metastasis and chemoresistance by enhancing 
stemness and EMT through miR-92a-3p transfer, further validating the role of exosomal miRNAs in these 
processes[71]. Furthermore, CAF-derived exosomes transfer lncRNA CCAL, which upregulates glycolytic 
pathways and STAT3/NF-κB signaling, promotes chemoresistance, and emphasizes the relevance of ncRNA 
content in exosomes in tumor progression[68].

Additionally, proteins and other activated materials in CAF-derived exosomes are crucial. For example, 
studies have demonstrated that CAFs secrete exosomes loaded with cytokines and chemokines, such as IL-6 
and CXCL1, which activate the STAT3/NF-κB pathway, contributing to cisplatin resistance in esophageal 
squamous cell carcinoma (ESOC) and gastric carcinoma (GC)[67]. An important component of pancreatic 
ductal adenocarcinomas, CAFs, release exosomes that improve chemoresistance in recipient cancer cells by 
expressing Snail. They also exhibit intrinsic resistance to gemcitabine[72]. This observation aligns with 
findings where exosomes from CAFs have been shown to promote resistance to anti-pyrimidine drugs by 
suppressing the pyrimidine transporter, ENT2, highlighting the role of exosomal cargo in modulating 
therapeutic sensitivity[70]. Exosomes derived from pancreatic cancer CAFs increase the release of exosomes 
upon gemcitabine treatment, which in turn induces chemoresistance in pancreatic cancer cells by 
modulating the expression of Snail and miR-146a. This study highlights the potential of using exosome 
secretion inhibitors as a combinational approach to improve chemotherapy effectiveness[72]. Finally, recent 
studies have highlighted that exosomes derived from CAFs can significantly influence the immunological 
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landscape within the tumor. These CAF-derived exosomes have been shown to carry immunosuppressive 
molecules, such as PD-L1, which can dampen the antitumor immune response by interacting with immune 
checkpoint receptors on T cells. This interaction not only subdues the cytotoxic potential of T cells but also 
promotes a tolerant environment that fosters tumor resistance to immunotherapies, thereby contributing to 
the development of therapeutic resistance in cancer[73].

These results highlight the intricate relationship between CAFs and cancer cells, in which exosomes act as 
carriers for factors that lead to resistance. This suggests that focusing on CAF-derived exosomes may be a 
useful strategy for cancer therapy that aims to overcome chemoresistance.

The content of exosomal circular RNA regulates tumor resistance
Circular RNAs (circRNAs), a distinct class of ncRNAs characterized by their covalently closed loop 
structures, have emerged as crucial regulators in the complex interplay between cancer cells and their 
microenvironment, particularly in the context of chemotherapy resistance. These circRNAs, packaged 
within exosomes, act as mediators of intercellular communication and convey messages that influence 
tumor progression and drug responsiveness[74-80].

For instance, in CRC, hsa_circ_0000338 was found to be differentially upregulated in exosomes from 
FOLFOX-resistant cells, potentially serving as a biomarker for chemoresistance and exerting dual regulatory 
roles[76]. Similarly, in gliomas, exosomal circ_0072083, enriched under hypoxia, promotes TMZ resistance by 
sponging miR-421 and enhancing SIRT1 expression[75]. Furthermore, the role of exosomal circVMP1 in 
NSCLC demonstrated its capacity to enhance cisplatin resistance through the miR-524-5p-METTL3/SOX2 
axis[78]. In neuroblastoma (NB), exosomal circDLGAP4 contributes to drug resistance by regulating the miR-
143-HK2 axis[75]. The involvement of exosomal circRNAs in prostate cancer (PCa) chemoresistance is 
exemplified by circ-XIAP, which promotes resistance to docetaxel through the miR-1182/TPD52 
pathway[80]. Similarly, circSFMBT2 in PCa facilitates resistance to docetaxel by interacting with miR-136-5p 
and modulating TRIB1[80]. Breast cancer research also revealed circ_UBE2D2 in exosomes as a mediator of 
tamoxifen resistance, whereas in osteosarcoma, exosomal circZNF91 enhances resistance to chemotherapy 
by sponging miR-23b-3p and upregulating SIRT1[80].

Notably, circRNAs within exosomes can interact with immune checkpoint molecules, thereby influencing 
the sensitivity of tumors to immunotherapy. For instance, exosomal circRNAs, such as circUHRF1 and 
circTMEM181, can modulate immune responses by targeting immune checkpoint molecules, leading to 
resistance to immunotherapies like anti-PD1 in hepatocellular carcinoma (HCC)[57,81].

Exosomal circRNAs play a crucial role in cancer treatment by mediating drug resistance mechanisms. They 
affect drug efflux, intracellular concentrations, cell cycle progression, apoptosis, invasion, and metabolic 
reprogramming. These findings from various cancer models highlight the central role of exosomal 
circRNAs in modulating chemotherapy resistance[75,80], suggesting that targeting these exosome-carried 
circRNAs could be a novel strategy to overcome treatment failure in cancer therapy. Similarly, some studies 
highlight the intricate relationship between exosomal circRNAs, immune cell modulation, and the 
development of resistance to immune checkpoint blockade in cancer therapy. The identification of these 
mechanisms offers promising avenues for the development of novel therapeutic strategies aimed at 
overcoming immunotherapy resistance in cancer patients.
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The content of exosomal miRNA regulates tumor resistance
Like circRNAs, tissue-specific regulatory networks of miRNAs and their effects on drug transporters, DNA
repair systems, and cell survival pathways have become key factors in regulating drug resistance in cancer[82].

For example, exosome-mediated transfer of miR-3613-5p has been shown to enhance doxorubicin (DOX)
resistance in breast cancer cells by inhibiting PTEN, underscoring the importance of miRNA shuttling in
modulating treatment outcomes[83]. MiR-21, which targets PTEN, is known to play a key role in promoting
resistance to multiple drugs in breast and stomach cancers[82]. Another example of exosome-mediated
miRNA transfer was presented, which used arginine-glycine-aspartic acid (RGD)-modified exosomes to
deliver miR-484 to ovarian cancer cells, normalizing the tumor vascular system and making it sensitive to
chemotherapy[84]. In breast cancer, exosomes can mediate resistance and migration to sensitive cells via
miR-155[85], and miR-140-3p can suppress PD-L1 expression in cancer cell-derived exosomes, thereby
attenuating chemoresistance induced by DOX[86].

Collectively, these findings illustrate the extensive influence of exosomal miRNAs on drug resistance in
various cancer types. Strikingly, engineered exosomes have great therapeutic potential for co-delivering
miRNA inhibitors and chemotherapy agents to reverse colon cancer resistance. Specifically, the loading of
miR-21 inhibitor oligonucleotides and 5-fluorouracil with exosomes can effectively downregulate miR-21
expression in drug-resistant cells, thereby restoring the sensitivity to drugs[87]. By manipulating exosomal
miRNA content, it might be possible to restore chemosensitivity, thereby enhancing the efficacy of cancer
treatments.

THE DIAGNOSTIC AND THERAPEUTIC SIGNIFICANCE OF EXOSOMES IN TUMOR DRUG 
RESISTANCE
In the realm of cancer research, exosomes have emerged as pivotal players in the development and 
management of drug resistance, underscoring their diagnostic and therapeutic significance in tumor 
treatment [Figure 4]. These small EVs, with their unique molecular signatures, are instrumental in 
intercellular communication, transferring proteins, RNAs, and other biomolecules that can significantly 
alter the TME and influence therapeutic responses[88-96].

Exosomes are important in the diagnosis and treatment of tumor drug resistance, as they can transfer 
resistance traits to sensitive cells, promoting resistance by transmitting cargoes, suppressing immune 
activity, influencing chemotherapeutic efficacy[92], and so on, highlighting the complexity of exosome-
mediated resistance in various cancer types.

In NSCLC, exosomes derived from bone marrow mesenchymal stem cells (MSCs) have been shown to 
enhance chemosensitivity to cisplatin by delivering miR-193a, which targets LRRC1 and reduces drug 
resistance[97]. Conversely, lung cancer cell-derived exosomes (LCCDEs) are implicated in mediating drug 
resistance through the transfer of resistance-associated proteins and RNA, offering a novel avenue for 
therapeutic intervention[98].

In HCC, exosomes play a crucial role in drug resistance by transferring molecules that can alter TME and 
affect drug responsiveness. Strategies targeting exosomes, such as siRNA-mediated silencing of circRNA-
SORE, have demonstrated potential in enhancing sorafenib efficacy and overcoming resistance in HCC 
models[99,100].
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Figure 4. Clinical significance of exosomes in tumor drug resistance: biomarkers, prognostic markers, diagnostic markers, fluid biopsy 
tools, drug resistance prediction tools, delivery vehicles, changing drug targets, modulating the immune response and competitive 
binding molecules.

Exosomes derived from MSCs have emerged as a promising therapeutic strategy for GBM, a highly 
aggressive brain cancer, by enhancing the delivery of chemotherapeutic agents and overcoming drug 
resistance. These nanoscale vesicles can ferry miRNAs that sensitize tumor cells to chemotherapies, thereby 
offering a novel avenue to combat the refractoriness of brain tumors[101].

PCa treatment resistance is associated with exosomes, as the presence of androgen receptor splice variant 7 
(AR-V7) in exosomal RNA correlates with resistance to hormonal therapy. This highlights the potential of 
exosomal biomarkers in predicting treatment outcomes and personalizing therapeutic strategies for PCa 
patients[102,103].

Exosomes derived from CAFs play a pivotal role in the chemoresistance of CRC by promoting cancer cell 
stemness and EMT, which are key factors in therapy resistance. The transfer of exosomal miR-92a-3p from 
CAFs to CRC cells has been shown to enhance stemness and EMT, thereby contributing to the 
chemoresistance of CRC to 5-FU/L-OHP regimens. This finding underscores the potential of targeting 
exosomal components as a novel therapeutic strategy to overcome chemoresistance in CRC[71,104].

In triple-negative breast cancer (TNBC), EVs, including exosomes, play a crucial role in the development of 
drug resistance by transferring proteins, miRNAs, and other biomolecules that can modulate therapeutic 
responses. EVs derived from gemcitabine-resistant TNBC cells have been shown to transfer resistance traits 
to sensitive cells, highlighting their potential as mediators of chemoresistance[105].

Exosomes hold great promise in clinical research for their diagnostic and therapeutic potential in diseases, 
particularly cancer. They exhibit unique molecular signatures in the bodily fluids of cancer patients, making 
them valuable for early detection and prognosis assessment. For instance, GPC1-positive exosomes are 
diagnostic indicators for early-stage pancreatic cancer[96], while exosomal lncRNA SNHG14 levels are 
associated with trastuzumab resistance in breast cancer[92]. The interplay between exosomes and the immune 
system is crucial for their function in cancer. Exosomes can modulate the immune response by delivering 
immunosuppressive factors or antigens, as well as by promoting the polarization of immune cells, such as 
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macrophages and T cells, toward protumoral phenotypes[94,106]. In contrast, engineered exosomes hold 
promise for immunotherapy, as they can be designed to express immuno-stimulatory proteins or loaded 
with cytokines to enhance immune cell activation and antitumor immunity[106].

Exosomes have also emerged as crucial vectors in conveying bioactive molecules, such as proteins, lipids, 
nucleic acids, and metabolites. For example, exosomes from drug-resistant cancer cells can horizontally 
transfer miRNAs that confer resistance to neighboring sensitive cells, and lncRNA ARSR within exosomes 
can competitively bind miR-34 and miR-449 to enhance AXL and MET expression, leading to sunitinib 
resistance in renal cancer[88,95]. This suggests that exosomal contents can shape the therapeutic 
microenvironment by disseminating resistance traits among cancer populations.

The potential of exosomes as therapeutic targets and diagnostic tools is further emphasized by their 
inherent ability to traverse biological barriers, including the blood-brain barrier (BBB)[88], making them 
attractive candidates for delivering therapeutic nucleic acids. For instance, engineered exosomes carrying 
siRNA against MALAT1 were shown to reduce docetaxel resistance in lung cancer[91], while exosomes 
loaded with a miRNA cocktail were found to suppress enzalutamide-resistant PCa[88], highlighting the 
potential for reversing resistance mechanisms.

In summary, the diagnostic and therapeutic significance of exosomes in tumor drug resistance is profound. 
They serve as biomarkers for early detection and prognosis assessment, modulate the immune response, 
and convey bioactive molecules that can shape the therapeutic microenvironment. The ability of exosomes 
to traverse biological barriers further enhances their potential as therapeutic agents. Future research 
leveraging exosome-mediated intercellular communication and their unique biological properties could 
unlock new dimensions in precision medicine for cancer treatment and management.

CONCLUSION
This review has encapsulated the recent advances in our understanding of exosome-mediated regulation of 
tumor drug resistance, shedding light on the intricate mechanisms by which these nanoscale vesicles 
contribute to the development and dissemination of therapeutic refractoriness across various cancer types. 
We have elucidated the pivotal role of exosomes in ferrying a myriad of bioactive molecules, including 
miRNAs, lncRNAs, circRNAs, and proteins, which act in concert to alter cellular pathways, modulate 
metabolism, interfere with drug efficacy, and shape the TME in favor of chemoresistance. A key highlight is 
the recognition of exosomes as conveyors of resistance traits from both tumor cells and CAFs, underscoring 
the complexity of intercellular communication in fostering treatment-resistant phenotypes.

Despite the progress outlined, several questions persist in the exosome-mediated drug resistance landscape. 
Above all, the heterogeneity of exosomal cargoes and their differential effects on recipient cells across cancer 
types pose a significant challenge. Exosomal heterogeneity, stemming from differences in their cellular 
origins, cargo composition, and functional properties, significantly influences tumor response to 
therapeutics. The heterogeneity of exosomes can lead to the acquisition of drug resistance in cancer cells 
through various mechanisms. For instance, TDEs can transfer drug resistance-conferring proteins, lipids, 
and nucleic acids, such as miRNAs, to sensitive cells, thereby spreading resistance within the TME[4,11]. 
Additionally, exosomes from CAFs have been shown to modulate the TME, promoting a phenotype that 
favors chemoresistance and conferring a survival advantage to cancer cells[107]. The heterogeneity of 
exosomes also presents challenges in their isolation and analysis, which is crucial for understanding their 
role in drug resistance. Standardization of isolation techniques, such as differential ultracentrifugation and 
size-exclusion chromatography, is essential for obtaining pure and consistent exosome preparations[108]. To 
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address the impact of exosome heterogeneity on tumor drug resistance, a multifaceted approach is 
warranted. First, an in-depth study of the exosome biogenesis and cargo loading mechanism is necessary to 
help reveal the molecular mechanisms of how they mediate drug resistance. Second, the development of 
strategies to selectively target and neutralize exosomes carrying resistance-promoting cargo is crucial. This 
could involve the use of exosome inhibitors or the design of exosome mimetics that compete with TDEs for 
uptake by recipient cells. Third, leveraging the natural tumor-tropic properties of exosomes, researchers can 
engineer exosomes to deliver therapeutic agents directly to cancer cells, potentially reversing drug 
resistance[87,109].

Moreover, the exact molecular determinants that dictate the selective packaging and delivery of resistance-
inducing factors remain to be fully elucidated. The dynamics of exosome secretion and uptake in the 
context of evolving therapeutic pressures and their impact on treatment outcomes also require further 
investigation.

Here, we propose several avenues for future research to address these gaps. First, the development of high-
throughput techniques for the comprehensive profiling of exosomal cargoes at different stages of disease 
and under varying therapeutic regimes will enhance our ability to identify signature biomarkers predictive 
of treatment response. Second, elucidating the molecular machinery governing exosome biogenesis, sorting, 
and release, particularly in drug-resistant cells, may uncover novel therapeutic targets. Third, leveraging the 
natural tropism of exosomes for specific cell types and their ability to cross biological barriers presents a 
unique opportunity to design exosome-based therapeutics to reverse resistance mechanisms or deliver 
targeted therapies. Finally, exploring the potential of exosome interception or engineering exosomes to 
express therapeutic payloads holds promise for restoring sensitivity to conventional treatments and 
enhancing patient outcomes. Collectively, these endeavors aim to transform our strategic approach toward 
combating drug resistance in cancer, paving the way for advancements in precision oncology.
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