
Lu et al. Cancer Drug Resist 2022;5:51133
DOI: 10.20517/cdr.2021.145 Cancer Drug Resistance

Original Article Open Access

Multicellular biomarkers of drug resistance as promis-
ing targets for glioma precision medicine and predic-
tors of patient survival
Yuting Lu, Yongzhao Shao

Departments of Population Health and Environmental Medicine, New York University Grossman School of Medicine, New York,
NY 10016, USA.

Correspondence to: Prof./Dr. Yongzhao Shao, Departments of Population Health and Environmental Medicine, New York Univer-
sity Grossman School of Medicine, 180 Madison Avenue, New York, NY 10016, USA. E-mail: Yongzhao.Shao@nyulangone.org

How to cite this article: Lu Y, Shao Y.Multicellular biomarkers of drug resistance as promising targets for glioma precisionmedicine
and predictors of patient survival. Cancer Drug Resist 2022;5:511-33. http://dx.doi.org/10.20517/cdr.2021.145

Received: 31 Dec 2021 First Decision: 24 Mar 2022 Revised: 9 Apr 2022 Accepted: 18 Apr 2022 Published: 2 Jun 2022

Academic Editors: Godefridus J. Peters, Liwu Fu Copy Editor: Tiantian Shi Production Editor: Tiantian Shi

Abstract
Aim: This study aimed to translate a known drug-resistancemechanism of long-termCSF1R inhibition intomulticellu-
lar biomarkers that can serve as potential therapeutic targets as well as predictive markers for the survival of glioma
patients.

Methods: Using existing data from a published mouse study of drug resistance in immunotherapy for glioma, we
identified multicellular differentially expressed genes (DEGs) between drug-sensitive and drug-resistant mice and
translated the DEGs in mouse genome to human homolog. We constructed correlation gene networks for drug re-
sistance in mice and glioma patients and selected candidate genes via concordance analysis of human with mouse
gene networks. Markers of drug resistance and an associated predictive signature for patient survival were developed
using regularized Cox models with data of glioma patients from The Cancer Genome Atlas (TCGA) database. Predic-
tive performance of the identified predictive signature was evaluated using an independent human dataset from the
Chinese Glioma Genome Atlas (CGGA) database.

Results: Fourteen genes (CCL22,ADCY2, PDK1,ZFP36,CP,CD2, PLAUR,ACAP1,COL5A1, FAM83D, PBK, FANCA,ANXA7,
and TACC3) were identified as genetic biomarkers that were all associated with pathways in glioma progression and
drug resistance. Five of the 14 genes (CCL22, ADCY2, PDK1, CD2, and COL5A1) were used to construct a signature
that is predictive of patient survival in the proneural subtype GBM patients with an AUC under the time-dependent
receiver operating characteristic (ROC) of 2-year survival equal to 0.89. This signature also shows promising predic-
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tive accuracy for the survival of LGG patients but not for non-proneural type GBMs.

Conclusion: Our translational approach can utilize gene correlation networks from multiple types of cells in the tu-
mor microenvironment of animals. The identified biomarkers of drug resistance have good power to predict patient
survival in some major subtypes of gliomas (the proneural subtype of GBM and LGG). The expression levels of the
biomarkers of drug resistance may be modified for the development of personalized immunotherapies to prolong
survival for a large portion of glioma patients.

Keywords: Drug resistance, tumor microenvironment, translational research strategy, multicellular gene correlation
network, glioma, precision medicine

INTRODUCTION
Glioma is an aggressive and malignant brain tumor with a poor prognosis. The traditional standard-of-care
therapies (surgical removal, radiotherapy, chemotherapy, etc.) only slightly extend the survival of glioma pa-
tients [1]. Despite the recent advances in cancer immunotherapies and targeted therapies in treatingmany types
of cancer, only a fraction of patients developed durable responses, which indicates the common existence of
intrinsic/acquired resistance to existing immunotherapies. To date, the effect of immunotherapies in treating
glioma has been even more disappointing, partly due to prevalent drug resistance [2–4]. To improve patient
survival, it is critical to discover potential therapeutic targets and prognostic biomarkers for novel biological
interventions to overcome drug resistance.

The tumor microenvironment (TME) plays a crucial role in the progression and responses to therapies [5]. In
addition to tumor cells (TCs), the TME also includes T cells, tumor-associated macrophages (TAMs), epithe-
lial cells, etc. [6,7] The immunosuppressive action of TAMs based on the release of anti-inflammatory cytokines
within the TME could promote the proliferation of tumor cells and the subsequent drug resistance [5,6,8,9]. Im-
munotherapies are often designed to enhance antitumor capacity of the immune cells such as TAMs, and, in
turn, the enhanced TAMs could attack and kill TCs. In particular, inhibition of CSF1R (by the small-molecule
BLZ945 treatment) in TAMs has been a promising intervention for glioblastoma (GBM) inmice; however, per-
sistent usage of CSF1R inhibition can lead to drug resistance in mice [1]. Importantly, a well-designed mouse
study published by Quail et al. [1] discovered and characterized the mechanism of the drug resistance to CSF1R
inhibition in mice. Specifically, long-term inhibition of CSF1R in TAMs resulted in the increased secretion of
IGF1 to TME and the alternative activation of TAM, which was reflected by the elevated expression level of
M2-like genes. The combination of IGF1 in TME and its receptor in TCs, IGF1R, activated the downstream
PI3K signaling pathways to support tumor regrowth and led to drug resistance. Based on this drug-resistant
mechanism, they further identified multiple interventions, including blockage of IGF1R (by OSI906) and in-
hibition of PI3K pathway (by BKM120), that resulted in substantial improvement in survival in mouse studies
when combined with CSF1R inhibition. However, the important findings from this mouse study of drug resis-
tance have not been translated to human gliomas to prolong patient survival. Thus far, it is unclear whether the
findings of the mice study can be successfully translated to some subtypes or all types of gliomas in humans.

Given the importance of the multiple types of cells in TME for drug resistance, it is desired to have cell-specific
(immune cell and tumor cell) gene-expression data to investigate cell-specific effects and interactions between
different types of cells in TME when studying drug resistance in humans. However, due to the extensive
labor cost and technical challenges in obtaining cell-specific data in humans, discovering the multicellular
mechanism of drug resistance directly in human trials is currently challenging. In contrast, as cell-type-specific
gene expression data from mouse studies are more affordable [1], we suggest a translational study strategy that
projects the multicellular results of the animal experiment to human genome to investigate drug resistance. In

http://dx.doi.org/10.20517/cdr.2021.145


Lu et al. Cancer Drug Resist 2022;5:51133 I http://dx.doi.org/10.20517/cdr.2021.145       Page 513

particular, borrowing strength from the mouse study published by Quail et al. [1], we can combine cell-specific
mouse gene expression data with gene expression data from human bulk tissue to identify biomarkers of drug
resistance and patient survival. Furthermore, as Quail et al. [1] also identified interventions to overcome the
drug resistance inmice, any genetic biomarkers we identify would likely to be actionable targets for therapeutic
intervention in human precision medicine, too.

For the purpose of developing novel treatment targets that are feasible for biomedical intervention, for con-
venience, we would like to select a small set of genes that can adequately account for drug resistance as well
as patients’ survival. However, response and resistance to an intervention typically involve a great number of
genes and pathways in addition to population heterogeneity. In practice, it is hard to decide which genes are bi-
ologically more important than others, given the vast number of genes involved, and it is generally challenging
to distinguish driver genes from passenger genes based on cross-sectional gene expression data. To the best of
our knowledge, there is no knownmethod that can efficiently identify biomarkers of drug resistance with high
predictive accuracy for patient survival. Given that biological pathways involve the cooperation of clusters of
highly correlated genes, we used gene correlation network analysis and gene-set enrichment analysis to detect
biologically important gene clusters. Focusing on gene clusters in important pathways can borrow strength
from existing biological knowledge based on independent studies; thus, it should be more likely to determine
genes with driver effects and avoid the abundance of false positives, compared to the common approach of
focusing on the analysis of individual genes with top 𝑃-values. Moreover, important and well-connected genes
in gene networks are generally sparse [10,11]; thus, constructing weighted gene networks reflecting such sparsity
would be desirable. Moreover, regularized Cox regression models that account for the sparsity of important
genes in correlation networks can be used to further shrink the number of candidate genes in order to form a
compact gene set predictive of patients’ survival.

In cancer research, the “one treatment for all patients” approach is generally impractical given various hetero-
geneities associated with cancers. For precision medicine, it is desired and more practical to find an effective
and suitable treatment strategy for each particular subtype of cancer and subgroup of patients. Furthermore, it
is important to identify treatment targets and biomarkers that have high prognostic accuracy for each specified
subgroup of patients in order to develop novel personalized treatments including overcoming drug resistance
in existing therapies. Indeed, complex diseases are often classified into subtypes characterized by the difference
in histology and pathology. In particular, gliomas are usually classified into two major categories according to
the World Health organization (WHO) grading: lower-grade gliomas (LGG; WHO grade II and III gliomas)
and glioblastomamultiforme (GBM;WHO grade IV gliomas). GBM can be further divided into four subtypes
based on their gene expression profile: classical, mesenchymal, proneural, and neural [12]. Due to the hetero-
geneity in histology and gene expression, drug resistance for different types of patients can be due to many
different biological mechanisms involving many different pathways. Given the poor overall survival of GBM
and gliomas currently, it is very valuable if we can identify a particular subgroup of patients that may benefit
from interventions based on the identified drug-resistant targets or pathways.

In this study, we used a translational research strategy to identify biomarkers of drug resistance as targets for
precision medicines for gliomas in humans. Beginning with results and data from an existing mouse study [1],
we compared the gene expression levels between drug-sensitive and drug-resistant mice to obtain differen-
tially expressed genes (DEGs) in TAMs and TCs, respectively, which were then translated to human homolog.
Because the mouse study was conducted on mice initiated with the proneural subtype of GBM tumor, we
hope the findings of the mouse study can be translated to the proneural type GBMs in humans. Thus, our
subsequent analysis will first be conducted on the proneural type GBM subjects. Next, weighted gene corre-
lation networks of drug resistance were constructed in TAMs and TCs, using the expression data of humans
and mice, respectively. Then, we performed concordance analysis to compare human networks to mouse net-
works within each cell type and performed enrichment analysis to get the biologically important gene clusters
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(indicating pathways), fromwhich candidate genes were selected according to their importance and individual
predictive capacity for patient survival. Lastly, integrating the findings of M2-like genes and PI3K pathways
identified in the drug-resistance mouse study, we applied regularized Cox regression models to get a small set
of genetic biomarkers. For precision medicine, it is important to identify some major subgroups or subtypes
of gliomas such that expression levels of the identified molecular biomarkers of drug resistance can predict
population survival rates of human glioma patients, and ideally, the expression levels of the biomarkers can be
modified to prolong survival of a large portion of patients. Towards this end, time-dependent ROC curves, cor-
responding AUCs, and Kaplan-Meier (KM) curves were generated to demonstrate the predictive performance
of the identified genetic biomarkers in the proneural subtype of GBM, non-proneural type of GBM, and LGG
patients, respectively. The identified genetic biomarkers showed high AUCs at two years in the proneural sub-
type of GBM, indicating good predictive performance of the identified signature. Importantly, the signature
developed using the proneural type mouse study had poor predictive power of survival in non-proneural sub-
types of GBM, suggesting that different mechanisms and therapeutic targets should be considered for different
subtypes of glioma. We also discuss the identified biomarkers as potential treatment targets to overcome drug
resistance.

METHODS
A translational strategy to identify predictive biomarkers of drug resistance and patient survival
Since obtaining cell-specific gene expression data in human brains is a challenge and such cell-specific mouse
data are available from the study by Quail et al. [1], we introduced a translational study design that borrows
strength from the mouse cell-specific data to identify biomarkers of drug resistance in humans. First, we iden-
tified and translated DEGs between drug-resistant (Reb) and drug-sensitive (Ep) mice to humans in TAMs
and TCs, respectively. Then, weighted gene correlation networks were constructed, and gene clusters were de-
tected for TAMs and TCs in mice and human patients, respectively. By comparing mouse networks to human
networks via concordance analysis, biologically important gene clusters were selected from the highly concor-
dant gene clusters, integrating the result from enrichment analysis. Next, to discover therapeutic targets of
gliomas that may be actionable in future intervention, we reduced the number of candidate genes using prin-
cipal component analysis (PCA) and K-index based on the biologically important gene clusters. In addition,
since M2-like genes and PI3K pathway-related DEGs were indicated to be associated with drug resistance in
mice [1], they were combined with genes selected from the biologically important gene clusters to construct
predictive signatures using regularized Cox regression models. Finally, the performance of the identified pre-
dictive signature was examined by KM analysis and time-dependent ROC curves. The entire workflow is
shown in Figure 1. More details are described in the following subsections.

An existing randomized mouse study for drug resistance in gliomas
To investigate the biological mechanism of drug resistance to the CSF1R inhibition of TAMs, a randomized
study of mice with gliomas was conducted and reported by Quail et al. [1]. The CSF1R inhibition treatment is
aimed at enhancing immune capacity of the tumor-associated macrophage (TAM) so that the treated TAMs
can more effectively kill glioma cells or inhibit tumor growth. There were two randomized groups of mice in
the study conducted by Quail et al. [1]: the treatment naïve or vehicle group (Veh) and the treatment group or
CSF1R inhibition group. The treatment group was divided into two subgroups: the group of treated mice that
had durable treatment response, called the drug-sensitive or endpoint (Ep) group, and the group of treated
mice that had tumor regrowth after short-term treatment response, called the drug-resistant or rebound (Reb)
group. There were five Veh samples, six Ep samples, and four Reb samples with available gene expression data
(RNA-seq data) for both TCs andmacrophages (TAMs). The RNA-seq data of the 15 samples were selected for
subsequent analyses, and the data could be downloaded from the Gene Expression Omnibus (GEO) website
(https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE69104. By comparing gene expressions
in TAMs of the treated and untreated (Veh) groups, we could identify differentially expressed genes (DEGs)
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Figure 1. Flowchart of the translational study design. TAM: Tumor-associated macrophages. TC: Tumor cells. DEGs: Differentially ex-
pressed genes. TCGA: The Cancer Genome Atlas. CGGA: Chinese Glioma Genome Atlas. PCA: Principal component analysis. ROC:
receiver operating characteristic.

that are modifiable by the CSF1R inhibition treatment. We could also construct gene networks in TAMs that
are modified by the treatment. Furthermore, we could construct correlation gene networks for the treated
mice by contrasting the drug-resistant (Reb) and drug-sensitive (Ep) groups in TAMs and in TCs, as discussed
in subsequent sections.

Human glioma cohorts
To translate the identified differentially expressed genes (DEGs) and candidate markers of the drug resis-
tance in mice to human glioma patients, two independent human glioma cohorts, The Cancer Genome At-
las (TCGA) database (https://cancergenome.nih.gov/) and Chinese Glioma Genome Atlas (CGGA) database
(http://www.cgga.org.cn/), were prepared for the subsequent gene network construction, gene cluster detec-
tion, and survival modeling. After matching the clinical information with the gene expression data (RNA-seq
data) for each patient, a set of 690 samples (GBM: 𝑛 = 165; LGG: 𝑛 = 525) from TCGA and a set of 310 sam-
ples from CGGA (GBM: 𝑛 = 138; LGG: 𝑛 = 172) were collected. Since the mice were initiated with tumors
from the proneural subtype of GBM, the subsequent analyses including network construction and signature
identification were mainly performed in GBM proneural patients (𝑛 = 38 in TCGA; 𝑛 = 30 in CGGA). In
general, the TCGA dataset was used as the training dataset for the identification of the prognostic signature,
and the CGGA dataset was used as an independent testing set to validate the predictive power of the polygenic
signature.

Differential gene expression analysis in mice and translation to human homolog
Differential gene expression analyses were conducted to compare the average gene expression level between
drug-sensitive (Ep) and drug-resistant mice (Reb) for TCs and TAMs, respectively. The RNA-seq read counts
data were normalized by the trimmed mean of 𝑀-values method. For each gene, the expression level was
modeled by the generalized linear model with a negative binomial link, and the quasi-likelihood (QL) 𝐹-test
was used to compare the gene expression level between the Ep and Reb subgroups. The logarithm of fold-
change (logFC; to base 2) and nominal 𝑃-value were calculated using the R/Bioconductor software package
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edgeR [13–15]. The Benjamini-Hochberg false discovery rate (FDR) was used as an adjustment for multiple
testing. Genes with | log FC| > 1.5 and FDR < 0.05 were considered as differentially expressed genes (DEGs)
for TCs and TAMs, respectively. Due to the fact that human gene expressions are derived from the RNA-seq
data of bulk tumor tissues, we only focused on DEGs that had the same signs of logFC in both TCs and TAMs
in mice. This facilitated the interpretations of concordance of up- or downregulations of candidate DEGs in
humans andmice. We then translated the selected DEGs identified inmice to human homolog using the NCBI
database (https://www.ncbi.nlm.nih.gov/gene), which resulted in 818 DEGs in TAMs and 1730 DEGs in TCs.

A networkbased and translational research strategy to select candidate genes from important gene
clusters
Our goal is to identify a set of key genes that has the potential as novel treatment targets to overcome drug
resistance as well as is predictive of patient survival. The differential expression analyses typically discover a
large number of DEGs, which makes it difficult in practice to design effective interventions for all of them in
lab-based biological studies. Hence, we needed to refine the set of candidate DEGs to get a relatively smaller
set of candidate genes that are indicative of drug resistance and predictive of survival. Depending on the
co-expression network, DEGs can be clustered according to their intrinsic correlations. Clusters of genes
may pertain to specific biological functions and have a greater impact on the outcome than single genes. In
general, given a set of gene expression data, it is straightforward to construct correlation gene networks or
weighted correlation gene networks, e.g., as done by Sun et al. [16] or He et al. [17]. In the following sections,
we discuss how to identify key genes from important clusters detected through weighted gene correlation
networks (WGCNA) [18].

Detection of gene clusters (modules) byweighted correlation network analyses for TC andTAM inmice and human
First, we constructed theweighted correlation network usingweighted correlation network analyses (WGCNA)
for TAMs and TCs, in mice and humans, respectively, which resulted in four networks. For each of the net-
works, denote the gene expression matrix as 𝑋 = [𝑥𝑖 𝑗 ]𝑛×𝑝 , where 𝑛 is the sample size, 𝑖 = 1, · · · , 𝑛, 𝑝 is the
number of genes, and 𝑗 = 1, · · · , 𝑝. Let 𝒙( 𝒋) = (𝑥1 𝑗 , · · · , 𝑥𝑛 𝑗 )T denote the expression of the 𝑗 th gene and
𝒙𝑖 = (𝑥𝑖1, · · · , 𝑥𝑖𝑝) denote the gene expression of the 𝑖th subject. A correlation network is fully specified by
its adjacency matrix 𝐴 = [𝑎𝑖 𝑗 ] 𝑝×𝑝 , which is a symmetric 𝑝 × 𝑝 matrix with entries in [0, 1] representing the
connection strength of the 𝑖th and 𝑗 th gene. The weighted adjacency 𝑎𝑖 𝑗 is modeled by the power adjacency
function, that is,

𝑎𝑖 𝑗 = 𝑠
𝛽
𝑖 𝑗 , (1)

where 𝑠𝑖 𝑗 is the co-expression similarity that defined by the Pearson correlation, i.e.,

𝑠𝑖 𝑗 = | cor(𝒙(𝒊) , 𝒙( 𝒋)) | =

�������
∑n
𝑘=1

(
𝑥𝑖𝑘 − 𝑥 (𝑖)

) (
𝑥 𝑗 𝑘 − 𝑥 ( 𝑗)

)√∑n
𝑘=1

(
𝑥𝑖𝑘 − 𝑥 (𝑖)

)2 ∑n
𝑘=1

(
𝑥 𝑗 𝑘 − 𝑥 ( 𝑗)

)2
������� , (2)

where 𝑥 (𝑖) , 𝑥 ( 𝑗) are the mean expression level of the 𝑖th and 𝑗 th genes. The power parameter 𝛽(𝛽 ≥ 1) was
chosen by applying the approximate scale-free topology criterion. Details can be found in the work of Zhang
and Horvath (2005) [19].

The network was constructed once 𝛽 was specified. Next, we detected clusters of genes that were tightly inter-
connected. Such clusters of genes in the WGCNA method are called modules. To group the highly correlated
genes into modules, we needed to introduce a distance measure that quantified the dissimilarity between each
pair of genes within a weighted correlation network. We adopted the topological overlap matrix (TOM)-based
dissimilarity, which is commonly used in many applications. The TOM-based dissimilarity is defined as

𝑑𝑖 𝑗 = 1 −
𝑙𝑖 𝑗 + 𝑎𝑖 𝑗

min{𝑘𝑖 , 𝑘 𝑗 } + 1 − 𝑎𝑖 𝑗
, (3)
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where 𝑎𝑖 𝑗 is the weighted adjacency defined in the weighted correlation network, 𝑙𝑖 𝑗 =
∑
𝑢 𝑎𝑖𝑢𝑎𝑢 𝑗 , 𝑘𝑖 =

∑
𝑢 𝑎𝑖𝑢 .

The hierarchical clustering dendrogram (tree) can be built with {𝑑𝑖 𝑗 }𝑝𝑖≠ 𝑗 . Dynamic branch cut method was
applied to identify gene modules from the hierarchical clustering dendrogram [20]. Parameters involved in the
network construction and module detection were selected for each of the four networks individually (TAM
network in humans, TC network in humans, TAM network in mice, and TC network in mice). The network
construction and module detections were performed using the R/Bioconductor package WGCNA [18].

Identification of important gene clusters through concordance analysis between mouse and human modules
We identified four sets of modules from the weighted gene correlation network: modules for TAM in mice,
modules for TC in mice, modules for TAM in humans, and modules for TC in humans. These modules can be
viewed as “sub-networks” as they represent gene clusters in which genes are closely correlated. They may per-
form certain biological functions, since biological functions are rarely determined by a single gene, but rather
by a set of tightly interconnected genes. In addition, the correlation networks and subsequently identified
modules are based on DEGs that are differentially expressed between Reb mice and Ep mice. Thus, modules
and their underlying biological functions identified in mice TAM and TC are likely to be associated with drug
resistance. In each cell type, given that mouse modules and human modules share the same set of DEGs, and
mice and humans are evolutionarily conserved, it would be of interest to know whether mouse modules and
human modules perform similar biological functions or if the sub-networks and biological functions in mice
are preserved in humans. If a mouse module and a human module do share a “sub-network”, its underlying
drug resistance-related biological functions should be more likely to be translated to humans. Therefore, in the
same cell type, the concordance between each pair of mouse-human modules was assessed by calculating the
number of genes that overlapped for each pair of mouse-human modules. Whether such overlap was due to
chance alone was assessed by the Fisher’s exact test. Contingency tables are reported for TC and TAM, respec-
tively. Specifically, gene clusters from the top significantly associated mouse-human modules were selected
by setting a threshold for 𝑃-values. In addition to the translation of drug-resistant DEGs from mice to hu-
mans at “gene-level”, the concordance analysis between mouse modules and human modules can be viewed as
a “network-level” translation, which is more relevant to reflect biological functions, since biological functions
are normally activated by a set of genes instead of a single gene. Thus, adding “network-level” translation could
help avoid false positives while enhancing the likelihood of success of the translational approach.

Enrichment analysis of important gene clusters
The biological functions of the gene clusters identified by the overlaps were investigated by the gene set enrich-
ment analyses (GSEA) using Metascape [21] (http://metascape.org), which is a widely used online tool for gene
annotation and enrichment analysis integrating multiple well-known ontology sources, including the KEGG
Pathway, GO Biological Processes, etc. Gene clusters that are enriched in biologically relevant pathways were
selected for the subsequent analyses. Gene set enrichment analysis leverages existing biological knowledge
drawn from independent, published studies and databases, which helps to find biologically important gene
clusters that are more relevant to the clinical outcome and reduce the likelihood of false-positive findings. Key
genes can be further selected from the biologically important gene clusters. In short, using GSEA produces
results that are more likely to be biologically meaningful and reproducible because it integrates biological and
statistical information from other existing databases.

Selection of a small set of candidate genes from biologically important gene clusters
While several gene clusters that are biologically important for disease progression were selected by the enrich-
ment analysis, these gene clusters still contained too many genes chosen as biomarkers of drug resistance and
targets for possible interventions. Thus, we sought an even smaller set of candidate genes that are not only
functionally important and representative for each of the selected gene clusters, but also possess good predic-
tive accuracy for the survival of human glioma patients. Accordingly, two criteria were adopted to select such
candidate genes. The first criterion was about the importance of the gene within each selected cluster. The first
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principal component (PC) is a good summary metric for a given cluster, which is denoted as “eigengene” [18].
Assuming the eigengene is a good representative for a given cluster, for each gene, its correlation with the
eigengene can be used to quantify its importance within a cluster. Higher correlations indicate stronger bio-
logical importance. Thus, the eigengene of the 𝑞th selected cluster, denoted as 𝐸 (𝑞), was calculated by the PCA.
Similar to the concept of module membership, we defined the cluster membership as the Pearson correlation
between the 𝑖th gene and 𝐸 (𝑞), that is,

𝐶𝑀
(𝑞)
𝑖 = | cor(𝒙(𝒊) , 𝐸 (𝑞)) |. (4)

Important candidate genes would be highly correlated to E(q) and can be selected by choosing an appropriate
cut-off for 𝐶𝑀 (𝑞)

𝑖 .

The second criterion was about the predictive accuracy of survival. K-index is a commonly used metric that
measures the overall concordance of a risk score and the survival, i.e., 𝑃(𝑇1 > 𝑇2 |𝑅2 > 𝑅1), where 𝑇𝑗 is the
survival time and 𝑅 𝑗 is the risk score [22]. It does not depend on the censoring distribution, which makes it
more general to assess the predictive power [23]. Higher K-index implies better predictive accuracy. Then, the
K-index of the 𝑖th gene was calculated by

𝐾𝑖 =
2

𝑛(𝑛 − 1)
∑
𝑠≠𝑡

𝐼 (𝑅𝑖,𝑡 > 𝑅𝑖,𝑠)
1 + exp (𝑅𝑖,𝑡 − 𝑅𝑖,𝑠)

, (5)

where 𝑅𝑖, 𝑗 is the linear combination of the covariates obtained from the univariate Cox regression model for
the 𝑖th gene and 𝑗 th subject, and 𝐼 (·) is the indicator function. Genes that are predictive of survival would
be selected by choosing an appropriate cut-off for 𝐾𝑖 . In our study, candidate genes were selected by setting
𝐶𝑀

(𝑞)
𝑖 > 0.7 and 𝐾𝑖 > 0.55 for each of the selected biologically important clusters.

Identification of the genetic biomarkers via regularized Cox regression model
As discussed in the previous section, we selected candidate genes from biologically important clusters accord-
ing to cluster membership and K-index. However, the number of candidate genes heavily depends on the
threshold chosen. A large number of genes can be selected when a low threshold is chosen. In addition, clus-
ter membership and K-index are univariate methods, which do not take into account the correlation between
genes within each cluster. Thus, the sparse-group lasso Cox regressionmodel [24] was adopted to further shrink
the number of candidate genes as biomarkers of drug resistance. It is a multivariate model that can account for
sparsity and the correlation within clusters. Suppose 𝑝 candidate genes belonging to 𝑚 clusters were selected
in previous steps, and their expressions for the 𝑖th sample are denoted as 𝒙𝑖 = (𝑥𝑖1, · · · , 𝑥𝑖𝑝). Let 𝒙𝑖(𝑙) denote
the gene expression of 𝑝𝑙 genes in the 𝑙th group and 𝜷(𝑙) denote the regression coefficient of 𝒙𝑖(𝑙) . Then, the
coefficient 𝜷 for 𝒙𝑖 is estimated by

�̂� = arg max𝛽

{
𝑙𝑛 (𝜷) − (1 − 𝛼)𝜆

m∑
𝑙=1

√
𝑝𝑙 ∥𝜷(𝑙) ∥2 − 𝛼𝜆∥𝜷∥1

}
, (6)

where 𝛼 ∈ [0, 1] is the weighting parameter for the combination of lasso and group-lasso penalties, 𝜆 is the
tuning parameter, 𝑙𝑛 (𝜷) = 1

𝑛 𝐿𝑛 (𝜷), and 𝐿𝑛 (𝜷) is the log-partial likelihood function:

𝐿𝑛 (𝜷) =
n∑
𝑖=1

𝛿𝑖

𝒙T
𝑖 𝜷 − log


∑
𝑗∈𝑅(𝑡𝑖)

exp(𝒙T
𝑗 𝜷)


 , (7)

where (𝑡𝑖 , 𝛿𝑖) is the observed survival time and censor indicator (𝛿𝑖 = 1 if the survival time is observed, 𝛿𝑖 = 0 if
the survival time is censored). The sparse group-lasso Cox regression was performed by the R package SGL [24].
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According to Quail et al. [1], resistance to CSF1R inhibition was reflected by the elevated expression level ofM2-
like genes in TAMs and the activation of PI3K pathways in TCs. DEGs involved in M2-type activation and
PI3K pathways are very likely to be associated with glioma survival. Therefore, we performed a sparse group-
lasso (SGL) analysis to select genetic biomarkers from the combination of biologically important clusters and
two additional groups of candidate genes: M2-like and PI3K pathway genes. 𝛼 was set as 0.98 for more sparsity
within the cluster. The tuning parameter 𝜆 was determined by 10-fold cross-validation.

Moreover, to obtain a parsimonious model, we further reduced the number of biomarkers using the 𝐿1-Cox
regression. The coefficients were estimated by

�̂� = arg max𝛽{𝑙𝑛 (𝜷) − 𝜆∥𝜷∥1}, (8)

where the tuning parameter 𝜆 is determined by cross-validation. The candidate genes with non-zero coeffi-
cients were selected as the prognostic signature for glioma.

Evaluation for the predictive performance of the constructed drugresistant signature
The predictive accuracy of the signature identified in the previous section was evaluated in different subgroups
using time-dependent receiver operating characteristic (ROC) analyses. In each subgroup, a Cox regression
model was fitted using all genes in the final signature to obtain the regression coefficient �̃� in the training
set (TCGA). Risk scores were calculated by 𝒙T

𝑖 �̃� in both the training set and the testing set (CGGA). Given a
cut-off 𝑐 ∈ 𝑅, the sensitivity and specificity at a specific time 𝑡 is

𝑆𝑒(𝑐, 𝑡) = 𝑃(𝒙T
𝑖 �̃� > 𝑐 |𝛿𝑖 (𝑡) = 1),

𝑆𝑝(𝑐, 𝑡) = 𝑃(𝒙T
𝑖 �̃� ≤ 𝑐 |𝛿𝑖 (𝑡) = 0), (9)

where 𝛿𝑖 (𝑡) is the censor indicator at time 𝑡. The time-dependent ROC curve [25] could be plotted by connecting
all the coordinates (1 − 𝑆𝑝(𝑐, 𝑡), 𝑆𝑒(𝑐, 𝑡)) at time 𝑡, and the time-dependent AUC at time 𝑡 is

AUC(𝑡) =
∫ +∞

−∞
𝑆𝑒(𝑐, 𝑡)𝑑 [1 − 𝑆𝑝(𝑐, 𝑡)] . (10)

In our study, one-, two-, and three-year time-dependent AUCs in training set and testing set were calculated
by R package timeROC [26].

In addition, patients could be further divided into a high risk of death group and a low risk of death group by
taking the median of risk scores as a cut-off. KM curves were generated for the high-risk and low-risk groups
of patients, and the log-rank test was employed to examine the significance of the difference in the overall
survival between the high/low-risk groups.

RESULTS
Module detection from correlation networks constructed in mouse and human
Based on the translation of DEGs of drug resistance from mouse to human homolog, 818 DEGs were used to
construct a correlation network for macrophages (TAMs), and 1730 DEGs were used for tumor cells (TCs), in
both mice and humans. On the one hand, for the mouse TAM network, the soft threshold power parameter
𝛽 was chosen to be 9 by applying the approximate scale-free topology criterion. Using the dynamic branch
cutting method, setting the “deepSplit” parameter to be 3, “minClusterSize” parameter to be 30, and merging
the highly correlated modules together, four modules were identified, as demonstrated in Figure 2A. Each
branch referred to a gene and was marked by different colors, which represented different modules. Genes not
assigned to any module were marked in grey. For the mouse TC network, the soft threshold power parameter
𝛽 was chosen to be 16. Using the dynamic branch cutting method, setting the “deepSplit” parameter to be 3,
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Figure 2. Hierarchical clustering dendrograms and modules identified in mice. (A) Dendrogram for TAM in mice. Four modules were
identified (including the grey cluster, which represents genes that were not assigned to any cluster). (B) Dendrogram for TC in mice. Six
modules were identified (including the grey module). Each branch refers to a gene and is marked by different colors, which represent
different modules. The “height” axis refers to the value of the TOM-based dissimilarity.

“minClusterSize” parameter to be 50, and merging the highly correlated modules together, six modules were
identified, including the grey module, demonstrated in Figure 2B.

On the other hand, the human TAM network was constructed using the WGCNA method on patients clas-
sified as the proneural subtype GBM using 818 DEGs translated from the candidate genes in TAMs of mice
differentially expressed between drug-resistance and drug-sensitive subgroups of mice. The soft threshold
power parameter 𝛽 was chosen to be 6 by applying the approximate scale-free topology criterion. Using the
dynamic branch cutting method (by means of dissimilarity matrix of mice), setting the “deepSplit” parame-
ter to be 3, “minClusterSize” parameter to be 30, and merging the highly correlated modules together, seven
modules were identified (including the grey module), as demonstrated in Figure 3A. The human TC network
was constructed on patients classified as GBM proneural using 1730 DEGs. The soft threshold power param-
eter 𝛽 was chosen to be 6. Using the dynamic branch cutting method, setting the “deepSplit” parameter to
be 3, and “minClusterSize” parameter to be 70, eight modules were identified (including the grey module), as
demonstrated in Figure 3B.

Selection of biologically important gene clusters from toprelated humanmouse modules
Four modules were identified in the mouse TAM network, six modules in the mouse TC network, seven
modules in the human TAM network, and eight modules in the human TC network. Since the mouse and
human networks were constructed based on the same set of genes, we examined the similarities between them
within the same type of cell. Thus, the contingency tables were generated to show the overlaps of each pair of
mouse-humanmodules for TAM and TC, respectively, as shown in Figure 4A and B.The humanmodules with
their sizes were spread as columns, and the mouse modules with their sizes included were spread as rows. In
each cell, the number of overlapped genes for a given pair of mouse-human modules was calculated. Fisher’s
exact test was applied to test whether the overlap was statistically significant versus due to chance alone, and
the 𝑃-value is shown in the parentheses (in − log10 scale). The color scale represents the 𝑃-value of the Fisher’s
exact test: the darker the color, the lower the p-value and the stronger significance of the overlap.

By setting a threshold for p-value < 10−4, in Figure 4A, the top three most significant gene clusters overlapped
betweenmice and humans for TAMaremouse brown-human green (MH-TAM1),mouse green-human turquoise
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Figure 3. Hierarchical clustering dendrograms and modules identified in humans. (A) Dendrogram for TAM in humans. Seven modules
were identified (including the grey cluster, which represents genes that were not assigned to any cluster). (B) Dendrogram for TC in humans.
Eight modules were identified (including the grey module). Each branch refers to a gene and is marked by different colors, which represent
different modules. The “height” axis shows the value of the TOM-based dissimilarity.

(MH-TAM2), and mouse brown–human black (MH-TAM3). In Figure 4B, the top four most significant gene
clusters overlapped between mice and humans for TC are mouse green-human yellow (MH-TC1), mouse
pink-human black (MH-TC2), mouse brown-human blue (MH-TC3), and mouse brown-human turquoise
(MH-TC4). Genes in each of the seven clusters are highly correlated in both mice and humans, which makes
the drug resistance more likely to be translated to humans from mice.

To see what biological impacts these overlaps might have, functional gene set enrichment analyses (GSEA)
were performed on each of the seven clusters with significant overlaps. The results are shown in Figure 5A-G.
Figure 5A-C shows that, in TAM, MH-TAM1 was enriched in GABA receptor signaling and cell cycle; MH-
TAM2 was enriched in inflammatory response, lymphocyte activation, etc.; and MH-TAM3 was enriched in
cellular responses to external stimuli. Figure 5D-G suggests that, in TC, MH-TC1 was enriched in microglia
pathogen phagocytosis pathways, etc.; MH-TC2 was enriched in extracellular matrix organization etc.; MH-
TC3 was enriched in mitotic cell cycle process, chromosome segregation, etc.; and MH-TC4 was enriched
in synapse organization, neural system, etc. The inflammatory response, microglia pathogen phagocytosis
pathways, extracellular matrix organization (ECM), mitotic cell cycle process, etc., are the most significantly
enriched pathways and are believed to play an important role in cancer metabolism and progression. Specifi-
cally, inflammation increases susceptibility to cancer development and facilitates all stages of tumorigenesis [27].
Microglia is crucial in phagocytosing tumor cells [28]. In tumor tissues, the growth andmalignancy of tumors as
well as the response to therapy are affected by the ECM [29]. Thus, we mainly focused on the MH-TAM2, MH-
TC1, MH-TC2, and MH-TC3 clusters for the subsequent identification of candidate genes and drug-resistant
signatures.

Identification of the drugresistant biomarkers and predictive signature of survival in the proneural
subtype of GBM
We wanted to effectively link expression levels of candidate biomarkers of drug resistance to the population
survival rate of human glioma patients. To obtain a relatively smaller but most important candidate set of
genes for the identification of drug-resistant biomarkers, cluster membership (CM) and K-index were first
calculated for each gene within each of the four biologically important gene clusters among proneural GBM
patients. By setting the thresholds 𝐶𝑀 > 0.7 and 𝐾 > 0.55, 105 genes were selected as functionally important
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Figure 4. Correspondence betweenmouse and humanmodules: (A) correspondence of TAMmodules betweenmouse and human; and (B)
correspondence of TC modules between mouse and human. The human modules with their sizes were spread as columns, and the mouse
modules with their sizes included were spread as rows. In each cell, the number of overlapped genes for a given pair of mouse-human
modules was calculated, and the statistical significance of the overlap was tested by the Fisher’s exact test. The 𝑃-value is shown in the
parathesis (in − log10 scale). The color scale also represents the 𝑃-value of the Fisher’s exact test: the darker the color, the lower the 𝑃-value
and the stronger significance of the overlap. TAM: Tumor-associated macrophages. TC: Tumor cells.

and predictive of survival from the four selected biologically important clusters. In addition to the 105 genes,
sinceM2-like genes and IGF/PI3K pathways were considered important for drug resistance in immunotherapy
in animal models [1], 15 M2-like and 5 PI3K pathway genes that were also differentially expressed between Ep
and Reb mice were added as two additional groups of genes. As a result, 125 candidate genes were prepared
for the construction of prognostic signatures.
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Figure 5. Functional enrichment analyses for the seven gene clusters overlapped between mouse and human: (A) mouse brown-human
green in TAM (MH-TAM1); (B) mouse green-human turquoise in TAM (MH-TAM2); (C) mouse brown–human black in TAM (MH-TAM3);
(D) mouse green–human yellow in TC (MH-TC1); (E) mouse pink-human black in TC (MH-TC2); (F) mouse brown–human blue in TC
(MH-TC3); and (G) mouse brown-human turquoise in TC (MH-TC4).
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Table 1. Summary for the 14 identified genetic biomarkers

Gene symbol Gene name Cell type Gene clusters Pathways
CCL22 C-C motif chemokine ligand

22
TAM M2-like gene Inflammatory response; response to

cytokine
ADCY2 Adenylate cyclase 2 TC PI3K pathway-related genes PI3K pathways
PDK1 Pyruvate dehydrogenase

kinase 1
TC PI3K pathway-related genes PI3K pathways

CP Ceruloplasmin TAM MH-TAM2 Positive regulation of cytosolic calcium ion
concentration

ZFP36 ZFP36 ring finger protein TAM MH-TAM2 Response to cytokine; leukocyte activation
CD2 CD2 molecule TAM MH-TAM2 Lymphocyte activation; positive regulation

of cytokine production
PLAUR Plasminogen activator,

urokinase receptor
TAM MH-TAM2 Regulation of leukocyte activation

ACAP1 ArfGAP with coiled-coil,
ankyrin repeat and PH

domains 1

TAM MH-TAM2 –

COL5A1 Collagen type V alpha 1 chain TC MH-TC2 ECM organization; PI3K pathways
FAM83D Family with sequence

similarity 83 member D
TC MH-TC3 mitotic cell cycle, etc.

PBK PDZ binding kinase TC MH-TC3 mitotic cell cycle, etc.
FANCA FA complementation group

A
TC MH-TC3 mitotic cell cycle, etc.

ANXA7 Annexin A7 TC MH-TC3 –
TACC3 Transforming acidic

coiled-coil containing protein
3

TC MH-TC3 mitotic cell cycle, etc.

Cell type (TAMor TC) refers to the cell fromwhich the genewas selected. Gene clusters list the gene clusters towhich the gene belonged.
Pathways indicate the pathways that the gene was associated with (if any). TC: Tumor cells. TAM: Tumor-associated macrophages.

Next, considering both the correlation and the sparsity within each cluster, a sparse group-lasso was performed
on the 125 candidate genes from six groups: MH-TAM2, MH-TC1, MH-TC2, MH-TC3, M2-like genes, and
PI3K-related pathways. If modules (gene clusters) were detected via a dissimilarity matrix from human data, a
similar set of candidate genes would be selected. Given the tuning parameters 𝛼 = 0.98 and 𝜆SGL = 0.0254, 14
genes were selected as drug-resistant biomarkers: CCL22, ADCY2, PDK1, CP, ZFP36, CD2, PLAUR, ACAP1,
COL5A1, FAM83D, PBK, FANCA,ANXA7, andTACC3. Twelve of themwere also selectedwhenmodules were
detected using the dissimilaritymatrix frommouse data. The gene names, cell types, and related pathways/gene
clusters of the selected 14 genes are summarized in Table 1. Their biological functions related to gliomas are
further illustrated in the discussion.

For the purpose of building a parsimonious model including a small set of genes that are most likely to serve
as the potential targets for developing novel treatments, the biomarkers were further reduced by fitting 𝐿1-
penalized Cox regression model. Given the 𝜆Lasso = 0.1450, five genes were finally selected for the polygenic
signature: CCL22, ADCY2, PDK1, CD2, and COL5A1. Fitting a Cox regression model on the five genes (gene
expression was standardized by median and IQR) with adjustment of age, the risk score (RS) can be calculated
as the linear combination of the covariates by the following formula:

𝑅𝑆 = 0.04203 × Age − 0.65889 × CCL22 − 0.65991 × ADCY2 + 0.40717 × PDK1
+ 1.14938 × CD2 + 0.25144 × COL5A1. (11)

Here, CCL22 is an M2-like gene. ADCY2, PDK1, and COL5A1 are all involved in PI3K-related pathways.
COL5A1 was chosen from theMH-TC2 gene clusters and is involved in an extracellular matrix organization.
CD2 was chosen from the MH-TAM2 gene cluster associated with inflammatory response. All five of the
signature genes have been demonstrated in the literature to be associated with the progression andmetabolism
of multiple malignant tumors, including GBM. Details are further illustrated below.
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Figure 6. Evaluation of the predictive performance of the identified signature in the proneural subtype of GBM: (A) time-dependent ROC
curves with corresponding AUCs at one and two years in training set (TCGA, 𝑛 = 38); (B) time-dependent ROC curves with corresponding
AUCs at one and two years in testing set (CGGA, 𝑛 = 30); (C) KM curves for high-risk and low-risk patients in training set; and (D) KM
curves for high-risk and low-risk patients in testing set. 𝑃-values were calculated from the log-rank test. TCGA: The Cancer Genome Atlas.
CGGA: Chinese Glioma Genome Atlas. ROC: receiver operating characteristic. GBM: glioblastoma multiforme. KM: Kaplan-Meier.

Evaluation of the predictive accuracy of the drugresistant signature in different subgroups
We first assessed the predictive performance of the identified signature in the proneural type GBM patients.
Risk scores were calculated in both training set (TCGA) and testing set (CGGA) by Equation (12) with gene
expressions standardized bymedian and IQR. Figure 6A shows the time-dependent ROC curves in the training
set (TCGA). The corresponding 1- and 2-year AUCs were 0.856 and 0.942, respectively. Figure 6B shows
the time-dependent ROC curves in testing set (CGGA). The corresponding one- and two-year AUCs in the
independent testing set were 0.791 and 0.894, respectively, which demonstrated that the identified signature
possessed a high predictive accuracy of survival in the proneural subtype of GBM patients. Moreover, K-M
curves were generated for high-risk and low-risk patients classified by the median of the risk scores, as shown
in Figure 6C and D.The overall survivals were significantly different between the high-risk group and low-risk
group in both training and testing sets (Log-rank test: 𝑃 < 0.0001 in training set and 𝑃 = 6 × 10−4 in testing
sets).

Furthermore, since many LGGwill eventually progress to high-grade gliomas, with the majority of them being
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Figure 7. Evaluation of the predictive performance of the identified signature in LGG: (A) time-dependent ROC curves with corresponding
AUCs at one, two, and three years in training set (TCGA, 𝑛 = 525); (B) time-dependent ROC curves with corresponding AUCs at one, two,
and three years in testing set (CGGA, 𝑛 = 172); (C) KM curves for high-risk and low-risk patients in training set; and (D) KM curves for
high-risk and low-risk patients in testing set. 𝑃-values were calculated from the log-rank test. TCGA: The Cancer Genome Atlas. CGGA:
Chinese Glioma Genome Atlas. ROC: receiver operating characteristic. LGG: lower-grade gliomas. KM: Kaplan-Meier.

the proneural subtype of GBM [30,31], it would be interesting to investigate the prognostic and predictive prop-
erties of the drug-resistant signature within LGG. We therefore refitted the Cox model using the five signature
genes and age in a training set of 525 LGG patients from TCGA. We validated it using an independent testing
set of 172 LGG patients from CGGA. Risk scores were calculated based on the standardized expression levels.
Figure 7A and B shows that the time-dependent AUC of this signature at one, two, and three years were 0.896,
0.836, 0.843 in training set and 0.771, 0.781, 0.761 in testing set. Figure 7C and D indicates that the overall
survivals were significantly different between the high-risk group and low-risk group classified by the median
of risk scores, as 𝑃-value < 0.0001 in both training and testing sets. These results suggest that the drug-resistant
signature identified in GBM proneural subtype also has good prognostic power in LGG.

The mouse study reported by Quail et al. [1] was conducted on the proneural subtype of mice; thus, one may
doubt whether the findings and biomarkers would be generalizable to non-proneural type of GBM patients.
Indeed, in contrast to GBMproneural subtype and LGG, the identified candidate genes had very poor prognos-
tic power in non-proneural types of GBM patients. To be specific, 127 non-proneural GBM patients collected
from TCGA were used as the training set and 108 non-proneural GBM patients from CGGA were used as the
testing set. We retrained the Cox model using the five candidate genes and age in the training set and calcu-
lated risk scores in both sets based on standardized expression levels. In the training set, the time-dependent
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Figure8. Evaluation of the predictive performance of the identified signature in non-proneural type ofGBM: (A) time-dependent ROCcurves
with corresponding AUCs at one and two years in training set (TCGA, 𝑛 = 127); and (B) time-dependent ROC curves with corresponding
AUCs at one and two years in testing set (CGGA, 𝑛 = 108). GBM: glioblastomamultiforme. TCGA: TheCancer GenomeAtlas. ROC: receiver
operating characteristic.

AUCs at one and two years were only 0.645 and 0.584, respectively; in the testing set, they were 0.491 and 0.584,
respectively [Figure 8]. Thus, the findings from the mouse study are not generalizable to non-proneural type
GBMs, which is not surprising due to different genomic profiles for the different subtypes of GBMs.

DISCUSSION
Glioma is the most malignant and invasive tumor that has a poor prognosis, with a median survival of GBM of
only 12 months [12,31]. Despite the advances in cancer immunotherapy, patients still have limited sensitivity to
current therapies, which implies a high prevalence of drug resistance. In fact, CSF1R inhibition as a treatment
of glioma is being evaluated in some early-phase human clinical trials. However, some trials have been stopped
or failed due to no evidence of survival improvement. The reported early-stage trials did not focus on subtypes
of GBM, thus did not have adequate power to detect treatment effect in a subtype of GBMs given the small sam-
ple size. Even the likely responsive subgroups of GBM patients may have drug resistance [32,33]. Quail et al. [1]
identified the drug resistance mechanism that the long-term inhibition of CSF1R in macrophage cells could
activate IGF1/PI3K pathway in tumor cells and lead to drug resistance in mice. Therefore, it is of particular
interest in identifying evidence to indicate whether the drug resistance mechanism in mice might also exist in
human glioma patients, and whether some subgroups of GBM patients might have better survival using such
therapies, in order to potentially improve the response and feasibility of this therapy in humans. In this study,
we carried out a network-based, translational research strategy to identify potential targets for therapies with
gene signatures that are predictive of survival and indicative of drug resistance to CSF1R inhibition treatment.
Specifically, borrowing strength from the mouse study, we identified candidate genes that were differentially
expressed between the drug-sensitive and drug-resistant mice, and translated those genes to human homologs.
Then, those DEGs were used to construct weighted gene correlation networks in TAMs and TCs, for mice and
the proneural subtype of GBM patients, respectively. Clusters of genes (modules) were detected from each of
the networks, and biologically important gene clusters were identified as DEGs with top significant overlaps
between human and mouse modules, incorporating results of gene-set enrichment analyses. The construction
of weighted gene networks and detection of gene clusters in humans borrow information from the dissimilarity
matrix from the mouse data to improve stability, given the lack of cell-specific gene expression data in humans.
To obtain a smaller candidate gene set, functionally important and predictive genes were selected via cluster
membership and the K-index from those gene clusters as well as M2-like and PI3K-related pathway DEGs.
The regularized Cox regression models were then applied to further shrink the candidate gene set to obtain
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genetic biomarkers that are more likely to be actionable, which resulted in 14 genes (CCL22, ADCY2, PDK1,
ZFP36, CP, CD2, PLAUR, ACAP1, COL5A1, FAM83D, PBK, FANCA, ANXA7, and TACC3).

Knowing the selection process, it is not a surprise that all the candidate genes selected are known to play
important functional roles in cancer progression, as reported in the literature. In particular, CCL22 is an M2-
like gene, while ADCY2, PDK1, and COL5A1 belong to PI3K pathway. According to Quail et al. [1], resistance
to CSF1R inhibition was reflected by elevated expression of M2-like genes in TAM and activation of PI3K
pathway in TC. ZFP36, CP, CD2, PLAUR, and ACAP1 were selected from the gene cluster that was enriched
in inflammatory, immune response, and regulation of cytokine pathways (MH-TAM2). Inflammation and
immune responses are associated with increased susceptibility to cancer development and facilitate all stages
of tumorigenesis [27,34]. Cytokines are potent but complex immunemediators and have drawn great attention to
the development of cancer immunotherapies [35]. COL5A1 also came from the gene clusters that were enriched
in ECM organization (MH-TC2). In tumor tissues, the growth and malignancy of the tumor as well as the
response to therapy are affected by the ECM [29]. FAM83D, PBK, FANCA, ANXA7, and TACC3 were selected
from the gene cluster that was enriched in mitotic cell process pathway (MH-TC3). Aberrant activities of
various cell cycle proteins can lead to uncontrolled proliferation in cancer. Targeting mitotic cell cycle has
been studied as a novel cancer treatment strategy [36–38]. Since these gene clusters were identified from DEGs
that were differentially expressed between the drug-resistant mice and the drug-sensitive mice, these pathways
are likely to be associated with drug resistance.

In the literature, the 14 identified genes have been suggested as essential for the development and progression
of many cancers including gliomas. Particularly, CCL22 (C-C motif chemokine ligand 22) is found in many
types of human cancers and has lower expression levels in gliomas cases than in controls [39,40]. As a T cell
trafficking chemokine, CCL22 attracts regulatory T cells (Treg), which could promote tumorigenesis. Inhibit-
ing Treg trafficking in GBM may be a novel strategy to develop therapeutic interventions, which has been
shown to be effective in other cancer models [41]. ADCY2 (adenylate cyclase 2), which is involved in the cal-
cium signaling pathway, may play a crucial role in the development and progression of gliomas [42]. Aberrant
methylation of ADCY2 is observed in many other cancers [43]. PDK1 (pyruvate dehydrogenase kinase 1) is a
hypoxia-inducing factor (HIF)-1 regulated gene which may promote EGFR activation that can subsequently
sustain malignant progression [44,45]. By inactivating PDK1, glioma cell colony and sphere formation could be
greatly inhibited, and glioma spheres would become more sensitized to temozolomide (TMZ) toxicity [46–49].
CD2 (CD2 molecule) is a transmembrane molecule expressed on T, natural killer (NK), and dendritic cells
and is essential for immunology [50,51]. It was found to be involved in tumor invasion and is highly expressed
in breast cancer [50,52]. COL5A1 (collagen type V alpha 1 chain) was found to be related to the occurrence
and progression of multiple types of malignant tumors, including breast cancer and gliomas. Recent studies
found COL5A1 was positively correlated with the increasing malignancy of glioblastoma through the PPRC1-
ESM1 axis activation and extracellular matrix remodeling, and it may be a potential therapeutic target for
glioma [53–56]. FAM83D (family with sequence similarity 83 member D) is a member of FAM83 family (includ-
ing FAM83A, FAM83B, and FAM83D), which has been shown to have oncogenic potential recently. FAM83D
was found to be consistently upregulated across human tumor types, including gliomas [57,58]. PBK (PDZ
binding kinase) expression, which is associated with cell growth and apoptosis, DNA damage repair, immune
responses, etc., plays an essential role in tumorigenesis and metastasis. It was found to be upregulated in GBM
patients [59,60]. An in vivo study reported that inhibition of PBK could almost completely abolish tumor growth,
which made PBK serve as a potentially promising therapeutic target for GBM treatment [61,62]. FANCA (FA
complementation group A) is associated with tissue proliferation and was found to be overexpressed in many
types of cancers [16,63,64]. FANCA is essential for the function of Fanconi anemia (FA) pathway. Targeting the
FA pathway may provide a novel strategy for the sensitization of solid tumors and investigation of chemoresis-
tance in different tumor types [65]. ANXA7 (annexin A7) is a ubiquitinated tumor suppressor gene [66]. Loss
of ANXA7 function stabilizes the EGFR protein, augments EGFR transforming signaling in glioblastoma cells,
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and promotes tumorigenesis [67,68]. TACC3 (transforming acidic coiled-coil containing protein 3) is oftenmen-
tioned with FGFR3-TACC3 fusion, which is an oncogenic driver. FGFR3-TACC3 fusions generate powerful
oncogenes that combine growth-promoting effects with aneuploidy through the activation of as yet unclear
intracellular signaling mechanisms [69,70]. FGFR inhibition has shown encouraging outcomes in mouse stud-
ies [70]. Targeting FGFR3-TACC3 fusion is evaluated by many ongoing early phase human clinical trials [70–72].
ZFP36 (ZFP36 ring finger protein) is a well-known mRNA binding protein. In the tumor microenvironment,
ZFP36 might reduce the growth and invasion of glioma cells by targeting IL-13 mRNA to inhibit the role of
PI3K/Akt/mTOR pathways [73–75]. CP (ceruloplasmin) serves as a prognostic biomarker in many cancers, in-
cluding bile duct cancer, bladder cancer, breast cancer, etc. [76–78]. The expression of ACAP1 (ArfGAP with
coiled-coil, ankyrin repeat and PH domains 1) is correlated with immune infiltration levels in many types
of cancers [79–81]. PLAUR encodes the urokinase receptor (uPAR). The overexpression of PLAUR has been
shown to be associated with poor prognosis in many types of gliomas, particularly in mesenchymal subtype
GBM and LGG [82–84]. Indeed, the 14 identified genes are more likely to reflect drug resistance and serve as
potential targets since they are differentially expressed between drug-resistant and drug-sensitive mice. They
might be modified in patients just as they can be modified in mice, as studied by Quail et al. [1].

In addition, among the 14 genetic biomarkers, five genes (CCL22, ADCY2, PDK1, CD2, and COL5A1) were
chosen to form a prognostic signature using the 𝐿1-Cox regression model. The established signature has good
prognostic power in the proneural subtype of GBM and LGG patients. We set TCGA as the training set for
modeling and used CGGA, an independent cohort, as the testing set to validate the performance. In proneural
subtype of GBM patients, the two-year AUC of this signature attained 0.89 in the testing set, which reveals the
potential to build treatment targets for improved patient survival. Furthermore, as Quail et al. [1] also identified
interventions to overcome the drug resistance in mice, any genetic biomarkers we identified here would likely
to be modifiable targets for therapeutic intervention in humans. Thus, new clinical trials targeting proneural
type GBMs might be developed. This drug-resistant signature also shows moderate time-dependent AUCs
in LGG patients. Since many LGG will eventually progress to high-grade gliomas, with the majority of them
being the proneural subtype of GBM [30,31], it would be interesting to investigate which LGG might progress
to the proneural type of GBM, and it would be of clinical importance to find out whether a novel therapy
based on our candidate target genes might prevent LGG from progression to advanced stage and prolong
patient survival. Consequently, using a translational network-based multicellular analysis, we linked the drug-
resistancemechanism identified inmice to population-level survival rates of both the proneural type GBM and
a large number of LGGpatients. Importantly, the biomarkers identified from themouse study of proneural type
have a poor predictive power of survival in non-proneural GBM patients, which implies that new biological
mechanisms need to be identified for the non-proneural type of GBM patients. The 14 identified biomarkers
and the signature are promising targets for therapies in glioma precisionmedicine, or individualized treatment,
because they are potentially feasible only in some subgroups of glioma patients instead of all glioma patients.

One limitation of our human study is that we only have gene expression data from bulk tissue, not knowing
expression levels in TCs and in TAMs, respectively. As the cell-specific RNA-seq gene expression data will
become increasingly available in the future, one might be able to construct gene networks and models using
human cell-specific RNA-seq data, which would further improve the efficiency and precision of the methods
we developed here to identify candidate biomarkers. In addition, with cell-specific human gene expression
data on TAMs and on TCs, we would be able to model and investigate the interactions between TAMs and
TCs, which is clearly important in directly investigating the mechanisms of drug resistance in humans and the
identification of novel treatment targets to overcome drug resistance and prolong survival of patients.
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