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Abstract
Intricate interactions among commensal bacteria, dietary substrates and immune responses are central to defining 
microbiome community composition, which plays a key role in preventing enteric pathogen infection, a dynamic 
phenomenon referred to as colonisation resistance. However, the impact of diet on sculpting microbiota 
membership, and ultimately colonisation resistance has been overlooked. Furthermore, pathogens have evolved 
strategies to evade colonisation resistance and outcompete commensal microbiota by using unique nutrient 
utilisation pathways, by exploiting microbial metabolites as nutrient sources or by environmental cues to induce 
virulence gene expression. In this review, we will discuss the interplay between diet, microbiota and their 
associated metabolites, and how these can contribute to or preclude pathogen survival.
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INTRODUCTION
The gut microbiota has coevolved with its host over millions of years and augments the coding potential of 
the human genome (~22,000 genes) by upwards of 500-fold[1]. Indeed, the human genome itself, encodes at 
most only 17 enzymes involved in food digestion, mainly the digestion of starch, sucrose and lactose[2]. On 
the other hand, our gut microbiota encodes upwards of 60,000 Carbohydrate-Active Enzymes, with diverse 
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specificities, facilitating the depolymerisation and fermentation of complex dietary polysaccharides into host 
utilisable short-chain fatty acids (SCFAs)[3]. This gut microbiota is heterogeneous and highly personalised, 
and while bacterial enterotypes cluster independently of nationality, ethnicity, sex, age, or body mass 
index[4], diet is the dominant selective force that defines microbiota membership and functionality[5]. Diet is 
also the simplest to customise and therefore presents the most straightforward route for therapeutic 
intervention.

The distribution of bacteria throughout the gastrointestinal (GI) tract varies, from 103-104 cells/mL in the 
stomach and upper small intestine, to 1011 cells/mL in the colon[6]. Furthermore, the taxonomic composition 
of these communities is niche-specific, and largely defined by the nutritional requirements of the residing 
bacteria. These contentions are supported by observations in gnotobiotic mouse models whereby 
concentrations of individual dietary components correlate with the relative abundance of specific 
microbiota members[7]. For example, Bacteroides cellulosilyticus has the ability to be controlled by 
administration of different concentrations of the prebiotic fibre arabinoxylan[8]. This phenomenon opens up 
the potential for therapeutic probiotic colonisation, which has been demonstrated by Kearney et al.[9]; 
administration of the seaweed polysaccharide polyphyran and a polyphyran-degrading commensal 
Bacteroides plebius enabled successful engraftment of this species.

The majority of human enteric pathogens are part of a small group of bacterial families that belong to the 
phylum Proteobacteria; the Enterobacteriaceae, i.e., Escherichia coli (E. coli), Yersinia, Salmonella, Shigella; 
the Vibrionaceae (Vibrio cholera) and the Camplyobacteriaceae (Camplyobacter)[10]. Bacterial pathogens 
must overcome an array of obstacles such as oesophageal peristalsis, stomach pH and locating a permissible 
niche in the intestine in order to access nutrients to begin replication and to achieve successful colonisation 
in the GI tract. The final hurdle is to overcome resident commensal bacteria of the large intestine. 
Continuous competition for nutrients, and compartments, the production of antimicrobial substances by 
commensals, and the barrage of immune responses evoked by the commensals themselves collectively give 
way to the phenomenon of colonisation resistance. For example, commensal symbionts and their related 
pathogens often compete with each other for metabolic resources compared with distant unrelated species. 
These metabolites include diverse carbon sources, bile acids, trace metals and vitamins. An overview of 
some metabolites influencing pathogen virulence and fitness can be found in Table 1. Those bacteria which 
possess high-affinity transporters for available nutrients will ultimately define the microbial community 
structure, but also serve as a barrier for GI pathogens. However, many pathogens confer the ability to 
subvert competition with commensal bacteria, often by generating their own specific niche to suit their 
metabolic needs. As an example, invasion of epithelial cells provides an environment suited to intracellular 
pathogens. Additionally, there is accumulating evidence to suggest that intestinal pathogens/pathobionts 
may subvert and exploit the host immune response to induce microbial dysbiosis and improve conditions 
for their subsequent colonisation[11]. Furthermore, intestinal pathogens have evolved unique nutrient 
utilisation pathways in relation to their symbiotic counterparts; Escherichia can utilise alternative sugar 
sources to that of their commensal rivals[12], and gain a competitive advantage. In this regard, what we 
consume may have the potential to alter bacterial networks and shift the balance in favour of or against 
pathogen survival.

Accumulating evidence over the past decade has linked the high-fat/high-sugar/low-fibre “Western diet” 
with a myriad of the ever-increasing glycemic index and metabolic disorders. It is widely acknowledged that 
the microbial dysbiosis resulting from this lifestyle is a major contributing factor to the epidemic of 
glycemic index and metabolic disorders[13]. One could speculate whether long-term dietary regimes could 
increase or decrease the host’s colonisation resistance to enteric pathogens or opportunistic pathobionts. In 
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Table 1. Metabolites influencing pathogen virulence and fitness

Pathogen Gene expression Gene function Metabolite Ref.

EHEC LEE-encoded T3SS Adherence ↑Butyrate [87]

EHEC LEE-encoded T3SS Adherence ↑Ethanolamine [165]

EHEC LEE-encoded T3SS Adherence ↑Succinate [166]

EHEC LEE-encoded T3SS Adherence ↑Oxygen [167]

EHEC LEE-encoded T3SS Adherence ↓D-serine [168]

EHEC Adhesions Adherence ↑Ethanolamine [169]

EHEC Adhesions Adherence ↑Choline [169]

EHEC iha Adherence ↑Butyrate [74]

EHEC FliC Motility ↑Acetate [73]

EHEC GvrA/LEE-encoded T3SS Acid resistance ↑Bicarbonate [170]

EHEC Qse Quorum sensing ↑Ethanolamine [169]

EHEC Qse Quorum sensing ↑Fucose [171]

EHEC Stx Toxin ↑Ethanolamine [169]

EHEC SdhA Respiration ↑Fumarate [172]

EHEC EspA/EspB A/E lesions ↑Indole [134]

AIEC tdc/sda Inflammed gut colonisation ↑L-serine [137]

Salmonella SPI-1 Invasion ↑Acetate [68]

Salmonella SPI-1 Invasion ↑Formate [66]

Salmonella Hyb Invasion ↑Hydrogen [173]

Salmonella SPI-2 Intracellular replication ↑Ethanolamine [174]

Salmonella ttrSR ttrBCA Inflammed gut respiration ↑Tetrathionate [175]

Salmonella fraBDAE Carbon/nitrogen utilisation ↑Fructose-asparagine [176]

Salmonella pduA-X Inflammed gut respiration ↑1,2-propandiol [177]

Salmonella SPI-1 Invasion ↓Indole [133]

C. difficile TcdAB Toxin ↑Butyrate [178]

C. difficile TcdAB Toxin ↓Pyruvate [179]

C. difficile Slec Germination ↑Taurocholate [180]

C. difficile CD2344 Respiration ↑Succinate [181]

C. difficile PrdB Nutrient utilisation ↑Proline [139]

C. difficile tcdB/Spo0A Toxin/sporulation ↓Secondary bile acids DCA LCA [182]

V. cholerae tcpA Pilus/colonisation ↑Autoinducer-2 (AI-2) synthase [183]

V. cholerae rtxA/hylA Toxin ↑Autoinducer-2 (AI-2) synthase [183]

V. cholerae flrA Motility ↑Cholesterol [184]

V. cholerae ctxAB/tcpA Toxin/motility ↓Sodium [185]

↑Upregulates. ↓Downregulates.

this review, the interactions among diet, the microbiota, colonisation resistance and pathogen performance 
will be examined by focusing on the keystone taxa and metabolites involved.

BREAST MILK AND SOLID FOODS IN EARLY LIFE PROTECT AGAINST ENTERIC 
INFECTION BY MODULATING THE GUT MICROBIOTA
Neonates face an increased susceptibility to GI infections. This susceptibility in newborns has been generally 
attributed to the immaturity of the adaptive and innate immune systems; premature newborns often display 
a heightened risk of suffering from excessive inflammation, which decreases as they age[14]. Given that the 
gut microbiota is involved in the development of the immune system[15] and the neonatal microbiota is less 
diverse than the adult microbiota, research is shifting toward the potential role that specific gut taxa play in 
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the maturation of immune function and colonisation resistance.

Naturally delivered infants are generally dominated by bacterial groups associated with maternal vaginal 
microbiota (e.g., Atopobium, Bacteroides, Clostridium, E. coli, Streptococcus spp. and Prevotella), whereas C-
section-born infants are dominated by the taxa associated with the skin microbiota such as Staphylococcus 
spp.[16]. Breastfeeding aids in the initial colonisation of key taxa: Bifidobacterium and Lactobacillus[17], with 
the former involved in the digestion of human milk oligosaccharides (HMOs), which are resistant to human 
enzymatic digestion[18]. The resulting fermentation of these compounds produces lactate[19] and SCFAs, 
specifically acetate, which accounts for 80% of the total SCFA production in the infant gut[20] compared with 
50% in the adult gut[21]. The acidic end products of HMO fermentation are linked to a lower intestinal pH 
and may be crucial to maintaining colonisation resistance in infants [Figure 1]. The interactions between 
pathogens and SCFAs will be discussed later.

The distinction between microbiota community composition of human breast milk-fed and formula-fed 
infants is clear, with the general consensus that human breast milk directs the propagation of beneficial 
bacteria and their related metabolites[22]. Lactation drives the colonisation of Bifidobacterium in infants, and 
has been shown to play a key role in the maturation of the immune system (for a review, see Ref.[23]). 
Moreover, in mice, IgG in breast milk derived from mothers previously infected with Citrobacter 
rodentium, is passed to the offspring, enhancing colonisation resistance when challenged by this 
pathogen[24]. Probiotics derived from breast milk have shown great promise in mitigating the risk of 
necrotising enterocolitis (NEC), the most common GI disease in preterm infants and the leading cause of 
death in extremely preterm infants from 2 weeks to 2 months of age[25]. Perhaps the most promising 
“probiotic” is Bifidobacterium longum subsp. infantis, an extremely proficient coloniser of the infant gut, 
and exhibits decreasing NEC incidence in neonates[26]. More recently, a human breast milk-derived 
commensal Propionibacterium strain UF1, belonging to the same phylum as Bifidobacterium, the 
Actinobacteria, has been shown to mitigate NEC-like injury in mice[27] and conferred protection against 
Listeria monocytogenes infection[28].

Along with Bifidobacterium, the other key taxa involved in the fermentation of HMOs are Bacteroides[29]. 
Vaginal birth and breastfeeding significantly improve Bacteroides colonisation[30], suggesting a long 
coevolved symbiotic relationship between the host and taxa, and this symbiosis is reflected in studies 
demonstrating their role in immune system development[31,32]. For example, the immunosuppressive effect 
of the capsular exopolysaccharide, polysaccharide A from B. fragilis is achieved by promoting differentiation 
of regulatory T cells (Treg)[32], which may be beneficial to the host given that many pathogens favour a gut-
inflamed environment. However, the supposed reliance on Bacteroides spp. for the development of the 
infant immune system is not clear, as an observational study in Northern Europe observed reduced 
prevalence of Bacteroides and Type I diabetes (T1D) in Russian children, relative to their counterparts from 
Finland and Estonia, where Bacteroides and T1D were more common[33]. The Bacteroidetes phylum 
primarily produces acetate and propionate[34]. Acetate has been observed to decrease the frequency of 
autoreactive T cells, and a diet designed to release large amounts of acetate protected against the 
development of T1D in mice[35]. However, Bacteroides spp. that may be a risk factor for T1D, might be 
unrelated to the production of acetate and its associated metabolites, but more likely related to the 
overexposure to Bacteroides - associated LPS derived from HMO-utilising Bacteroides[33].

As the diet changes from maternal milk to fibre-rich foods as the infant matures, the infant microbiome 
acquires members of Bacteroidales and the butyrate-producing Clostridiales. Clostridium species have been 
associated with the increasing abundance and activity of Treg cells in the colon[36] by providing bacterial 
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Figure 1. Metabolism of human milk oligosaccharides (HMOs) lowers gut pH boosting colonisation resistance; HMOs are metabolised 
by initial colonisers (Bifidobacterium longum ssp. infantis and Bacteroides) in the infant gut, producing SCFAs and subsequently lowering 
pH & increasing colonisation resistance against gastrointestinal pathogens. SCFAs: Short-chain fatty acids.

antigens. Administration of members of the Clostridiales, but not Bacteroidales, provided protection to 
germ-free adult mice, colonised with neonatal microbiota, against infection from Salmonella and 
Citrobacter[37]. These researchers hypothesise that in the first days of life, oxygen consumption by aerobic 
bacteria or facultative anaerobes enhances the ability of the strict anaerobes, Clostridiales, to colonise the 
gut, which, in turn, provides protection against pathogen infection. Furthermore, when succinate was 
administered in the drinking water to mice, it reduced oxygen intestinal content, which in turn, enhanced 
Clostridales colonisation. Interestingly, the authors demonstrated that it was these bacterial groups that 
abrogated infection and that host immunity did not contribute to the Clostridia-mediated effect. Similarly, a 
longitudinal study examining faecal samples from an asymptomatic infant carrier of Clostridioides difficile 
(an infant female born by C-section), from pre-weaning to weaning, revealed a dramatic change in 
microbiota composition within the first five days of transition from breast milk to cow’s milk and solid 
foods[38]. A rapid decline and eventual disappearance of C. difficle, accompanied by an increase in the 
relative abundance of Bacteriodales/Clostridiales observed during weaning, were likely responsible for the 
expulsion of C. difficile.

THE ROLE OF DIETARY FIBRE IN PROMOTING MICROBIAL DIVERSITY, MAINTAINING 
THE MUCUS BARRIER AND THE LINK WITH COLONISATION RESISTANCE
There is an appreciation that the diet of westernised nations has declined in the quantity of fermentable 
fibre intake, which has been associated with the coincidental rise in diseases such as heart disease, diabetes 
and colorectal cancer[39]. Human populations with a diet rich in dietary fibre exhibit increased diversity of 
the microbiota, such as experienced by the Hadza tribal people from Tanzania[40]. Conversely, a 
“westernised” low fibre diet can result in a progressive loss of microbial diversity[41]. While there is a greater 
prevalence of GI pathogen infections in developing countries compared with their western counterparts[42], 
this may be attributed to poverty-related risk factors and sanitation practices. Interestingly, in a study 
comparing the microbiota of children from Burkina Faso and their European counterparts, it was observed 
that Enterobacteriaceae (Shigella/Escherichia) were underrepresented in the Burkina Faso cohort relative to 
European children[43]. The authors hypothesised that the high fibre diet consumed by the Burkina Faso 
children selects for a bacterial community capable of maximising energy intake from the fibres, while at the 
same time protecting them from potential enteropathogens. However, whether diet-induced increases in 
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microbial diversity or specific taxa and their related metabolites can improve colonisation resistance in 
humans is an intriguing but essential question to answer. The majority of studies to date supporting the 
inverse link between diversity and infection stem from murine models. Both germ-free and antibiotic-
treated mice display increased susceptibility to enteric infections, which are associated with reduced 
microbiota diversity[44,45]. While the bulk of studies supports microbial-induced benefits derived from 
fermentable fibre, recent evidence suggests that cellulose, an insoluble fibre, also exerts enrichment in 
protective microbial species and provides colonisation resistance[46]. A comparison of the impact of soluble 
dietary fibre (oat β-glucan) versus insoluble dietary fibre (microcellulose) in mice gut microbiota reported 
reduced alpha-diversity (distribution of species abundances) and higher relative abundance of fibre-
degrading Bacteroides and pathogenic Proteobacteria in the former[47], indicating potential cross-feeding 
between commensals and pathogens. Higher alpha-diversity was observed when the two fibres were mixed, 
and may be explained by an increase in carbon sources providing substrates for a larger range of bacterial 
taxa. Such mixtures would reflect better a human diet, which contains a mixture of soluble and insoluble 
fibres.

SCFAs are the end products of the fermentation of dietary fibres and have a broad range of effects on 
mammalian host physiology, can attenuate inflammation, and alter the microbial composition and 
pathogen virulence. SCFAs are saturated aliphatic organic acids comprised of one to six carbons, of which 
acetate (C2), propionate (C3) and butyrate (C4) are the most abundant (> 95%)[48]. The success of the 
invading pathogen depends on the biotic interactions within the community, including exchanging and 
competing for metabolites[49]. The effect of SCFAs can be a double-edged sword for invading pathogens, 
with beneficial or inhibitory effects depending on concentration and environmental pH.

The glycoprotein-rich layer that covers the gut epithelium provides the first line of defence against both 
commensal and pathogenic bacteria. Evidence has suggested that reduced dietary fibre intake is associated 
with a thinner colonic mucus[50]. Indeed, a recent study demonstrated that during chronic or intermittent 
fibre deficiency in mice, the gut microbiota degraded the host-secreted glycoproteins as an energy source, 
and in turn, resulted in an unstable mucus barrier function, increasing susceptibility to infection by 
C. rodentium[51]. One of the key players in the mucosal-microbiota environment is Akkermansia 
muciniphila, comprising 1%-4% of colonic microbes, which preferentially degrades mucin as its primary 
nutrient source[52] and is inversely correlated with a myriad of GI diseases. The distribution of Akkermansia 
in the GI tract of vertebrates is vast[53], suggesting a long-term co-evolutionary relationship with their hosts 
and underlining their symbiotic importance. Mucus consists primarily of the heavily O-glycosylated 
protein, mucin 2, which Akkermansia can degrade with an arsenal of enzymes[54]. Continuous production of 
mucin by the goblet cells contributes to both mucin presence in the mucus layer and in the colonic 
lumen[55]. Akkermansia turnover of mucin contributes to the maintenance of intestinal integrity and 
microbial community homeostasis. Other species, including Bacteroides thetaiotaomicron and 
Bifidobacterium bifidum, that possess the capacity to break down mucus O-glycans have been identified in 
some studies[56]. Acetate producers like B. thetaiotaomicron may require a commensal adjuvant, e.g., 
Faecalibacterium prausnitzii, an acetate consumer and butyrate producer, in order to maintain colonic 
epithelial homeostasis[57]. F. prausnitzii is capable of immunosuppression through blocking of NF-κB 
activation and anti-inflammatory cytokine production, and reduced abundance of F. prausnitzii has been 
observed in inflammatory bowel disease (IBD) subjects[58], indicating a harmonious relationship between 
mucosal commensals and the host in a healthy gut environment. Conversely, the glycans released from the 
mucin may actually provide a food source for GI pathogens. Ng et al.[59] demonstrated that Salmonella and 
C. difficile thrived on B. thetaiotaomicron-liberated glycans following antibiotic-induced disruption of 
mono-colonised mice compared to germ-free mice.
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The western-style diet (high-fat/low-fibre) has been associated with a decrease in Bacteroides, 
Bifidobacterium and Akkermansia[60], subsequently affecting intestinal mucosal homeostasis and 
permeability; the effects of which can be ameliorated by the addition of dietary fibres[60], and thereby 
potentially protecting against infection[51]. Moreover, the Western diet is characterised by an increase in the 
Firmicutes/Bacteroidetes ratio and weight gain in humans. A link between obesity and risk of infection with 
the enteric pathogen C. difficile has been identified[61], and C. difficile colonisation has been attenuated in 
mouse models by the addition of dietary fibre[62], suggesting a fibre deficient lifestyle may be a risk factor for 
C. difficile infection (CDI) and persistence. Collectively, these data suggest that individual fibres select for 
bacteria that are best at metabolising the specific fibre, leading to reduced diversity and hence a higher risk 
for colonisation of pathogens. Mixtures of dietary fibres that better represent a human diet promote higher 
gut microbiota diversity, and thus improve colonisation resistance and mucosal integrity.

THE DOUBLE-EDGED SWORD OF SHORT-CHAIN FATTY ACIDS
Of the three major SCFAs, acetate is the most abundant, constituting approximately 60% in the colon and 
stool[63]. It can be produced from pyruvate via acetyl-CoA by most of the enteric bacteria (Akkermansia 
muciniphila, Bacteroides spp., Bifidobacterium spp., Prevotella spp., Ruminococcus spp.) or from pyruvate 
via the Wood-Ljungdahl pathway (Blautia hydrogenotrophica, Clostridium spp., Streptococcus spp.)[21]. 
Acetate may have anti-inflammatory effects in vivo, by decreasing the LPS-stimulated TNFα response from 
neutrophils[64], albeit to a lesser extent than butyrate and propionate.

Many pathogens use SCFAs as environmental cues to determine their biogeographical location within the 
gut and switch on genes accordingly, e.g., virulence factors to colonise the preferential location. For 
example, Salmonella typhimurium preferably colonises the ileum[65], where the typical concentration of 
acetate is 30 mM. This concentration enhances the expression of SPI-1 (Salmonella Pathogenicity Island 1)-
encoded T3SS (Type three secretion system), which is involved in the invasion of the host. Similarly, SPI-1 
gene expression is promoted in the presence of minute concentrations of formate (~8 mM), like those 
encountered in the ileum[66], suggesting S. typhimurium has multiple mechanisms to determine its 
biogeographical location. Furthermore, streptomycin-treated mice were more susceptible to S. typhimurium 
infection in the ileum compared with untreated mice, where the SCFA concentrations remained unchanged, 
suggesting that ileal commensal bacteria can also affect S. typhimurium virulence, likely by physically 
blocking colonisation or contributing to the immune response[67]. On the contrary, higher concentrations of 
propionate and butyrate, or the absence of formate, i.e., similar to conditions found in the colon, suppress 
the expression of T3SS[68], and invasion is inhibited. Colonic environmental cues likely initiate adaptation of 
S. typhimurium gene expression to endure environmental insults and/or preparation for transmission to a 
new host. Interestingly, a recent study observed reduced ileal colonisation of Salmonella in mice which were 
pre-treated with a consortium of Bacteroides spp. with a high capacity for production of propionate[69], 
through disruption of intracellular pH homeostasis.

Similarly, Enterohaemorrhagic E. coli (EHEC) utilises SCFAs for virulence gene regulation; its preferred site 
of colonisation and infection is the colon[70], where the ratio of acetate/butyrate tends to be lower. However, 
some studies have demonstrated that acetate can be refractory to the virulence of EHEC[71] by lowering 
intestinal pH[72]. Mixtures of SCFAs that represent the small intestine significantly upregulate EHEC flagellar 
genes and motility, whereas colonic SCFA concentrations have a down-regulatory effect[73]. Expression of 
the iha gene that encodes an adherence-conferring outer membrane protein, however, is upregulated by 
EHEC in the small intestine[74], and is crucial for colonisation and infection. Consequently, ileal SCFA 
concentrations activate EHEC flagellar production and motility, followed by expression of genes involved in 
type III secretion and adherence when approaching colonic SCFA concentrations[75], thereby permitting 



Page 8 of Strain et al. Microbiome Res Rep 2022;1:13 https://dx.doi.org/10.20517/mrr.2021.1023

efficient adherence in EHEC’s preferred niche. Production of acetate by Bifidobacterium has been 
demonstrated to inhibit the translocation of Shiga toxin of the EHEC 0157:H7 from the gut lumen[76] and 
prevent 0157:H7-induced colonic epithelial cell death via Bifidobacterium acetate-upregulated carbohydrate 
transporters[77]. Campylobacter jejuni has similar mechanisms to sense metabolites and hence spatial 
distribution. In avian hosts, where C. jejuni behave as symbionts in the lower GI tract, concentrations of 
acetate are high and allow for the expression of genes that permit commensal colonisation[78]. Conversely, 
high concentrations of lactate, similar to those observed in the upper GI tract, where C. jejuni colonises less 
efficiently, repress the genes involved in colonisation. The authors speculate whether C. jejuni utilises 
similar environmental cues in order to colonise humans and, thereby, cause diarrhoeal disease.

SCFAs have also been associated with concentration-dependent negative effects on C. difficile growth[79], and 
as SCFA concentrations are reduced following antibiotic treatment, this could be a contributing factor to its 
subsequent colonisation. Other studies have demonstrated that SCFAs increase the expression of Toxin B 
(TcdB), an essential virulence factor[80]. SCFAs may serve as a signal to C. difficile of an inhospitable and 
competitive environment; therefore, upregulation of TcdB may provide a survival mechanism. The success 
of faecal microbiota transplants (FMT) in the treatment of CDI reinforces the role of commensal microbiota 
(Bacteroides, Clostridium clusters IX and XIVa) in the treatment of CDI[81]. Early in vitro studies have 
demonstrated that dietary fibre polysaccharides induce a bifidogenic effect and hence increase SCFA 
production, which may result in enhanced colonisation resistance against C. difficile[82]. Likewise, an in vivo 
study found that C. difficile-infected mice fed a diet rich in dietary fibre had stimulated the growth of fibre-
utilising taxa (Bacteroides spp.) and their associated metabolites, i.e., SCFAs[62], with decreased C. difficile 
fitness and numbers, while toxin expression was increased[62].

Among the major SCFAs, butyrate is the most extensively studied, largely due to its beneficial effects on 
both colonocyte energy metabolism and intestinal homeostasis[83]. Butyrate is the least abundant of the three 
SCFAs produced, comprising 15% of the total SCFA pool in humans[84]. Butyrate can upregulate mucin 2, 
reinforcing the mucus layer of the intestinal mucosa, and leading to enhanced protection against luminal 
pathogens[85]. Butyrate is formed in the so-called “classical pathway”, by the condensation of two molecules 
of acetyl-CoA, and the subsequent reduction to butyryl-CoA, which can be converted to butyrate by 
members of the Clostridia family (Anaerostipes spp., Coprococcus catus, Eubacterium rectale, Eubacterium 
hallii, F. prausnitzii, Roseburia spp.)[21,86]. Anaerostipes spp. and E. hallii are also capable of utilising lactate as 
the substrate for the production of butyrate. Alternatively, butyrate can be synthesised from butyryl-CoA by 
the phosphotransbutyrylase/butyrate kinase route (Coprococcus comes, Coprococcus eutactus)[86].

Butyrate is at its highest concentration in the colon, and specific pathogens use the high concentrations of 
butyrate as an environmental cue in order to express virulence factors. For example, EHEC exhibited high 
adherence to Caco-2 cells in the presence of butyrate, whereas acetate and propionate had little effect[87]. 
Similarly, Shiga toxin-producing E. coli (STEC) exhibit increased adherence in the presence of SCFA 
concentrations that reflect those that are found in the colon[74]. In a study by Zumbrun et al.[88], the authors 
demonstrated that a high fibre diet contributed to elevated butyrate and reduced commensal Escherichia 
compared to a low fibre diet; these resulting changes led to higher STEC colonisation, more weight loss and 
higher mortality in high fibre diet-fed mice. In IBD patients, faecal butyrate concentrations are higher than 
healthy controls, despite the lower abundance of butyrate-producing taxa[89], and this may be explained by 
its impaired uptake and oxidation by inflamed colonocytes. While colonic SCFA concentrations seem to 
exacerbate certain Escherichia pathologies, colonic concentrations of butyrate[90] and propionate[91] have an 
antagonistic effect towards invasion gene expression in Salmonella, by down-regulating expression of SPI-1.
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The butyrate-producing Clostridia are obligate anaerobes capable of maintaining healthy gut homeostasis. 
Under eubiosis, the Clostridia-derived butyrate is the major energy source for the colonocytes and activates 
epithelial signalling through the intracellular butyrate sensor PPAR-y, driving mitochondrial β-oxidation of 
this substrate. Salmonella virulence factors induce inflammation during the early stages of infection, and 
these virulence factors have been shown to deplete the butyrate-producing Clostridia from the gut-
associated community, leading to an epithelial aerobic environment which ultimately favours the aerobic 
expansion of the pathogen[92]. Moreover, antibiotic treatment resulting in a reduction of PPAR-y signalling, 
i.e., increased bioavailability of oxygen, has been shown to exacerbate this effect[93]. The reduced butyrate 
concentrations observed during Salmonella infection stimulate the colonocytes to switch from β-oxidation 
of butyrate to lactate fermentation and increase luminal lactate. Salmonella exploits this increase in lactate 
and utilises this carbon source for subsequent expansion[94]. Recently, genes involved in the direct β-
oxidation of butyrate have been identified in Salmonella, and excision of the operon drove the transition 
from a GI to an extraintestinal pathogen, i.e., non-typhoidal to typhoidal[95], suggesting utilisation of 
butyrate plays a crucial role in Salmonella GI disease. Moreover, specific members of Clostridia are some of 
the few bacterial species capable of utilising fructose-asparagine, a known food source for Salmonella, which 
improves its fitness[96], and could explain an evolutionary competition between these species.

In silico analysis of butyrate production pathways in GI pathogens has identified members of the 
Fusobacterium genus and a few pathogenic strains of Clostridium (C. tetani and C. tetanomorphum) with 
the ability to produce butyrate[97]. However, their capacity to synthesise butyrate involves amino acids, 
primarily glutamate and lysine, as substrates, and are different to those observed in commensals, which 
primarily ferment pyruvate for butyrogenesis. The end product of this amino acid fermentation yields 
ammonia, higher concentrations of which are associated with colorectal cancer (CRC)[98]. Additionally, 
increased Fusobacterium nucleatum abundances have been observed in CRC patients when compared with 
healthy controls, and has been suggested as a possible microbial biomarker in CRC development[99]. It 
remains to be seen whether CRC tumorigenesis is a cause or consequence of microbiota alterations; 
however, there are associations of an “inflammatory diet”, i.e., high consumption of red meat, processed 
meat and refined grains, with the prevalence of F. nucleatum-positive colorectal carcinomas[100].

On the whole, the effects of SCFAs on pathogen colonisation are concentration-dependent, with higher or 
lower concentrations having the capacity to be either antagonistic or hospitable, respectively, depending on 
the species and its preferred niche. Some examples of these differential effects of SCFAs can be found in 
Figure 2. The studies mentioned here only skim the surface on the complexity of the microbial and chemical 
interactions in the microbiota that influence health and disease.

PREBIOTICS
Prebiotics are selectively fermented ingredients that beneficially affect the host by stimulating the growth 
and/or functional activity of one or a limited number of bacteria in the colon, and thus improve host 
health[101]. The premise that these can potentially inhibit or obstruct the growth or virulence of pathogens is 
nothing new, and has been suggested as an alternative to antibiotic growth promoters in animals. The best-
documented benefits stem from the use of indigestible oligosaccharides, such as fructans and galactans[102]; 
however, consideration into the ability of pathogens to ferment or utilise the prebiotics or the associated 
metabolites should be taken into account[103]. Cereals, fruits and legumes are natural sources of prebiotics, 
whilst the active components are often synthesised using industrial chemical and enzymatic methods. The 
majority of prebiotic studies on pathogen inhibition to date involve livestock and animal models, which 
vary in terms of physiology and microbiota composition; therefore, care should be taken in translating these 
results to humans.



Page 10 of Strain et al. Microbiome Res Rep 2022;1:13 https://dx.doi.org/10.20517/mrr.2021.1023

Figure 2. Differential effects of dietary metabolites on pathogens; metabolites from fibre degradation by commensals have differential 
effects on the success of an invading pathogen. Acetate promotes the growth of Enterohemorrhagic E. coli (EHEC), whereas butyrate 
and propionate repress growth. Conversely, acetate represses Salmonella growth, whereas butyrate and propionate promote growth. 
Colonisation of Clostridioides difficile is increased by the cholesterol metabolites, primary bile acids. The commensal Clostridium scindens 
can limit the availability of primary bile acids by converting these to secondary bile acids, thus increasing colonisation resistance to C. 
difficile. SCFAs: Short-chain fatty acids.

Prebiotics such as fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS) are preferentially 
fermented into SCFAs by Bifidobacterium and Lactobacillus which have historically been viewed as 
beneficial bacteria, resulting in lowered luminal pH. The addition of oligosaccharides to poultry feed has 
been shown to increase Bifidobacterium and Lactobacillus populations, while also being refractory to 
E. coli[104] and Salmonella colonisation[105,106]. This outgrowth of prebiotic-utilising taxa has also been 
demonstrated to eliminate C. difficile in mice[62]. The prebiotic inulin is primarily composed of FOS and has 
been shown to ameliorate low-grade inflammation through microbiota-dependent induction of IL-22 
expression[107] and was able to prevent increased bacterial mucus penetration in high-fat diet-fed mice[108]. 
Furthermore, supplementation of high-fat diet-fed mice with B. longum restored mucus growth[108], 
suggesting that prebiotic and probiotic treatments have the potential to prevent intestinal mucus 
abnormalities, which is a consequence of a high-fat diet. However, a study by Miles et al.[109] demonstrated 
that inulin may actually have the potential to exacerbate disease severity in response to inducers of colitis 
such as dextran sodium sulphate (DSS) in both low-fat and high-fat diets. Moreover, inflammation is crucial 
for the successful colonisation of Salmonella, through the inflammatory-mediated expression of virulence 
factors; studies in rats have shown increased translocation of Salmonella when FOS is added to the diet[110]. 
Although the overwhelming data suggest the beneficial effects of inulin supplementation, more care is 
needed to define the specific mechanisms by which inulin impact the gut microbiota to protect against the 
effects of inflammation and improve mucosal integrity.

The other extensively studied prebiotic is GOS, which is commercially produced from lactose using 
glycoside hydrolases that catalyse transgalactosylation reactions[111]. In vitro studies have demonstrated the 
protective effect of GOS against EHEC and Cronobacter sakazakii, through an anti-adherence 
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mechanism[112]. Interestingly, a recent study on the in vivo protective effects of GOS on the murine EHEC 
model pathogen, C. rodentium, showed that GOS treatment prevented pathogen-induced intestinal tissue 
damage, independent of anti-adherence activity and C. rodentium abundance[113]. In terms of the effect of 
GOS on microbiota composition, studies have identified a clear bifidogenic effect of GOS, while 
simultaneously lowering E. coli, Helicobacter and Clostridium spp. abundances[114]. The combined effects of 
the prebiotic on SCFA production, microbiota composition, pathogen virulence and fitness make it difficult 
to pinpoint the exact mechanism involved in providing a protective effect. This lack of a known mechanism 
underscores the importance of thorough analysis in animal studies before extrapolating results to humans.

DIETARY LIPIDS AND BILE ACIDS
Bile acids are amphipathic biological detergents produced by the liver with the primary function of 
metabolising lipids in the GI tract[115], and their production is linked to the ingestion of fatty foods. Those 
bile acids, which are not reabsorbed into the liver (~5%), can serve as substrates for colonic microbial 
metabolism, i.e., hydrolysis of conjugated bile acids by bile salt hydrolases or biotransformed into secondary 
bile acids by 7α-dehydroxylation, where they are either excreted in faeces or recirculated back into the liver 
through the enterohepatic circulation[116]. Thus, changes in microbiota composition culminate in changes in 
the bile acid pool, and this homeostatic imbalance is associated with a range of disease states, including 
CRC, IBD and recurrent CDI[117]. Recent advances have identified specific operational taxonomic units, i.e., 
closely related bacteria, involved in bile acid biotransformations and correlate to a loss of specific taxa with 
the development of disease. For example, the previous infection of mice with Yersinia pseudotuberculosis 
remodels the microbiota to enrich for Deltaproteobacteria, a taurine metabolising class of bacteria which 
provide colonisation resistance to the pathogen Klebsiella pneumoniae[118]. Thus, commensal bile acid 
interactions are intrinsically linked in both mitigation and amplification of colonisation resistance. 
Identifying the biochemical mechanisms which underpin the effect on colonisation resistance will improve 
our knowledge going forward and open up new avenues for therapeutic manipulation of the microbiota.

Antibiotic-induced destruction of the microbiota is associated with recurrent CDI. The protective role of 
the microbiota against C. difficile can be consolidated by the success of FMT[81]. C. difficile spores must 
germinate in vivo to develop into actively growing bacteria to produce enough toxins to initiate infection. In 
vitro, primary bile acids stimulate germination, and secondary bile acids inhibit this process[119]. Indeed, 
these interactions [Figure 2] have been shown in vivo, whereby depletion of secondary bile acids in the 
ileum resulted in C. difficile germination and growth[120]. Moreover, inflammation induced by C. difficile 
toxins subsequently changes this pathogen’s nutrient metabolism pathways and enables it to thrive in the 
inflamed gut, particularly on products of collagen degradation, outcompeting commensal bacteria aside 
from members of the Bacteroides genus, which can also utilise collagen degradation products[121]. In a study 
by Buffie et al.[122], the authors identified a single commensal that conferred resistance to C. difficile; 
Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, which enhanced resistance in a 
secondary bile acid-dependent fashion. C. scindens-mediated restoration of secondary bile acids from host-
derived bile salts were sufficient in inhibiting C. difficile germination, underpinning the pivotal role 
commensal bile acid-metabolising bacteria play in preventing recurrent CDI. Patients successfully treated 
for recurrent CDI have an enrichment of bile salt hydrolase-producing bacteria, the abundance of which 
negatively correlates with faecal concentrations of taurocholic acid, a primary bile acid[123]. While obesity has 
been identified as a risk factor for CDI[61], and the microbiota composition of obese subjects is characterised 
by a decrease in the Bacteroidetes/Firmicutes ratio, there is no evidence to suggest that bile acid synthesis or 
enterohepatic circulation is altered by obesity. However, an obesity-driven altered and less diverse 
microbiota coupled with antibiotic elimination of bile-acid metabolising bacteria may very well contribute 
to an increased risk of CDI.
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High-fat diets promote the biosynthesis of bile, which can impact commensal microbiota that are sensitive 
to bile acid concentrations. Additionally, pathogens such as S. typhimurium are quite resilient to high bile 
acid concentrations, and colonisation resistance to this pathogen is alleviated upon oleic acid or high-fat 
diet supplementation in mice[124], and colonisation resistance is improved when switched back to a plant-
based diet. Commensal E. coli that can compete with S. typhimurium through bile acid[124] or oxygen[125] 
competition could provide a means of protection against this pathogen.

PROTEIN AND AMINO ACIDS
Aberrations in microbiota community structure driven by antibiotics, infection and/or diet will affect 
protein homeostasis and can increase free amino acids in the gut, providing a nutritional niche upon which 
some pathogens can capitalise. Indeed, many gut pathogens such as EHEC[126], Vibrio cholerae[127], 
C. jejuni[128], and C. rodentium[129] have genes involved in amino acid biosynthesis upregulated upon gut 
colonisation. Moreover, the host relies on amino acid metabolism to support its immune responses against 
invading pathogens, with diets deficient in protein having a counterproductive effect on immune function, 
independent of the microbiota[130]. On the other hand, dietary administration of high protein and amino 
acid by-products stimulates the growth of pathogens[129] and protein-fermenting bacteria contribute to 
disease susceptibility[131]. Therefore, identifying commensal competitors and pathogen metabolic pathways 
involved in protein fermentation and amino acid biosynthesis may help in developing new strategies to 
encourage colonisation resistance through diet.

D-amino acids are biosynthesised by gut bacteria as opposed to L-amino acids which humans biosynthesise 
or obtain from the diet. Tryptophan is an essential amino acid from the diet in mammals and is primarily 
catabolised by commensal bacteria into various indole-containing metabolites. While tryptophan is required 
for optimal immune responses, such as T-cell proliferation, the commensal-mediated tryptophan 
metabolites can have differential effects on gut pathogens. In S. typhimurium, the tryptophan metabolite 
indole induces expression of genes related to efflux-mediated multidrug resistance[132], while concomitantly 
decreasing the expression of genes involved in invasion located on the SPI-1 pathogenicity island[133]. On the 
other hand, indole upregulates EHEC secretion of EspA and EspB via the type III secretion system, 
enhancing this pathogen’s ability to form attaching and effacing (A/E) lesions[134], while other indole-
derivatives can inhibit biofilm formation, motility and formation of A/E lesions[135]. The enzyme 
indoleamine 2,3-dioxygenase (IDO) catalyses the conversion of tryptophan into kynurenine, reducing the 
tryptophan pool in the gut, and thereby directly impacting various immune responses. C. difficile infection 
upregulates the expression of IDO, increasing the production of kynurenine, subsequently depleting the 
tryptophan pool, and thereby diminishing the immune responses of the host toward this pathogen[136]. All in 
all, tryptophan and its associated metabolites have direct effects on immune function and pleiotropic effects 
on gut pathogens, suggesting that this molecule will be of interest in colonisation resistance studies moving 
forward.

Many gut pathogens switch metabolic pathways depending on the environment, e.g., in inflammation. The 
pathobiont Adherent Invasive E. coli (AIEC) shifts its metabolism to catabolise L-serine in the inflamed gut 
to maximise growth potential[137], with L-serine having little effect on AIEC fitness in a healthy gut 
environment. Interestingly, AIEC bloom in the inflamed gut, and are significantly reduced when amino 
acids are decreased in the diet. C. difficile exploits the niche created following particular antibiotic 
treatments, and this dysbiotic environment has increased the availability of amino acids. Specifically, a 
recent study demonstrated that C. difficile is dependent on L-proline metabolism, as L-proline knockout C. 
difficile strains were unable to colonise the gut of germ-free mice transplanted with either a dysbiotic or 
healthy microbiota[138]. Furthermore, low-protein or low-proline diets given to mice substantially decreased 
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wild-type C. difficile expansion suggesting that C. difficile is dependent on proline for adequate colonisation, 
which can potentially be mediated through dietary intervention. Furthermore, commensals such as 
members of the Clostridia class, decreased the fitness advantage of C. difficile’s  ability to ferment proline, 
through competition for this amino acid[139]. Likewise, EHEC was found to be reliant on proline for 
colonisation, with commensal E. coli that compete for proline attenuating the expansion of EHEC[140].

As discussed above, the microbiota can limit the colonisation of invading pathogens by depleting the 
concentration of amino acids in the gut. Some pathogens can overcome this problem by inducing amino 
acid biosynthesis to subvert such a deficiency. Transposon sequencing is a powerful tool and allows for the 
generation of a library of random pathogen mutants, for example, those defective in amino acid 
biosynthesis pathways[141]. This technique provides a means to estimate the fitness contribution or 
essentiality of each genetic component in a bacterial genome. Caballero-Flores et al.[129] applied this to C. 
rodentium and found that specific mutants deficient in the production of arginine, threonine, histidine, 
tryptophan, or isoleucine lost their competitive advantage in mice, compared to wild-type C. rodentium. 
Moreover, these genes were significantly upregulated in conventional mice as opposed to germ-free mice, 
suggesting that C. rodentium specifically use these pathways to outcompete the microbiota. Feeding of a 
high-protein diet to mice produced markedly better colonisation of C. rodentium compared to normal 
chow. While mouse studies like these inform a mechanistic understanding of pathogen colonisation, the 
importance of these findings in relation to human disease warrant further investigation.

TRACE ELEMENTS
As mentioned earlier, the majority of human enteric pathogens belong to the phylum Proteobacteria. In the 
normal intestine, which is largely inhabited by commensals, mainly Bacteroidetes and Firmicutes, 
Proteobacteria only constitute < 1% of microbiota populations. The outgrowth of Proteobacteria “blooms” 
are a hallmark of gut “dysbiosis” resulting from microbial perturbations caused by antibiotic therapy, 
dietary changes or inflammation.

The availability of micronutrient trace elements is essential to the successful colonisation of pathogens 
during infection. Nearly 60% of known enzymes contain at least one metal cofactor, with zinc being the 
most common, followed by iron and manganese[142]. In the inflamed gut, these dietary trace elements are 
heavily sequestered by high affinity binding proteins or kept in organelles that are not accessible to bacteria, 
in a process known as “nutritional immunity”[143]. Many proteobacterial pathogens are equipped with an 
array of high affinity siderophores, to help them overcome the restriction of available metals and ultimately 
drive key cellular processes, which in turn sustains and propagates infection. Deficiency or increased 
supplementation of dietary trace elements may disrupt the commensal microbial populations and 
predispose individuals to infection.

Zinc deficiency is associated with increased Enterobacteriaceae and Enterococcus, with concomitant 
decreases in abundance of Clostridiales and Verrucomicrobia (A. muciniphilia)[144]. Moreover, in a mouse 
model of enteroaggregative E. coli (EAEC), a cause of traveller’s diarrhoea, zinc-deficient mice exhibited 
altered immune responses and an increase in EAEC virulence factors[145]. Furthermore, dietary zinc 
supplementation abrogated disease progression, reduced EAEC colonisation and expression of virulence 
factors[146]. In another study, zinc supplementation protected from uropathogenic E. coli haemolysin-
induced gut barrier dysfunction[147]. These observations indicate a beneficial impact of zinc supplementation 
on zinc-deficient subjects; conversely, excessive zinc supplementation can have a detrimental impact on 
microbial homeostasis and host immune responses. In a study by Zackular et al.[148] zinc supplementation 
stimulated the growth of Enterococcus and Clostridium XI cluster while concomitant reductions in 
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Turicibacter and Clostridium (unclassified) were observed. Ultimately, excess zinc selected for a microbiota 
that was much more prone to destruction by antibiotics, thus exacerbating C. difficile colonisation and 
associated disease[148].

For many bacterial pathogens, the availability of iron is often the limiting factor for colonisation and 
infection. During inflammation, nutritional immunity limits the bioavailability of iron in the gut, and thus 
bacterial species equipped with an array of iron acquisition systems are often the most successful and 
pathogenic. Given the ability of bacterial siderophores to hijack host iron homeostasis, it is not surprising 
that the innate immune system has evolved mechanisms to counteract bacterial iron acquisition, such as the 
production of Lipocalin-2 (LCN2). In the acute phase response to infection, LCN2 is expressed to bind 
bacterial siderophores and neutralises bacterial capacity to sequester iron. However, some bacteria have 
evolved resistance mechanisms to counteract this immune response, such as the stealth siderophore 
salmochelin produced by Salmonella, thereby gaining a competitive advantage in the inflammatory 
milieu[149]. Interestingly, the probiotic E. coli strain Nissle shares many fitness properties to uropathogenic E. 
coli, including iron uptake systems. In the presence of LCN2, Nissle is capable of outcompeting Salmonella 
in a mouse model[150], underscoring the evolved synergy between commensal and host immune response in 
thwarting pathogen colonisation. Some pathogens, such as V. cholerae, have the ability to obtain iron from 
haem only when Cholera toxin (CTX) is produced[151]. The production of CTX induces inflammation and 
thus decreases gut iron concentrations but enables the bioavailability of host haem, while concurrently 
changing the transcriptomic gene signature of V. cholerae to one that is capable of utilising iron from haem. 
This change allows the expansion of V. cholerae by providing an iron-limited metabolic niche and a 
competitive advantage over commensals by this pathogen’s unique ability to acquire iron from haem.

In both developing and developed nations, iron deficiency remains the most common form of nutritional 
deficiency, in many cases prompting iron supplementation to alleviate symptoms of malnutrition. Given the 
importance of iron to GI pathogens, the effect of iron in bolstering colonisation resistance should perhaps 
be considered as a detrimental effect by inducing microbial dysbiosis. Indeed, an outgrowth of 
Enterobacteriaceae and increased risk of infection has been observed in both mice[152] and humans[153], 
following iron supplementation. Intriguingly, the adverse effects can be mitigated simply by the addition of 
prebiotics to the diet[154,155], inducing growth of beneficial Bifidobacterium and Lactobacillus. Bifidobacterium 
have also been demonstrated to efficiently sequester iron[156]. The reliance of the host immune system on 
sequestration of iron, coupled with commensal sequestration capacity and subsequent SCFA production, 
play multifactorial roles in reducing pathogen colonisation.

In addition to the production of LCN2, the host can produce another antimicrobial molecule, Calprotectin, 
whose primary function is to bind to free zinc and manganese in the gut lumen. Bacteria utilise manganese 
as a cofactor for a number of proteins; perhaps the best studied is the role of manganese as a detoxifier of 
reactive oxygen species, of which numerous are encountered following an immune response. Salmonella has 
evolved high-affinity cation transporters to bypass the action of calprotectin and therefore promote growth 
in an inflamed intestine[157]. It is unclear how excess or deficient dietary manganese influences gut 
microbiota populations. It is possible many pathogens behave similarly to Salmonella in subverting 
calprotectin when manganese is in excess, or perhaps behave similarly to Staphylococcus aureus, which can 
switch to iron in manganese-deplete conditions; thereby bypassing nutritional immunity and causing 
infection[158].

Pinpointing the delicate balance between trace element toxicity and deficiency while simultaneously 
understanding the mechanisms involved in both nutritional immunity and colonisation resistance remains 
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complicated. Understanding the complex pathways dietary trace elements play in microbial respiration in 
infection and inflammation will undoubtedly uncover novel treatments. For example, recently, dysbiotic 
Enterobacteriaceae blooms were ameliorated by tungstate treatment, which inhibited molybdenum-
cofactor-dependent respiratory pathways and reduced the severity of inflammation in mouse models[159].

CONCLUSION
Disentangling the direct and indirect impact of dietary ingredients and nutrients on commensal bacteria in 
the gut, their associated metabolites, immune function and pathogen virulence will no doubt be challenging. 
This knowledge will require multidisciplinary collaborations between experts in nutrition, immunology, 
and microbiology, to name a few. Given that gnotobiotic and antibiotic-treated mice are more susceptible to 
infection, and that this phenotype can be reversed upon supplementation with even a simplified consortium 
of commensal bacteria[160] strongly supports the paradigm of colonisation resistance. Reductionist or 
modular approaches like these can help identify potential probiotic or synbiotic candidates and generate 
insights into diet-microbe/host-microbe/microbe-microbe interactions.

Studies in neonates and infants support the importance of breast milk-feeding, in providing antibodies and 
colonisation of human breast milk-metabolising taxa, both of which have been shown to enhance 
colonisation resistance in the offspring. Moreover, C-section delivery disrupts the mother to infant 
transmission of specific commensals, resulting in a reduced immunostimulatory potential passed to the 
offspring[161]. Perhaps a critical, yet, unexplored area of research would be the impact of infant formula-
metabolising taxa in reducing/providing protection against pathogens. Identifying specific species and their 
associated functions, which improve neonatal colonisation resistance, has the potential to optimise the 
production of infant formula through the selection of desired carbon sources.

The mucus layer provides the first line of defence against exogenous microorganisms, the integrity of which 
is greatly determined by microbial composition, which in turn, is influenced by dietary components, in 
particular fibre. Patients with IBD should be cautious when consuming specific dietary fibre or prebiotics; 
inulin has been demonstrated to exacerbate DSS-induced colitis in mice, whereas others such as psyllium 
have been successful in ameliorating gut inflammation[162]. In the context of human GI disease, it is equally 
ambiguous, as a study observed avoidance of dietary fibre associated with flares in Crohn’s disease patients 
but not in ulcerative colitis patients[163]. Research focusing on individual fibres or prebiotics must be 
interpreted cautiously as they may inadvertently select a small subset of taxa, while care must be taken when 
comparing mouse chow diet controls, which contain a mixture of fibres, and thus selecting for a larger 
subset of taxa. More research is required in humans, in terms of the impact of dietary fibre and prebiotics 
on the function, stability and characterisation of specific taxa and their associated metabolites. These data 
could complement in vitro, ex vivo and “humanised” mouse studies to identify mechanisms when the host is 
challenged with a GI pathogen.

Microbiota alterations, driven either by pathogen-induced inflammation or other diseases such as IBD, will 
ultimately impair normal SCFA homeostasis through changes in commensal SCFA producers and/or 
pathogen/pathobiont utilisation of SCFAs. Given that SCFAs provide an energy source for colonocytes and 
the majority of human studies measure SCFA concentrations from excreted faeces, faecal SCFA 
concentrations may not be representative of those found in other parts of the GI tract. Thus, extrapolating 
findings from human dietary intervention studies in providing SCFA-mediated effects should be 
approached with caution.
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Mechanisms of protein or trace element homeostasis in the gut, with respect to interactions with complex 
and diverse commensal and pathogenic bacteria, are largely uncharacterised, especially in the context of 
human disease. This uncertainty is further complicated by interindividual variations underpinned by yet-to-
be-determined genetic, environmental or epigenetic factors. While simplified mouse models may fail in 
recapturing the complexities observed in humans, they can be valuable assets in identifying commensal 
bacteria with, for example, a high degree of affinity for trace elements, e.g., iron siderophores. Uncovering 
dietary ingredients that promote their growth could, in theory, boost colonisation resistance through 
nutrient competition. Future research into the role of branched-chain fatty acids derived from the catabolic 
products of branched-chain amino acids and how they impact colonisation resistance could be an attractive 
area of research, given that they may influence metabolic homeostasis in the gut.

Seasonal variations in the mouse chow diet, industrial variations in the processing of prebiotics and feed 
supplements, choice of laboratory pathogen/commensal strains and breed of the mouse all contribute to 
disparities among research groups. Thus, tightly controlled models are a necessity, before translating to 
novel therapeutics and functional foods. Moreover, the fine line between commensal and pathogen in 
genetically predisposed individuals only adds to the uncertainty and personalised dietary interventions[164] in 
these individuals for the prevention of infection is an interesting prospect, but further research is warranted.
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