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Abstract
Lithium-ion battery (LIB) health prognosis is essential for ensuring the safety of electric vehicles while they are in 
use. However, conventional approaches for accurate health state forecasting face challenges due to the complex 
interplay of battery degradation mechanisms and the significant variability in operating conditions during cycling. In 
this study, we propose a data-driven method composed of convolutional neural networks (CNNs) and bidirectional 
long short-term memory (BiLSTM) to accurately predict the state of health and remaining useful life of LIBs. The 
model is trained using a well-established open-source electrochemical impedance spectroscopy (EIS) database. 
This database includes over 20,000 EIS spectra from commercial LIBs, collected under various states of health, 
states of charge and temperatures. The CNN-BiLSTM model surpasses the previous state-of-the-art Gaussian 
process method in current capacity estimation and remaining useful life prediction. Furthermore, we showcase the 
model’s capability to forecast the capacity degradation trajectory of a cell using its early-cycle EIS data. Our 
research demonstrates the versatility of the battery forecasting method by integrating EIS with machine learning, 
and emphasizes the value of implementing the EIS-based artificial approach in a battery management system.
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INTRODUCTION
Lithium-ion batteries (LIBs) offer significant advantages in the field of electric vehicles and energy storage 
systems owing to their superior specific energy, efficiency, and durability[1,2]. In recent years, the evolution of 
LIBs has highlighted the significance of health monitoring within battery management systems[3]. Accurate 
evaluations of battery performance, such as the state of charge (SOC), state of health (SOH), and remaining 
useful life (RUL), are essential given their broad utility[4,5]. These not only mitigate potential risks but also 
facilitate the efficient reuse and recycling of LIBs[6]. Nevertheless, predicting LIB performance is difficult due 
to nonlinear degradation during cycling and significant variability, even with the control of operating 
conditions.

Previous studies have proposed physical and semi-empirical models to predict power and capacity fade of 
LIBs[7-10], addressing various degradation mechanisms individually, such as solid-electrolyte interphase 
growth, active material loss, lithium plating and increased impedance. While the conventional approach has 
shown predictive success to a certain degree and provided valuable degradation insights, developing models 
that monitor the SOH and RUL of full cells cycled under relevant operating conditions remains challenging. 
This arises from the numerous degradation modes and their interaction with thermal and mechanical 
variations within a cell[11-13]. The development of statistical machine learning methods to correlate specific 
diagnostic measurements with battery health, without relying on physical mechanisms, can help overcome 
this challenge[14,15].

The earlier data-driven approach employs machine-learning models to forecast the health condition and 
lifetime of batteries, predominantly using features derived from charging and discharging curves as the 
model inputs[14,16-21]. For example, Li et al. utilized a recurrent neural network with gated recurrent unit 
(GRU-RNN) model trained at temperatures of 0, 10, and 25 °C to demonstrate that their model can 
consistently estimate the SOC across various conditions using a single set of parameters directly mapped 
from data, such as voltage and current[22]. Similarly, Xu et al. deployed a long short-term memory (LSTM) 
model to explore the relationship between SOC and open circuit voltage based on charging and discharging 
data, considering the hysteresis effects in lithium iron phosphate batteries[23]. Charging and discharging 
curves offer valuable insights into the overall performance of batteries, such as capacity and voltage behavior 
over time[24,25]. However, their ability to assess the internal condition of the battery is limited, as they may 
not detect subtle changes in its internal structure or chemistry that could indicate early signs of degradation. 
In general, models trained on such data can produce relatively accurate predictions once sufficient data 
corresponding to at least 25% degradation along the trajectory to failure is available[20]. However, accurately 
predicting the trend of capacity fade and the RUL of a battery at the beginning of its lifespan presents an 
ongoing challenge[26].

Accurate battery health prognosis greatly benefits from specialized diagnostic measurements that provide 
rich information[14,27]. Electrochemical impedance spectroscopy (EIS), which measures impedance across a 
wide range of frequencies by recording the current response to a voltage perturbation (or vice versa), stands 
out for its ability to provide comprehensive insights into material properties, interfacial phenomena, and 
electrochemical reactions[28-30]. This method directly assesses possible degradation within the battery and 
enables continuous monitoring of its status through real-time and non-destructive methodology, offering a 
deeper understanding of its electrochemical properties[31-33]. Therefore, the development of machine learning 
models to correlate quantitative changes in EIS spectra during cycling with battery degradation holds 
significant promise for battery health prognosis. Recent studies have utilized machine learning techniques to 
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interpret various features extracted from EIS spectra, often by fitting them into an equivalent circuit model. 
However, the reduction of spectra into lower-dimensional features can result in non-unique fitting, raising 
doubts about the model’s ability to accurately capture the complex battery degradation[34,35].

Our recent research demonstrates that the entire EIS spectra can be directly fed into a Gaussian process 
regression (GPR) model without handpicking features. We have shown that the model can autonomously 
identify the most relevant frequencies related to battery degradation[36]. Trained on a comprehensive in-
house EIS dataset, including over 20,000 EIS spectra, the GPR model provides more precise capacity 
estimation and RUL prediction compared to conventional methods that rely on discharging curve features. 
Recent advances in machine learning methods present opportunities for enhancing the state-of-the-art GPR 
model to achieve even higher accuracy and earlier predictions based on the EIS dataset.

In this paper, we propose an advanced data-driven model that integrates convolutional neural networks 
(CNNs) with bidirectional LSTM (BiLSTM) to analyze the established EIS dataset for accurate forecasting of 
SOH and RUL of batteries. The CNN-BiLSTM model gathers the merits of both CNN and BiLSTM 
architectures, allowing it to effectively extract features from high-dimensional EIS spectra correlated with 
degradation patterns. Consequently, our model outperforms the state-of-the-art GPR model by enhancing 
the estimation accuracy of battery SOH and RUL with a lower predicted error in all cases. Moreover, our 
model demonstrates the capability to accurately forecast capacity degradation of a cell up to 300 cycles using 
data from only the initial 50 cycles (~17% degradation along the trajectory), which enables earlier 
degradation prediction compared to conventional models using charging and discharging curve features.

METHODS
By leveraging the strengths of both CNN and BiLSTM, the CNN-BiLSTM model offers a robust approach 
that combines effective feature extraction with comprehensive temporal analysis, leading to superior 
performance over the individual CNN, LSTM, and BiLSTM models. A schematic diagram of CNN, LSTM, 
BiLSTM and CNN-BiLSTM models is presented in Figure 1. The performance of these four models on 
battery prognosis will be discussed in the following.

CNN
A CNN is a type of feedforward neural network distinguished by its use of convolutional operations and its 
deep architecture, which enables it to function as a multi-layer perceptual system[37]. One-dimensional CNN 
is highly effective at processing spatial data. The network, drawing inspiration from visual neurology 
principles, consists of a convolutional layer, a pooling layer, and a fully connected layer, which are described 
in detail below.

● The convolutional layer performs the mathematical operation of dot product between certain areas of the 
input image and the weight matrix of the filter. The resulting output becomes the output of the layer. This 
filter iterates over the entire image, repeatedly performing the dot product operation, for extracting features. 
The technique involves convolving feature maps from previous layers with a trainable kernel. The output of 
the kernel is then passed through linear or nonlinear activation functions, such as sigmoid, hyperbolic 
tangent, softmax, rectified linear, and identity functions, to generate an output feature map. Every output 
feature map can combine several input feature maps.

● The pooling layer is a component used in neural networks for downsampling and extracting the most 
important features from the input data. Common pooling operations comprise average and max pooling. In 
average pooling, the function usually combines the N × N patches of the previous layer’s feature map by 
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Figure 1. Schematic diagram of machine-learning models. (A) CNN; (B) LSTM; (C) BiLSTM; and (D) CNN-BiLSTM. CNN: Convolutional 
neural network; LSTM: long short-term memory; BiLSTM: bidirectional long short-term memory.

calculating their average value. On the other hand, in max pooling, the patches are evaluated by selecting 
the highest value among them.
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● The fully connected layer operates in the task of classification. It enlarges the output of the previous 
convolutional layer and makes connections between every node in the current layer and nodes in the 
following layer.

LSTM
A recurrent neural network (RNN) is a type of neural network that carries out linear recursion over a 
sequence of time steps[38]. Nevertheless, when the input sequence is excessively lengthy, the weight matrix of 
the RNN must undergo cyclic multiplication, which might potentially result in issues such as gradient 
vanishing and gradient exploding. Hence, RNN is incapable of resolving the issue of long-term dependence. 
LSTM addresses this issue by substituting the neurons of the RNN with LSTM cells. The input gate, output 
gate, update gate and forget gate have distinct roles in controlling the information flow in a precise 
manner[39].

● The forget gate determines which information to eliminate from the cell state, marking the initial stage of 
the LSTM process. The S-shaped network layer takes as input the previous hidden state ht-1 and the current 
input xt. It produces an output value between 0 and 1 for each number in the cell state Ct-1, indicating the 
degree to which the information of Ct-1 is either fully disregarded or completely accepted. The activation 
function typically employed in this context is the sigmoid function.

● During the update gate, the previous cell data, denoted as Ct-1, will be replaced with the updated cell data, 
denoted as Ct. The update rule involves using the forget gate to discard a portion of the previous cell 

● The output gate is used to ascertain the resultant worth. After updating the cell state, it is imperative to 
assess the state attributes of the output cell by considering the input ht-1 and xt. In this process, the input is 
sent into an output gate, which is a sigmoid layer, to determine the judgment conditions. Subsequently, the 
cell state is transmitted through a tanh layer. A vector is acquired, which possesses a value ranging from -1 
to 1. The final output is obtained by multiplying this vector with the judgment condition acquired from the 
output gate.

(1) 

(2) 

(3)

(4)

● The input gate controls the incorporation of new information into the cell state. This process is divided 
into two distinct stages. Initially, employ ht-1 and xt to determine the specific information that has to be 
updated using a process known as the input gate. Next, utilize the previous hidden state (ht-1) and the 
current input (xt) to generate new candidate cell information (Ct) using a hyperbolic tangent (tanh) layer. 
This candidate cell information may then be incorporated into the existing cell information.

information and the input gate to incorporate a portion of the candidate cell information Ct, resulting in the 
new cell information (Ct).
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BiLSTM
BiLSTM networks represent a notable advancement in handling sequential data, overcoming the limitations 
of traditional LSTM structures through the integration of a bidirectional mechanism. This approach with 
two structures allows for the study of sequential data from both the front and back views, hence enhancing 
the model’s ability to understand and interpret complex data sequences.

A BiLSTM architecture consists of two separate LSTM layers that process the data sequence in opposite 
ways[40]. The forward LSTM layer sequentially analyzes the input sequence, recording and retaining 
information as it progresses through time. Conversely, the backward LSTM layer analyzes the sequence in 
reverse order, revealing insights that can only be observed when examined retrospectively. A BiLSTM 
network combines the outputs of forward and backward layers at each sequence point. This allows the 
network to have a comprehensive understanding of the data using methods such as concatenation or 
summation of hidden states. As a result, the network can effectively utilize knowledge from both past and 
future contexts.

CNN-BiLSTM
The integration of CNN and BiLSTM constitutes an advanced framework for analyzing intricate datasets, 
specifically excelling in the processing of EIS data to forecast SOH of batteries. The CNN layer demonstrates 
outstanding proficiency in extracting spatial features from EIS data, identifying critical degradation patterns 
and anomalies indicative of battery health. The intricate architecture of the CNN facilitates the thorough 
extraction of both intricate and fundamental spatial characteristics. On the other hand, the BiLSTM model 
focuses on the time revolution of EIS data following feature extraction. The BiLSTM layer of the framework 
captures changes in spatial features over time, essential for accurate SOH forecasting. Integrating spatial 
data inputs into the CNN enhances the temporal processing capabilities of the BiLSTM, resulting in more 
precise and comprehensive SOH forecasts.

Combining CNN-BiLSTM for EIS analysis is scientifically sound for predicting battery degradation. CNNs 
excel at local feature extraction and hierarchical learning, ideal for capturing subtle degradation patterns in 
EIS spectra. BiLSTM complements this by modeling temporal dependencies, crucial for understanding the 
sequential nature of impedance measurements over time. Integrating CNN and BiLSTM allows 
comprehensive analysis of spatial and temporal information inherent in EIS spectra. This synergistic 
approach facilitates robust representation learning from raw EIS data, enhancing accuracy in 
electrochemical behavior prediction. Overall, CNN-BiLSTM offers a powerful framework for interpreting 
EIS spectra, improving analysis accuracy and efficiency.

In our CNN-BiLSTM mode, the inputs xi = [Zre(ω1), Zre(ω2), …, Zre(ω60), …, Zim(ω1), Zim(ω2), Zim(ω60)]T are the 
real (Zre) and imaginary (Zim) parts of impedance spectra collected at 60 different frequencies (ωn, n = 1, 2, 
…, 60) ranging from 0.02 Hz to 20 kHz during the current cycle. The output yi represents the capacity of a 
current cycle for current SOH estimation, the capacity of a future cycle for SOH forecasting, and the 
number of remaining cycles before the battery reaches its end of life for RUL prediction corresponding to 
the EIS spectrum. The end of life is defined as the cycle number when the capacity drops below its initial 
80%[41]. The real and imaginary parts of the inputs are separately normalized using the min-max 
normalization method:

(5)

(6)
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RESULTS AND DISCUSSION
Machine-learning approach
The data used in this paper is from the open-access EIS dataset generated by Zhang et al., which includes 
over 20,000 impedance spectra from 12 commercial LIBs [LiCoO2 (LCO)/graphite] obtained at nine 
different SOC and three temperatures (25, 35, and 45 °C). Each cycle consists of a 1C-rate (45 mA) charge 
up to 4.2 V and a 2C-rate (90 mA) discharge down to 3 V. It is notable that such abusive cycling conditions 
were used to accelerate battery degradation, which explains a shorter lifespan of these commercial batteries. 
Further detailed descriptions of the dataset are provided in the paper[36], and the data is available in a public 
repository[42]. As reported in the previous paper, among the nine SOCs, predictive models trained on spectra 
collected at the V/XI state (representing 15 min resting after fully charging/discharging) demonstrated the 
highest accuracy. Thus, we have exclusively deployed EIS data from the V state as our dataset in this study. 
We use both the real (Zre) and imaginary (Zim) parts of impedance spectra collected at 60 different 
frequencies, composing a 120-dimension input to the model. The output varies in different CNN-BiLSTM 
models, i.e., the capacity of a current cycle for current SOH estimation, the capacity of a future cycle for 
SOH forecasting, and the number of remaining cycles before the battery reaches its end of life for RUL 
prediction. Figure 2 illustrates the workflow that trains CNN-BiLSTM models for battery health prognosis 
based on the EIS spectrum. To evaluate the predictive performance of our models, we employ two metrics 
as defined in the “METHOD” section: RMSE and the coefficient of determination R2.

SOH (current capacity) estimation
We first develop a CNN-BiLSTM model for capacity estimation using the EIS data from the current cycle, 
assuming a constant cycling temperature. The model is trained on five cells cycled at room temperature 
(25 °C), and then tested on a new cell cycled at the same temperature (marked as 25C05 in the EIS dataset). 

(7)

Here, Xmax and Xmin represent the maximum and minimum values in the spectrum of the first cycle.

The root mean square error (RMSE) and coefficient of determination R2 are chosen to evaluate model 
performance. RMSE can indicate the degree of difference between the predicted value and the measured 
value in the model, expressed as follows:

(8)

in which yi represents the predicted value of the ith observation value in the dataset, yi indicates the measured 
value of the ith observation value in the data set, and n is the number of samples. The smaller the RMSE, the 
smaller the difference between the predicted value and the observed value, the better the model.

R2 is defined as the percentage of variance in the model that the dependent variable can be explained by the 
independent variables, showing the degree of fit between the data and the regression model (goodness of 
fit). R2 is calculated as the ratio of the regression sum of squares to the total sum of squares:

(9)

in which y means the average value of the dataset. Generally, a higher R2 indicates that the model explains 
more variability.
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Figure 2. The flowchart of battery health prognosis via EIS using the CNN-BiLSTM model. The inputs to our model include both the real 
(Zre) and imaginary (Zim) parts of impedance spectra collected at 60 different frequencies. The output is the capacity of a given cycle 
number or RUL. The dataset is partitioned into training data and testing data, and the parameters of the CNN-BiLSTM model are 
initialized. Subsequently, the training dataset is used to train the model. The predictive performance of the model is evaluated using two 
metrics: RMSE and R 2. Ultimately, well-trained models are obtained, enabling current SOH estimation, SOH forecasting and RUL 
prediction. EIS: Electrochemical impedance spectroscopy; CNN: convolutional neural network; BiLSTM: bidirectional long short-term 
memory; RUL: remaining useful life; RMSE: root mean square error; SOH: state of health.

The capacity curves of the training and testing sets are shown in Supplementary Figures 1 and 2. Figure 3A 
shows that the model accurately estimates the capacity of the testing cell with an R2 value of 0.89 and and 
RMSE of 2.58, outperforming the state-of-the-art GPR model (R2 = 0.88, RMSE = 8.57)[36]. The high R2 value 
indicates that our model effectively correlates the quantitative changes in EIS spectra during cycling with 
battery degradation. Furthermore, our model demonstrates the ability to accurately identify the significant 
capacity loss at cycle number 190 and maintain precise SOH estimation throughout the extended capacity 
degradation path, even when the capacity drops below 40% of its original value [Supplementary Figure 3].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/jmi4009-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/jmi4009-SupplementaryMaterials.pdf
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Figure 3. SOH estimation and prediction at 25 °C. (A) Estimated (red curve) and measured (blue curve) capacity for the testing cell 
(marked as 25C05 in the EIS dataset). The coefficient of determination R2 of this model is displayed in the bottom left corner. Five-fold 
cross-validation was utilized to obtain a mean value derived from the outcomes of five distinct models which trained on 80% of the data 
and validated on the rest 20%; (B) Prediction of the capacity fade path (green curve). The red curve is the estimated capacity of the 
initial 50 cycles. Blue curve is the measured capacity for the 25C05 cell. The capacity is normalized relative to the initial capacity in each 
case. The shaded area in (A) and (B) plots indicates ±1 standard deviation. SOH: State of health; EIS: electrochemical impedance 
spectroscopy.

SOH (degradation trajectory) forecasting
Accurate prediction of the capacity degradation path is crucial for early detection of battery aging. Here, we
propose the CNN-BiLSTM model to extrapolate the degradation trajectory for SOH forecasting. As shown
in Figure 3B, the capacity of the initial 50 cycles is estimated from the EIS at each cycle (red curve), similar
to the method used in Figure 3A. Moreover, the model effectively predicts the capacity (green curve) of a
future cycle from 50 up to 300 by extrapolating the decreasing trend of the estimated capacity from the
initial 50 cycles using the EIS data, revealing only a 17% (50 out of 300 cycles) degradation along the
trajectory towards failure. The model provides a smoothed prediction of the gradual decrease in capacity
during cycling. The narrow confidence intervals (orange-shaded region) in this plot indicate a higher degree
of confidence in the accuracy of the predictions. These results demonstrate that the model successfully
captures long-term degradation patterns in the EIS data. However, it should be noted that the model fails to
predict the sudden decrease in capacity at cycle 190 [Figure 3A]. Forecasting such unexpected capacity fade
at an early stage is a significant challenge due to the complex nature of battery failure mechanisms.
Moreover, the prediction task is further complicated by the relatively small datasets (50 cycles) used, which
cover a limited range of lifetimes. Nonetheless, we consider that this issue could be addressed by leveraging
more comprehensive battery data from various aspects, such as in situ pressure and temperature
measurements within the cell.

SOH estimation/forecasting at multiple temperatures
In the realm of battery recycling, forecasting battery health presents an even greater challenge, as historical
operating conditions (e.g., temperature) vary across cells and cycles. It is highly desirable for a model to
predict SOH based exclusively on EIS data from a given cycle, without requiring information about the
cycling temperature except that it remains constant across cycles. To tackle this issue, we combine the
training data collected at three different temperatures (i.e., five cells cycled at 25 °C, one cell each cycled at
35 and 45 °C), and retrain the CNN-BiLSTM models to learn features of the EIS dependent on capacity fade
rather than temperature. The capacity curves of the training and testing sets for the multi-temperature
models are shown in Supplementary Figures 4 and 5. Figure 4 shows that the multi-temperature models can
accurately estimate current capacity and forecast the capacity degradation trajectory of cells cycled at 35 and
45 °C (marked as 35C02 and 45C02 in the EIS dataset).

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/jmi4009-SupplementaryMaterials.pdf
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Figure 4. SOH estimation and prediction at 35 and 45 °C. Estimated (red curve) and measured (blue curve) capacity for the testing cells 
35C02 (A) and 45C02 (C). The R2 of this model is shown on the left bottom. Prediction of the capacity degradation trajectory (green 
curve) based on the EIS data from the initial 50 cycles. The blue curves represent the measured capacity for the 35C02 cell (B) and 
45C02 cell (D). The capacity is normalized relative to the initial capacity in each case. The shaded area in all plots indicates ±1 standard 
deviation. SOH: State of health; EIS: electrochemical impedance spectroscopy.

Similarly, the multi-temperature CNN-BiLSTM model for capacity estimation also surpasses the GPR 
model, achieving higher R2 values of 0.85 and 0.80. Additionally, our model is compared with four other 
advanced predictive models, including LSTM, BiLSTM, and CNN-LSTM. In each comparison, our model 
consistently exhibits superior accuracy [Table 1]. We find that the R2 values of all five predictive models 
decrease as the temperature rises from 25 to 45 °C, suggesting that a more intense electrochemical process at 
higher temperatures may lead to less accurate capacity estimations. However, our multi-temperature models 
exhibit predictive robustness across various temperatures, as demonstrated by small RMSE values between 
1.21 and 2.58 and narrow confidence intervals [Figure 4]. This verifies the value of the EIS-based approach 
for SOH estimation and forecasting of LIBs subjected to varying temperatures, which is crucial for practical 
applications where operating temperatures vary significantly across cells.

RUL prediction at multiple temperatures
A key objective of a battery management system is to forecast the RUL of a battery and detect potentially 
hazardous conditions resulting from battery aging or misuse. Inspired by the approach of predicting SOH 
without temperature-specific information, we develop a multi-temperature model for predicting RUL using 
EIS data. Figure 5 shows the RUL forecasting results for test cells (marked as 25C01, 35C02 and 45C02) at 
three distinct temperatures (25, 35, and 45 °C). The multi-temperature CNN-BiLSTM model outperforms 
the other four models, achieving the highest R2 value for each case [Table 2]. The cycle count for RUL 
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Table 1. R2 values of different models in estimating SOH at various temperatures

Model name 25 °C 35 °C 45 °C

GPR1 0.88 0.81 0.72

LSTM 0.84 0.77 0.70

BiLSTM 0.87 0.78 0.68

CNN-LSTM 0.85 0.78 0.83

CNN-BiLSTM 0.89 0.84 0.80

1The R2 value of the GPR model is from the paper of Zhang et al.[36]. SOH: State of health; GPR: Gaussian process regression; LSTM: long short-
term memory; BiLSTM: bidirectional long short-term memory; CNN: convolutional neural network.

Table 2. R2 values of different models in predicting RUL at various temperatures

Model name 25 °C 35 °C 45 °C

GPR1 0.87 0.75 0.92

LSTM 0.61 0.86 0.76

BiLSTM 0.79 0.83 0.79

CNN-LSTM 0.74 0.85 0.84

CNN-BiLSTM 0.85 0.86 0.94

1The R2 value of the GPR model is from the paper of Zhang et al.[36]. RUL: Remaining useful life; GPR: Gaussian process regression; LSTM: long 
short-term memory; BiLSTM: bidirectional long short-term memory; CNN: convolutional neural network.

Figure 5. RUL prediction at three temperatures. Actual RUL and predicted RUL for (A) the 25C01 cell at 25 °C; (B) the 35C02 cell at 
35 °C; and (C) the 45C02 cell at 45 °C. The R2 of this model is displayed in the bottom right corner. The black dashed lines in all plots 
represent a reference line indicating the expected outcome for the predicted values. RUL: Remaining useful life.

prediction is set in decreasing order from the end of life (when the capacity drops to 80% of its initial value) 
for each cell.

Overall, the CNN-BiLSTM model shows remarkable efficiency in interpreting high-dimensional impedance 
spectra for both SOH estimation and RUL forecasting of batteries. This is attributed to its integration of 
both CNNs and LSTM networks, enabling the model to effectively utilize spatial patterns for recognizing 
quantitative changes in EIS spectra and temporal sequences for modeling degradation across cycles 
simultaneously. Additionally, the bidirectional nature of the BiLSTM allows the model to incorporate past 
and future information on EIS data when making predictions, thereby enhancing its predictive performance 
in battery health prognosis. It is worth noting, however, that the predictive performance of models may vary 
across different test cells due to capacity inconsistency originating from manufacturing processes.
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CONCLUSIONS
In this paper, we develop versatile CNN-BiLSTM models for accurate battery health prognosis using EIS 
spectra from LIBs exhibiting various degradation patterns under different cycling temperatures. The models 
demonstrate enhanced precision in estimating current capacity, even in the face of sudden drops, and in 
predicting the RUL compared to the earlier state-of-the-art Gaussian Process method. Moreover, our 
model, for the first time, enables the forecast of long-term battery degradation trajectory toward failure 
based on a limited set of early-cycle EIS data. This capability holds significant potential for early-lifetime 
safety warning of LIBs. Leveraging the capabilities of CNN and BiLSTM models, our CNN-BiLSTM model 
consistently outperforms the previous state-of-the-art GPR model and other existing predictive models, 
such as CNN, LSTM and BiLSTM. Thus, our work identifies that both spatial and temporal features of EIS 
spectra correlate with degradation patterns and play an important role in accurate battery prognosis. We 
showcase the potential implementation of our EIS-based CNN-BiLSTM model in battery management 
systems to address health prediction under realistic operating conditions, including variations in cycling 
temperature over time and fluctuations in charge/discharge rates.
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