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Abstract
The correlation relations of batch process variables are quite complex. For local abnormalities, there is a problem 
that the variant features are overwhelmed. In addition, batch process variables have obvious non-Gaussian 
distributions. In response to the above two problems, a new multiple subspace monitoring method called principal 
component analysis - multiple subspace support vector data description (PCA-MSSVDD) is proposed, which 
combines the subspace design of latent variables with the SVDD modeling method. Firstly, PCA is introduced 
to obtain latent variables for removing redundant information. Secondly, the subspace design result is obtained 
through K-means clustering. Finally, SVDD is introduced to build the monitoring model. Numerical simulation 
and penicillin fermentation process prove that the proposed PCA-MSSVDD method has better monitoring 
performance than traditional methods.

Keywords: Batch process monitoring, principal components analysis, support vector data description

1. INTRODUCTION
To ensure the safe and reliable operation of a batch process, it is necessary to find faults in time. Therefore, 
it is of great practical significance to apply process monitoring[1-3]. Generally, process monitoring methods 
can be divided into three types: mechanism-driven approaches, knowledge-driven approaches, and data-
driven approaches[4,5]. Many data are recorded and stored in modern industry, and a lot of information is 
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contained in these data, but it is not used effectively. In recent years, in view of the difficulty of establishing 
mechanism models in complex industrial processes and the difficulty of obtaining expert knowledge in 
practice, data-driven process methods have attracted a lot of attention[6-9].

In most batch process monitoring algorithms, the influence of complex correlations among process 
variables on monitoring effectiveness is not taken into account. In batch processes, the correlation among 
process variables is very complex; some variables have a strong correlation and some variables have a weak 
correlation. Variables with a strong correlation have a similar mutation behavior to faults, while those 
with a weak correlation have a different mutation behavior to faults. When a fault occurs, some process 
variables may mutate. For the above situation, if the monitoring is carried out in the whole monitoring 
space, there will be the risk of submergence of mutation features, thus increasing the difficulty of fault 
detection. In view of the complex correlation among process variables, many monitoring algorithms based 
on variable subspace have been studied in recent years[10-14]. These algorithms place variables with similar 
characteristics in a subspace and monitor them, highlighting the local characteristics of process variables. 
If some variables have mutation characteristics, the mutation characteristics will be more obvious in 
the subspace than in the whole space, which is conducive to detecting the fault. Meanwhile, meaningful 
subspace design is conducive to process understanding and learning. In addition, a monitoring method 
based on the subspace of latent variables is proposed by principal component analysis (PCA). This method 
can eliminate redundant information in the original process variables through PCA mapping[15].

The above algorithm based on latent variable subspace design can reduce the risk of local variation 
characteristics being inundated; however, the calculation method of the control limit of the model still has 
the assumption that the data need to obey a Gaussian distribution. Since batch process data have obvious 
non-Gaussian characteristics, the fault detection ability of this algorithm is sometimes reduced. Support 
vector data description (SVDD) can adapt to the non-Gaussian features of the data[16,17]. To distinguish 
normal data samples from abnormal data samples, which is the purpose of statistical process monitoring, 
all normal samples can be used as a category to establish an SVDD monitoring model. Multiple subspaces 
SVDD (MSSVDD) methods have been proposed by fusing variable subspace design methods with SVDD 
and applied to non-Gaussian processes[18]. However, the application of subspace monitoring methods for 
latent variables in non-Gaussian processes still has not been studied.

Aiming at the complex correlation and the non-Gaussian distribution among batch process variables, this 
paper proposes a batch process monitoring algorithm called PCA-MSSVDD, which combines latent variable 
subspace design with SVDD. In offline modeling, firstly, the three-dimensional matrix of the batch process 
is expanded and converted into a two-dimensional matrix by twice expansion technology, and the original 
variable is converted into a latent variable by PCA transformation, eliminating redundant information. The 
extension matrix is defined according to the PCA transformation matrix, i.e., the load matrix. The vector 
of the extension matrix can reflect the influence of process variables on latent variables, and it is defined 
as the characteristic vector of latent variables. When the process variables which have important influence 
on latent variables change, the corresponding latent variables will also have the variation characteristics. 
Therefore, latent variables with similar eigenvectors have similar variation characteristics and should be 
monitored in the same subspace. K-means is introduced to cluster eigenvectors, and the clustering result is 
the design result of the latent variables subspace. Then, the latent variable time slice matrix is obtained by 
the sliding time window technique, and the latent variable subspace design results are applied to the latent 
variable time slice matrix. Finally, SVDD monitoring model is established based on latent variable subspace 
data. When online monitoring, PCA mapping of online samples is carried out to obtain the latent variables 
of online samples. Then, the monitoring model is selected by time. Finally, the weighted average strategy is 
used to fuse the monitoring results of subspace as the final monitoring results. The effective fusion of latent 
variable subspace design and SVDD can effectively improve the efficiency of fault detection.
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The remainder of this paper is structured as follows. Section 2 introduces the SVDD and K-means. Section 
3 mainly describes the proposed latent variable subspace design method based on PCA and K-means, and 
then describes the monitoring steps of PCA-MSSVDD. In Section 4, PCA-MSSVDD is validated by the 
numerical simulation model and penicillin fermentation process. Finally, Section 5 concludes.

2. SVDD AND K-MEANS
2.1 SVDD
SVDD is a monitoring algorithm based on pattern recognition. Samples are projected into the feature space 
by mapping, and a minimum hypersphere is found in the feature space. Under the condition of minimum 
structural risk, the sample data are surrounded as much as possible[19]. The optimal objective function of 
SVDD is:

                                                                                                                                                                              (1)

where a represents the center, R2 represents the square of the radius, C represents the penalty coefficient, ξ i 
represents the relaxation variable, and Φ represents the kernel function. The objective function can also be 
formed as:

                                                                                                                                                                              (2)

Where K1(vi,vj) = <Φ(vi),Φ(vj)>.

By calculating the above objective functions, a set of vectors vi and corresponding coefficients α i can be 
obtained. If α i > 0, then the corresponding vectors are defined as support vector (SV). For all support 
vectors v∈SV, the radius of the hypersphere is calculated as follows:

                                                                                                                                                                              (3)

The square of the distance of online sample x is calculated as follows:

                                                                                                                                                                              (4)

Therefore, the SVDD method can be used to distinguish between normal and abnormal samples. In this 
paper, the calculation formula based on SVDD statistics is defined as:

                                                                                                                                                                              (5)

Meanwhile, the corresponding control limit is DRlim = 1.

2.2 K-means
K-means[20] uses Euclidean distance as the similarity evaluation index, that is, the closer are the two 
samples, the higher is their similarity. The clustering algorithm considers that each class of samples is 
composed of samples with close Euclidean distance, so the minimum sum of squares of errors from each 
class of samples to the center of the sample is taken as the objective function of clustering.
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The K-means clustering algorithm clusters column variables of a two-dimensional matrix X (n × m). m 
vectors y1,y2,…,ym should belong to C categories. The cluster centers of C categories are represented as 
l1,l2,…,lC. Xc corresponds to the eighth category represented by 9, where c = 1,2,…,C. The corresponding 
c-th category is represented as Xc, where c = 1,2,…,C. The detailed subspace design steps are as follows:

(1) Firstly, given the order of iteration t = 1, cluster centers l1,l2,…,lC are randomly selected in column 
vectors of X (n × m).
(2) Between the i-th sample and the k-th clustering center, the square of the Euclidean distance is calculated 
as follows:
                                                                                                                                                                              (6)

(3) The sample of the same category Xc (t + 1) is updated, and the formula is as follows:
                                                                                                                                                                              (7)

(4) The center lc (t + 1) of the sample of the same category Xc (t + 1) is updated, and the formula is as 
follows:
                                                                                                                                                                              (8)

(5) If lc (t + 1) = lc (t), where c = 1,2,…,C, the algorithm converges and ends; otherwise, if t = t + 1, go back 
to Step 2.

In this paper, the formula of the matrix column vector clustering is expressed as follows:
                                                                                                                                                                              (9)

When the K-means clustering algorithm is applied, it is necessary to determine the number of 
classifications. When the number of classifications is known, K-means can re-classify unreasonably 
classified samples through its own optimization iteration steps. Therefore, in the case of a small number of 
data samples, it can achieve satisfactory results. In the case of an uncertain number of classifications, it is 
necessary to determine the number of classifications by other analysis methods.

3. PCA-MSSVDD
3.1 Subspace design of latent variables based on PCA and K-means
The two-dimensional matrix X (n × m) has n samples and m variables. PCA is decomposed as follows[21]:
                                                                                                                                                                            (10)

Where P is the load matrix and T is the latent variable matrix.
P can be obtained as follows:
                                                                                                                                                                            (11)

                                                                                                                                                                            (12)

Where λi (i = 1,2,…,m) represents the m eigenvalues of the covariance matrix Λ . Meanwhile, the 
eigenvalues are arranged in order from largest to smallest. The number of latent variables retained is 
determined by the method of cumulative contribution rate. The formula is as follows:

                                                                                                                                                                            (13)
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Where mc represents the number of latent variables retained. Therefore, when there is a lot of redundant 
information in the original data, it should be mc ≤ m. In the process of eliminating redundant information, 
selecting a higher cumulative variance contribution rate can reduce the phenomenon of information loss 
and retain more process information. The retained load matrix and latent variable matrix are c

ˆ (m m )×P  and 
c

ˆ (n m )×T , respectively. Their mapping relationship is as follows:

                                                                                                                                                                            (14)

Formula (14) shows that latent variables are linear combinations of original process variables. Therefore, 
different process variables have different effects on latent variables. The importance of process variables to 
latent variables is defined as a feature of this latent variable. When the process variables are mutated due to 
faults, the latent variables will be mutated. Because latent variables with similar characteristics have similar 
variation characteristics, monitoring latent variables with similar characteristics in the same subspace can 
reduce the risk of submergence of variation characteristics.

Based on the data transformation matrix, i.e. the load matrix, an extension matrix D is defined to represent 
all the characteristics of each latent variable. The element of the extension matrix D is obtained as follows:
                                                                                                                                                                            (15)

                                                                                                                                                                            (16)

                                                                                                                                                                            (17)

Where pj is the j-th column of P̂  and pi,j is the i-th element of pj. The size of the numerical value indicates 
the significance of the latent variable characteristics, and the larger is the numerical value, the more 
obvious are the characteristics. The column vectors of the extension matrix D represent the eigenvectors 
of latent variables. K-means clustering is applied to the eigenvectors. IDX (mc × 1) represents the results of 
clustering. The expression of clustering results is as follows:
                                                                                                                                                                            (18)

According to the results of IDX, the calculation method of subspace segmentation results is as follows:
                                                                                                                                                                            (19)

Where IDXj is the j-th element of IDX and Tc is the latent variable matrix of the c-th subspace. Therefore, 
the design results of latent variable subspace can be obtained offline. The design flow chart of latent 
subspace variable based on PCA-K-means is shown in Figure 1.
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3.2 Online monitoring of batch process based on PCA-MSSVDD
The batch process historical data comprise a three-dimensional data matrix X (I × J × K). Here, I represents 
the number of batches, J represents the number of variables, and K represents the number of sampling 
points. First, three-dimensional data matrix X (I × J × K) is expanded into two-dimensional matrix XB 
(I × JK) by batch expansion. Then, the data are standardized to mean 0 and variance 1, and the batch 
expansion XB (I × JK) is transformed into variable expansion XV (IK × J). The latent variables are obtained 
by PCA transformation of XV (IK × J). On the basis of latent variables, the sliding time window technology 
and subspace design method are applied to build the SVDD model of the obtained subspace matrix of 
time slice. The length of all time windows is set to 1 moment. The reason the window length is selected 
as 1 moment is that, the shorter is the time window, the smaller is the data fluctuation, which can avoid 
the influence of data fluctuation on the modeling and thus highlight the influence of subspace design on 
monitoring. When online monitoring, online samples are first mapped to latent variables by PCA model 
of XV (IK × J). Then, the monitoring model is selected according to the time. Finally, the fusion method 
of weighted average is used for monitoring results in different subspaces, where C represents the number 
of subspaces and DRc represents the monitoring results of the c-th subspace. The calculation formula is as 
follows:

                                                                                                                                                                            (20)

Figure 1. Latent variable subspace design flow diagram based on PCA-K-means. PCA: Principal component analysis.
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The flow chart of PCA-MSSVDD is shown in Figure 2. The specific monitoring steps are as follows:
(1) The three-dimensional matrix is transformed into the two-dimensional matrix of variable expansion by 
two expansion techniques.

Figure 2. Batch process monitoring flow diagram based on PCA-MSSVDD. PCA-MSSVDD: Principal component analysis - multiple 
subspace support vector data description; SVDD: support vector data description; PCA: principal component analysis.
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(2) PCA transform is applied to the two-dimensional matrix of variable expansion.
(3) The sliding time window technique is used to obtain the time slice matrix for the latent variable of the 
two-dimensional matrix.
(4) The subspace of the latent variable two-dimensional matrix is designed to obtain the results of subspace 
design.
(5) The SVDD monitoring model for the subspace matrix of latent variable time slice is established.
(6) The latent variables of online samples are obtained by transforming the online samples according to the 
second PCA model.
(7) The online sample latent variables select the monitoring model according to time.
(8) The subspace monitoring results are fused.

4. EXPERIMENTAL TEST
4.1 Numerical simulation
This paper designs the following numerical simulation models with two subsystems:

                                                                                                                                                                            (21)

                                                                                                                                                                            (22)
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                                                                                                                                                                            (23)

                                                                                                                                                                            (24)

                                                                                                                                                                            (25)

Here, randi (10,800,1) represents a randomly generated column vector with 800 rows and 1 column, and 
the sample is uniformly distributed between 0 and 10. randi (10,800,16) represents a randomly generated 
matrix with 800 rows and 16 columns, and the sample of each column obeys a uniform distribution 
between 0 and 10. xi,j is the i-th row and the j-th sample, hi is the i-th row vector in the matrix T, and noisei,j 
is the i-th row and the j-th sample.

The gray scale diagram of the extension indicator matrix of the load matrix in the numerical simulation 
process is shown in Figure 3. The abscissa represents the serial number of the load vector, while the 
ordinate represents the serial number of the variables in the numerical simulation process. The color of the 
square in the figure indicates the importance of the process variables to the latent variables: white indicates 
the most important and black indicates the least important. Therefore, the lighter is the color, the more 
important are the process variables to the latent variables, and the more obvious are the characteristics. 
From the gray scale diagram of the extension matrix, it can be clearly seen that Process Variables 1-8 are 
important to Latent Variables 1, 4, and 12-16. Process Variables 9-16 are important to the remaining latent 
variables. According to the design knowledge of the numerical model, the latent variables of the numerical 
simulation model are divided into two subspaces. The design results of the latent variable subspace in the 
numerical simulation process are shown in Table 1, where Latent Variables 1, 4, and 11-16 form subspace 
T1, while Latent Variables 2, 3, and 5-10 form subspace T2.

Based on the numerical simulation model, a cross-subsystem local fault is designed, that is, fault signals 
are introduced into both subsystems to analyze and compare the monitoring performance of SVDD, 
MSSVDD, and PCA-MSSVDD. The failure results are shown in Table 2. From Time 201 to the end of the 
process operation, a step fault signal with a size of 16 is introduced into Variable 1; a step fault signal with 
a magnitude of 3 is introduced into Variable 13; and a step fault signal with a magnitude of 4 is introduced 
into Variable 15. Such local faults are scattered in different subsystems, which is not conducive to the 
variable subspace monitoring algorithm detecting variation characteristics.

The comparison of SVDD, MSSVDD, and PCA-MSSVDD in monitoring the numerical process is shown 
in Table 3. Comparing the false alarm rates shows that the false alarm rate of PCA-MSSVDD is 1.5, slightly 
higher than the best value of 0. The results show that the missing alarm rate of PCA-MSSVDD is 15.3, 
which is significantly lower than those of SVDD and MSSVDD (47.0 and 68.5, respectively). The error 
rate comparison results show that the error rate of PCA-MSSVDD is 11.8, which is obviously better than 
those of SVDD and MSSD (35.3 and 51.5, respectively). The comparison results of the first time to detect 
fault shows that the first time to detect fault by PCA-MSSVDD, SVDD, and MSSVDD is the 201st time. 
Therefore, PCA-MSSVDD has better monitoring effect for local faults scattered in different subsystems.

The comparison charts of SVDD, MSSVDD, and PCA-MSSVDD for the test case in monitoring the 
numerical process is shown in Figure 4. During the whole phase of introducing fault signals, the statistics 
of PCA-MSSVDD are mostly above the control limit, while only a few of those of SVDD and MSSD are 
above the control limit.

The comparison charts of the PCA-MSSVDD subspace for the text case in monitoring the numerical 
process is shown in Figure 5. It can be clearly seen that most faults are detected in the second subspace, 
while are few faults are detected in the first subspace.
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4.2 Simulation test of the penicillin fermentation process
The simulation model of the penicillin fermentation process is designed to provide a standard testing 
platform for data-driven batch process monitoring methods[22]. Under the normal state set value of process 
variables, the production cycle of the penicillin fermentation process is set to 400 h, data are recorded once 
every 0.5 g, and 800 sampling data can be recorded by one simulation[23]. There is random noise in the 

Figure 3. Gray schematic diagram of the denotative matrix in the numerical process.

Subspace number Latent variable number
T1 1, 4, 11, 12, 13, 14, 15, 16
T2 2, 3, 5, 6, 7, 8, 9, 10

Table 1. Latent variable subspace design result in the numerical process

Variable number of the fault signal is introduced Size of step fault Time of fault
1 16 201-800
13 3 201-800
15 4 201-800

Table 2. The parameters of the test case in the numerical process

SVDD MSSVDD PCA-MSSVDD
False alarm rate 0 0 1.5
Missed alarm rate 47.0 68.5 15.3
Error rate 35.3 51.5 11.8
First time to detect fault 201 201 201

Table 3. The comparison of SVDD, MSSVDD, and PCA-MSSVDD in monitoring the numerical process

SVDD: Support vector data description; MSSVDD: multiple subspaces SVDD; PCA-MSSVDD: principal component analysis - multiple 
subspace support vector data description.
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simulation model. Under the same initial set value, the data between different batches fluctuate randomly. 
Therefore, 100 batches of simulation data are collected as a historical reference database.

The gray scale diagram of the extension indicator matrix of the load matrix retained during penicillin 
fermentation is shown in Figure 6. All features of each latent variable can be clearly seen. The abscissa 
indicates the serial number of the load vector, while the ordinate indicates the serial number of the 
process variable. The color of the square in the figure indicates the importance of process variables to 
latent variables. The lighter is the color, the more important are the process variables to latent variables. 
In this section, latent variables are also divided into two subspaces according to prior knowledge. Hidden 
variable subspace design results for the penicillin fermentation process are shown in Table 4, where 
Hidden Variables 1, 2, and 10-16 form subspace T1, while Hidden Variables 3-9 form subspace T2. As 
shown in Figure 6, the information of Variables 1, 2, and 4 is more projected in the first subspace, while the 
information of Variables 3, 5, and 7-9 is more projected in the second subspace.

The simulation of the penicillin fermentation process provides three types of faults: (1) the fault of the 
ventilation rate variable; (2) the fault of the stirring power variable; and (3) the fault of the glucose flow 
rate variable. In this paper, six test faults are designed through the simulation test platform to simulate 
abnormal operation behavior in actual production. The size and types of faults used to test the monitoring 
algorithm are shown in Table 5.

The above six kinds of faults are used for monitoring and comparing SVDD, MSSD, and PCA-MASVDD. 
The comparison of the false alarm rate, missed alarm rate, error rate, and first time to detect fault using 

Figure 4. The comparison charts of SVDD, MSSVDD, and PCA-MSSVDD for the test case in monitoring the numerical process. SVDD: 
Support vector data description; MSSVDD: multiple subspaces SVDD; PCA-MSSVDD: principal component analysis - multiple subspace 
support vector data description.
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SVDD, MSSVDD, and PCA-MSSVDD in monitoring the penicillin fermentation process are shown in 
Table 6. Comparing the false alarm rates shows that the false alarm rate of PCA-MSSVDD has the optimal 
value for Faults 4-6. Comparing the missed alarm rate shows that the missed alarm rate of PCA-MSSVDD 
only has the optimal value in Fault 2. In Faults 1, 2, 4, and 5, the missed alarm rate of PCA-MSSVDD is 
lower than that of SVDD. In Faults 1, 4, and 5, the missed alarm rate of PCA-MSSVDD is slightly higher 
than that of MSSVDD. Comparing the error rates shows that the error rate of PCA-MSSVDD has no 
optimal value. In Faults 1, 2, 4, and 5, the error rate of PCA-MSSVDD is lower than that of SVDD. In Faults 
1, 2, 4, and 5, the error rate of PCA-MSSVDD is slightly higher than that of MSSD. In faults 1, 2, 4, and 5, 
the error rate of PCA-MSSVDD is slightly higher than that of MSSVDD. Comparing the first time to detect 
fault shows that, Faults 1, 3, 4, and 5, PCA-MSSVDD has the earliest time to detect fault. Therefore, PCA-
MSSVDD is more sensitive to fault signals.

The comparison charts of SVDD, MSSVDD, and PCA-MSSVDD for Fault 3 in monitoring the penicillin 
fermentation process are shown in Figure 7. At about the 120th hour, PCA-MSSVDD has a peak value and 
a fault can be detected. At this time, the statistics of SVDD and MSSVDD have not exceeded the control 
limit. The statistics of SVDD and MSSVDD fall back to the position below the control limit after the 350th 
hour, while the statistics of PCA-MSSVDD are not below the control limit, and faults can still be detected.

The comparison charts of SVDD, MSSVDD, and PCA-MSSVDD for Case 6 in monitoring the penicillin 
fermentation process are shown in Figure 8. From the 150th hour to the 200th hour, the statistics of SVDD, 
MSSD, and PCA-MSSD all have an upward trend. However, the statistics of PCA-MSSD have a small jump 
signal, which exceeds the control limit and can detect the fault earlier.

Figure 5. The comparison charts of the PCA-MSSVDD subspace for the text case in monitoring the numerical process. PCA-MSSVDD: 
Principal component analysis - multiple subspace support vector data description.
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Combining the above two monitoring comparison charts, Figure 7 shows that PCA-MSSVDD has a 
better monitoring effect than MSSVDD at about the 125th hour and from the 350th hour to the end 
of the process; however, MSSVDD has a better monitoring effect than PCA-MSSVDD from the 150th 
hour to the 200th hour. Figure 8 shows that PCA-MSSVDD can detect faults earlier, but MSSVDD has a 
better monitoring effect than PCA-MSSVDD around the 200th hour. Therefore, the simulation test of the 
penicillin fermentation process shows that PCA-MSSVDD has better fault detection capability than MSSD 
in some cases but a worse one in other cases.

The comparison charts of PCA-MSSVDD subspace for Faults 1-6 in monitoring the penicillin fermentation 
process are shown in Figures 9-14. It can be easily seen that Faults 1 and 4 both occur on Variable 1, so 

Figure 6. Gray schematic diagram of the denotative matrix in the penicillin fermentation process.

Subspace number Latent variable number
T1 1, 2, 11, 12, 13, 14
T2 3, 4, 5, 6, 7, 8, 9,10

Table 4. Hidden variable subspace design result in the penicillin fermentation process

Fault serial number Failure variable Variable number Fault type Size Time to detect fault (h)
1 Ventilation rate 1 Step -1.5(%) 100-400
2 Stirring power 2 Step -1.5(%) 100-400
3 Glucose flow rate 3 Step -2.0(%) 100-400
4 Ventilation rate 1 Slope -0.1 100-400
5 Stirring power 2 Slope -0.1 100-400
6 Glucose flow rate 3 Slope -0.001 100-400

Table 5. Test cases of the fed-batch penicillin fermentation process
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Fault serial number SVDD MSSVDD PCA-MSSVDD
False alarm rate 1 0 0 0.5

2 0.5 0 2.5
3 1.5 0.5 2.0
4 0 0.5 0
5 0 0 0
6 0 0 0

Missed alarm rate 1 71.7 25.4 27.6
2 70.7 39.9 39.9
3 24.4 33.2 33.2
4 51.9 38.1 42.2
5 98.8 94.0 94.5
6 22.4 23.1 27.9

Error rate 1 53.8 19.1 20.8
2 53.2 30.0 30.6
3 18.7 25.1 25.5
4 39.0 28.7 31.7
5 74.2 70.6 71.0
6 16.8 17.3 21.0

First time to detect fault 1 122 100 100
2 111 101 105
3 142 137 121
4 141 138 125
5 397 171 106
6 164 159 161

Table 6. The comparison of the false alarm rate, missed alarm rate, error rate, and first time to detect fault using SVDD, MSSVDD, 
and PCA-MSSVDD in monitoring the penicillin fermentation process

SVDD: Support vector data description; MSSVDD: multiple subspaces SVDD; PCA-MSSVDD: principal component analysis - multiple 
subspace support vector data description.

Figure 7. The comparison charts of SVDD, MSSVDD, and PCA-MSSVDD for Fault 3 in monitoring the penicillin fermentation process. 
SVDD: Support vector data description; MSSVDD: multiple subspaces SVDD; PCA-MSSVDD: principal component analysis - multiple 
subspace support vector data description.
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Figure 8. The comparison charts of SVDD, MSSVDD, and PCA-MSSVDD for Case 6 in monitoring the penicillin fermentation process. 
SVDD: Support vector data description; MSSVDD, multiple subspaces SVDD; PCA-MSSVDD: principal component analysis - multiple 
subspace support vector data description.

Figure 9. The comparison charts of the PCA-MSSVDD subspace for Fault 1 in monitoring the penicillin fermentation process. PCA-
MSSVDD: Principal component analysis - multiple subspace support vector data description.
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Figure 10. The comparison charts of the PCA-MSSVDD subspace for Fault 2 in monitoring the penicillin fermentation process. PCA-
MSSVDD: Principal component analysis - multiple subspace support vector data description.

Figure 11. The comparison charts of the PCA-MSSVDD subspace for Fault 3 in monitoring the penicillin fermentation process. PCA-
MSSVDD: Principal component analysis - multiple subspace support vector data description.
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Figure 12. The comparison charts of the PCA-MSSVDD subspace for Fault 4 in monitoring the penicillin fermentation process. PCA-
MSSVDD: Principal component analysis - multiple subspace support vector data description.

Figure 13. The comparison charts of the PCA-MSSVDD subspace for Fault 5 in monitoring the penicillin fermentation process. PCA-
MSSVDD: Principal component analysis - multiple subspace support vector data description.
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they can be detected in the second subspace. Fault 2 occurs on Variable 2, so it can be detected in the 
second subspace. Faults 3 and 6 are both faults occurring on Variable 3, so they can be detected in the first 
subspace. The information of Variables 1 and 2 is mainly projected into the second subspace, while the 
information of Variable 3 is mainly projected into the first subspace.

Using the above six test faults of the penicillin fermentation process simulation, the comparison of the false 
alarm rate of the penicillin fermentation process monitoring based on multi-way principal component 
analysis (MPCA)[24], multi-way independent component analysis (MICA)[25], batch dynamic principal 
component analysis (BDPCA)[26], mixture probabilistic principal component analysis (MPPCA)[27], and 
PCA-MSSVDD is shown in Table 7. For Faults 4-6, PCA-MSSVDD has the most merit. Based on MPCA, 
MICA, BDPCA, MPPCA, and PCA-MSSVDD, the false negative rate of the penicillin fermentation process 

Figure 14. The comparison charts of the PCA-MSSVDD subspace for Fault 6 in monitoring the penicillin fermentation process. PCA-
MSSVDD: Principal component analysis - multiple subspace support vector data description.

Fault serial number
MPCA MICA BDPCA MPPCA PCA-MSSVDD

T2 SPE I2 SPE T2 SPE T2 SPE DR
1 0 0.5 3.5 1.0 1.0 6.5 0 0 0.5
2 0 12.0 1.5 0 2.5 18.5 2.5 0 2.5
3 0 5.0 3.5 17.0 0.5 11.5 0.5 0.5 2.0
4 0 0 1.5 0.5 0 6.5 0 0 0
5 0 0 1.5 0 0 7.0 0 0 0
6 0 0 2.0 0 0 5.5 0 0 0

Table 7. The comparison of the false alarm rate using MPCA, MICA, BDPCA, MPPCA, and PCA-MSSVDD in monitoring the penicillin 
fermentation process

MPCA: Multi-way principal component analysis; MICA: multi-way independent component analysis; BDPCA: batch dynamic principal 
component analysis; MPPCA: mixture probabilistic principal component analysis; PCA-MSSVDD: principal component analysis - 
multiple subspace support vector data description.



Lv et al . Complex Eng Syst  2021;1:4  I  http://dx.doi.org/10.20517/ces.2021.02                                      Page 19

monitoring is shown in Table 8. For Faults 1-3, PCA-MSSVD has the optimal value. Based on MPCA, 
MICA, BDPCA, MPPCA, and PCA-MSSVDD, the monitoring error rate of the penicillin fermentation 
process is shown in Table 9. For Faults 1-3, PCA-MSSVDD has the optimal value. The first time to detect 
fault of the penicillin fermentation process monitoring based on MPCA, MICA, BDPCA, MPPCA, and 
PCA-MSSVDD is shown in Table 10. For Fault 1, PCA-MSSVDD has the optimal value. Therefore, in some 
test failures, PCA-MSSVDD has better monitoring results.

5. CONCLUSIONS
In this paper, a batch process monitoring algorithm based on PCA-MSSVDD is proposed by combining 
latent variable subspace design with SVDD. Subspace monitoring by PCA and K-means can effectively 
reduce the risk of inundation of variation features; using SVDD to establish subspace monitoring model 
can make the proposed method applicable to any non-Gaussian process.

Fault serial number
MPCA MICA BDPCA MPPCA PCA-MSSVDD

T2 SPE I2 SPE T2 SPE T2 SPE DR
1 100 54.2 99.0 40.5 33.6 71.5 48.9 95.1 27.6
2 100 68.2 98.6 88.8 44.8 72.1 75.2 95.8 39.9
3 88.3 51.5 92.8 97.5 49.0 77.6 42.5 42.5 33.2
4 100 48.4 98.1 39.9 47.1 66.3 47.5 96.5 42.2
5 100 96.6 99.1 86.8 98.3 91.0 98.6 99.3 94.5
6 77.8 25.4 86.0 90.3 31.8 76.8 23.2 22.1 27.9

Table 8. The comparison of the missed alarm rate using MPCA, MICA, BDPCA, MPPCA, and PCA-MSSVDD in the monitoring the 
penicillin fermentation process

MPCA: Multi-way principal component analysis; MICA: multi-way independent component analysis; BDPCA: batch dynamic principal 
component analysis; MPPCA: mixture probabilistic principal component analysis; PCA-MSSVDD: principal component analysis - 
multiple subspace support vector data description.

Fault serial number
MPCA MICA BDPCA MPPCA PCA-MSSVDD

T2 SPE I2 SPE T2 SPE T2 SPE DR
1 75.1 40.8 75.2 30.7 25.5 55.4 36.7 71.5 20.8
2 75.1 54.2 74.5 66.7 34.3 58.9 57.1 72.0 30.6
3 66.3 40.0 70.6 77.5 36.9 61.2 32.1 32.1 25.5
4 75.1 36.3 74.1 30.1 35.4 51.5 35.7 72.5 31.7
5 75.1 72.6 74.8 65.2 73.9 70.2 74.1 74.6 71.0
6 58.5 19.1 65.1 67.8 23.9 59.1 17.5 16.6 21

Table 9. The comparison of the error rate using MPCA, MICA, BDPCA, MPPCA, and PCA-MSSVDD in monitoring the penicillin 
fermentation process

MPCA: Multi-way principal component analysis; MICA: multi-way independent component analysis; BDPCA: batch dynamic principal 
component analysis; MPPCA: mixture probabilistic principal component analysis; PCA-MSSVDD: principal component analysis - 
multiple subspace support vector data description.

Fault serial number
MPCA MICA BDPCA MPPCA PCA-MSSVDD

T2 SPE I2 SPE T2 SPE T2 SPE DR
1 / 100 397 100 100 100 100 127 100
2 111 101 105 101 104 101 100 111 105
3 142 137 121 137 106 106 104 142 121
4 / 142 395 163 166 112 142 352 125
5 397 171 106 102 102 108 102 397 106
6 334 164 328 194 171 148 167 166 161

Table 10. The comparison of the first time to detect fault using MPCA, MICA, BDPCA, MPPCA, and PCA-MSSVDD in monitoring the 
penicillin fermentation process

MPCA: Multi-way principal component analysis; MICA: multi-way independent component analysis; BDPCA: batch dynamic principal 
component analysis; MPPCA: mixture probabilistic principal component analysis; PCA-MSSVDD: principal component analysis - 
multiple subspace support vector data description.
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Through the numerical simulation process and penicillin fermentation simulation process test, the 
comparison results between PCA-MSSVDD and SVDD show that the subspace monitoring algorithm 
can effectively reduce the risk of variation characteristics being submerged and improve the monitoring 
performance. The comparison results between PCA-MSSVDD and MSSVDD show that the fault detection 
capability of PCA-MSSVDD may be higher than that of MSSVDD or lower than that of MSSVDD. For 
local failures of weakly correlated variables, the proposed PCA-MSSVDD method will have better results, 
while, for strongly correlated variables, the MSSVDD method will have better results, and both methods 
have better performance than SVDD.
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