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Abstract
Aim: The main goal of this study was to elucidate at the transcript level the tyrosine kinase expression profiles of 
primary leukemia cells from mixed lineage leukemia 1 gene rearranged (KMT2A/MLL-R+) acute myeloid leukemia 
(AML) and acute lymphoblastic leukemia (ALL) patients.

Methods: We evaluated protein tyrosine kinase (PTK) gene expression profiles of primary leukemic cells in 
KMT2A/MLL-R+ AML and ALL patients using publicly available archived datasets.

Results: Our studies provided unprecedented evidence that the genetic signatures of KMT2A/MLL-R+ AML and 
ALL cells are characterized by transcript-level overexpression of specific PTK. In infants, children and adults with 
KMT2A/MLL-R+ ALL, as well as pediatric patients with KMT2A/MLL-R+ AML, the gene expression levels for FLT3, 
BTK, SYK, JAK2/JAK3, as well as several SRC family PTK were differentially amplified. In adults with KMT2A/MLL-
R+ AML, the gene expression levels for SYK, JAK family kinase TYK2, and the SRC family kinases FGR and HCK 
were differentially amplified.

Conclusion: These results provide new insights regarding the clinical potential of small molecule inhibitors of these 
PTK, many of which are already FDA/EMA-approved for other indications, as components of innovative multi-
modality treatment platforms against KMT2A/MLL-R+ acute leukemias.
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INTRODUCTION
The lysine [K]-methyltransferase 2A (KMT2A)/mixed-lineage leukemia 1 (KMT2A/MLL) gene on 
chromosome 11 encodes a 431-kDa protein involved in the regulation of transcription[1]. Rearrangements 
(r) of the KMT2A/MLL gene have been reported in acute myeloid leukemia (AML) and acute lymphoblastic 
leukemia (ALL)[2-14]. AML and ALL patients with KMT2A/MLL-R+ leukemia have a poor prognosis with 
disappointing event-free survival (EFS) and overall survival (OS) outcomes on contemporary treatment 
regimens due to relapses caused by cancer drug-resistant clones[1-19]. Therefore, more effective frontline as 
well as salvage treatments for MLL-R+ acute leukemias are urgently needed.

The main goal of the present study was to evaluate the protein tyrosine kinase (PTK) profiles of primary 
leukemic cells in patients with KMT2A/MLL-R+ AML and ALL as potential therapeutic targets to overcome 
cancer drug resistance. We compared the transcriptomes of primary leukemic cells from KMT2A/MLL-R+ 
vs. KMT2A/MLL-R- AML and ALL patients with an emphasis on the relative gene expression levels of for 
21 PTK, including ERBB1, FGR, FLT3, FYN, HCK, JAK2, LCK, LYN, MERTK, SRC, BLK, BMX, BTK, 
ERBB2, ERBB3, JAK1, JAK3, PTK2, SYK, TEC, TYK2. Our studies provided unprecedented evidence that 
the genetic signatures of KMT2A/MLL-R+ AML and ALL cells are characterized by transcript-level 
overexpression of specific PTK. In infants, children and adults with KMT2A/MLL-R+ ALL, as well as 
pediatric patients with KMT2A/MLL-R+ AML, the gene expression levels for FLT3, BTK, SYK, JAK2/JAK3, 
as well as several SRC family PTK were differentially amplified. In adults with KMT2A/MLL-R+ AML, the 
gene expression levels for SYK, JAK family member TYK2, and the SRC family PTK HCK and FGR were 
differentially amplified. These results provide new insights regarding the clinical potential of small molecule 
inhibitors of these PTK, many of which are already FDA/EMA-approved for other indications, as 
components of innovative multi-modality treatment platforms against KMT2A/MLL-R+ acute leukemias.

METHODS
Statistical methods for gene chip normalization for ALL and AML samples 
A recently published working database, including data on primary leukemia cells from 201 adult patients 
with B-ALL (GSE13159), 119 pediatric patients with B-ALL (GSE11877 and GSE13351) and 97 infants with 
B-ALL (GSE68720), as well as 74 normal/non-leukemic control bone marrow samples (GSE13159), was 
built with previously archived datasets from the NCBI repository and used in our comparative gene 
expression analyses, as previously described in detail[20]. We also used a working database derived from 
archived datasets including data on primary leukemia cells from 542 adult patients with AML (GSE13159), 
and 279 pediatric patients with AML (GSE19577, GSE17855) along with the 74 normal/non-leukemic 
control bone marrow samples (GSE13159) in our comparative gene expression analyses, as described[20]. 
Probeset level normalization procedures were used as previously reported[20].

We also compared the gene expression profiles of primary leukemia cells from FLT3-ITD+ pediatric AML 
patients (N = 48 from GSE17855) with those of primary leukemia cells from 189 FLT3-ITD- pediatric AML 
patients (GSE17855) as well as normal hematopoietic cells from 74 non-leukemic control bone marrow 
samples (GSE13159). Forty-seven patients from the KMT2A/MLL-R- “other” group of pediatric AML 
patients were FLT3-ITD+, including 18 patients with cytogenetically normal AML, one patient with inv[16] 
AML, 12 patients with t(15;17) AML, 3 patients with t(8;21), 9 patients with AML and other cytogenetic 
features, and 4 patients who had AML with unknown cytogenetic features. One pediatric patient with 
KMT2A/MLL-R+ AML was FLT3-ITD+. This double mutant (FLT3-ITD/MLL-R) case was removed from 
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the analysis of FLT3-ITD+ (N = 47; GSE17855) versus KMT2A/MLL-R+ pediatric AML patients (N = 88; 
GSE17855, N = 46; GSE19577, N = 42).

No pediatric patients with KMT2A/MLL-R+ AML harbored NPM1 or CEBPA mutations. Within the 
KMT2A/MLL-R- (“other”) group of KMT2A/MLL-R+ AML pediatric AML patients, 17 harbored NPM1 
mutations (NPM1+) and 16 patients had CEBPA mutations (CEBPA+) (GSE17855). We investigated the 
gene expression profiles from primary leukemia cells from 71 KMT2A/MLL-R- pediatric AML patients who 
were FLT3-ITD+, NPM1+ or CEBPA+ (GSE17855; only NPM1+ N = 10, only CEBPA+ N = 14, only 
FLT3-ITD+ N = 38; 9 cases harbored one or more of the NPM1, CEBPA or FLT3-ITD mutations) versus 88 
cases of KMT2A/MLL-R+ [GSE17855 (N = 46); GSE19577 (N = 42)]. One patient with both FLT3-ITD and 
MLL-R was removed from this comparison.

Statistical methods for differential gene expression
Our analyses for ALL and AML focused on the expression levels (interrogated with 64 probesets) of the 
following 21 PTK genes: ERBB1, FGR, FLT3, FYN, HCK, JAK2, LCK, LYN, MERTK, SRC, BLK, BMX, BTK, 
ERBB2, ERBB3, JAK1, JAK3, PTK2, SYK, TEC and TYK2. Standard statistical methods, including mixed 
model ANOVAs, and hierarchical clustering method were employed, as reported[20-24].

RESULTS
Differentially amplified expression of PTK genes in primary leukemic cells from KMT2A/MLL-R+ 
B-ALL patients
We first examined PTK gene expression profiles of primary leukemic cells from infants (N = 80), children 
(N = 25) and adults (N = 70) with KMT2A/MLL-R+ B-ALL vs. normal hematopoietic cells from healthy 
volunteers (N = 74). Notably, FMS-like tyrosine kinase 3(FLT3) expression in infant KMT2A/MLL-R+ ALL 
cases was 16.09-fold higher than in normal hematopoietic cells in non-leukemic control bone marrow 
samples (P-value < 1 × 10-8) [Supplementary Figure 1; Supplementary Table 1]. The genes for several 
additional PTK showed augmented expression in KMT2A/MLL-R+ infant ALL cells, including TEC, SRC, 
BLK, JAK2, BTK, PTK (3 probesets), SYK and JAK1 (2 probesets) [Supplementary Figure 1; 
Supplementary Table 1]. As the second most upregulated gene, the gene for BLK was expressed at a 
6.77-fold higher level in infant KMT2A/MLL-R+ ALL cells than in normal hematopoietic cells 
(P-value < 1 × 10-8) [Supplementary Table 1]. Similarly, FLT3 wasexpressed at a 22.38-fold higher level in 
pediatric KMT2A/MLL-R+ ALL cells than in normal hematopoietic cells (P-value < 1 × 10-8) 
[Supplementary Figure 2; Supplementary Table 2]. As in infant leukemia cells, BLK was the second most 
upregulated gene in pediatric KMT2A/MLL-R+ ALL cells showing a 4.38-fold higher expression level than 
in normal hematopoietic cells (P-value < 1 × 10-8). The genes for several additional PTK showed augmented 
expression in pediatric KMT2A/MLL-R+ ALL cells, including PTK2, TEC, BTK, and SYK 
[Supplementary Figure 2; Supplementary Table 2]. Similarly, FLT3 and BLK expression in leukemic cells 
from adult patients with KMT2A/MLL-R+ ALL were 21.00-fold (P-value < 1 × 10-8) and 21.79-fold 
(P-value < 1 × 10-8), respectively, higher than in normal hematopoietic cells [Supplementary Figure 3; 
Supplementary Table 3].

We next compared the PTK gene expression profiles of leukemic cells from each KMT2A/MLL-R+ subset to 
the PTK gene expression profiles of leukemic cells without KMT2A/MLL rearrangements from the 
corresponding control ALL patients in the “other” categories (Infants, N = 17; Children, N = 94; Adults, 
N = 131). In infants [Figure 1; Supplementary Table 4], children [Figure 2; Supplementary Table 5] and 
adults [Figure 3; Supplementary Table 6] with KMT2A/MLL-R+ ALL, the gene expression levels for FLT3, 
BTK, SYK, JAK2/JAK1, as well as several SRC family PTK, including BLK, were differentially and 
significantly amplified. In KMT2A/MLL-R+ infant ALL cells, FLT3_206674_at was the most significantly 
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Figure 1. Gene Expression Levels for Tyrosine Kinases in Leukemic Cells from infants with KMT2A/MLL-R+ B-ALL vs. Other Types of B-
ALL without KMT2A/MLL Rearrangements. Probeset level normalized, robust multi-array analysis (RMA) signal values from the 
archived data for infant ALL (GSE68720) were examined in these comparisons. Infant KMT2A/MLL-R+ B-ALL gene partners for 
KMT2A were AF4 (N = 48), ENL (N = 16), AF9 (N = 6), ASAH3 (N = 1), EPS15 (N = 3), Unknown (N = 6) (GSE68720; Total N = 80). 
The cluster figure displays the expression levels in KMT2A/MLL-R+ ALL cells mean centered to the reference group [KMT2A/MLL 
germline/WT gene (KMT2A/MLL-R-)] represented by log2-transformed fold change values (blue to red color indicates under-
expression to over-expression respectively in KMT2A/MLL-R+ samples). Co-regulated probesets are organized and depicted by 
dendrograms for both probesets (rows) and patients (columns). The log2-transformed RMA values for leukemic cells from 80 infants 
with KMT2A/MLL-R+ B-ALL compared to that from leukemia cells obtained from 17 infants with MLL-germline/WT ALL (MLL-R 
negative) showed 19 probesets that were upregulated in KMT2A/MLL-R+ infant ALL cells. FLT3_206674_at was the most significantly 
upregulated probeset (Fold Change = 11.23; P-value < 10-8) followed by BLK_206255_at (Fold Change = 3.98; P-value < 10-8) and 
HCK_208018_s_at (Fold Change = 2.46; P-value < 10-8) [Supplementary Table 4]. Cluster visualization of the mean centered 
expression values suggested co-regulation of LYN (3 probesets), BTK, JAK3, HCK, SYK (3 probesets), TYK2, JAK2 (3 probesets), FGR, 
PTK2 (2 probesets) and BLK (2 probesets).

upregulated probeset (Fold Change = 11.23; < 10-8) followed by BLK_206255_at (Fold Change = 3.98; < 10-8) 
when compared to infant ALL cells with germline/wildtype KMT2A/MLL gene [Figure 1; 
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Figure 2. Gene Expression Levels for Tyrosine Kinases in Leukemic Cells from Pediatric Patients with KMT2A/MLL-R+ B-ALL vs. Other 
Types of B-ALL without KMT2A/MLL Rearrangements. Probeset level normalized signal values from the archived data sets GSE11877 
and GSE13351 were examined in these comparisons. The cluster figure displays the expression levels in KMT2A/MLL-R+ ALL cells 
mean centered to the reference group (other subsets of ALL without KMT2A/MLL rearrangements) represented by log2-transformed 
fold change values (blue to red color indicates under-expression to over-expression respectively in KMT2A/MLL-R+ samples). Co-
regulated probesets are organized and depicted by dendrograms for both probesets (rows) and patients (columns). Depicted are the 
differential gene expression changes of log2-transformed, robust multi-array analysis (RMA) normalized values for 25 pediatric ALL 
KMT2A/MLL-R+ cases (GSE11877 and GSE13351) compared to 94 non-MLL-R+ other samples (GSE11877 and GSE13351) exhibiting 20 
dysregulated probesets, of which 14 were upregulated in KMT2A/MLL-R+ subset of cases. FLT3_206674_at was the most significantly 
upregulated probeset (Fold Change = 8.65; P-value < 10-8) followed by BLK_206255_at (Fold Change = 3.11; P-value < 10-8) and 
HCK_208018_s_at (Fold Change = 2.64; P-value < 10-8) [Supplementary Table 5].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202210/5221-SupplementaryMaterials.pdf
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Figure 3. Gene Expression Levels for Tyrosine Kinases in Leukemic Cells from Adult Patients with KMT2A/MLL-R+ B-ALL vs. Other 
Types of B-ALL without KMT2A/MLL Rearrangements. Probeset level normalized signal values from the archived data set GSE13159 
were examined in these comparisons. The cluster figure displays the expression levels in KMT2A/MLL-R+ ALL cells mean centered to 
the reference group (other types of ALL without KMT2A/MLL Rearrangements) represented by log2-transformed fold change values 
(blue to red color indicates under-expression to over-expression respectively in KMT2A/MLL-R+ samples). Co-regulated probesets are 
organized and depicted by dendrograms for both probesets (rows) and patients (columns). The comparison of the log2-transformed 
RMA values for leukemic cells from 70 adult patients with KMT2A/MLL-R+ ALL with the RMA values for leukemic cells from 131 adult 
patients with other forms of ALL resulted in 25 probesets that were significantly dysregulated, of which 10 were upregulated in 
KMT2A/MLL-R+ subset of cases. FLT3_206674_at was the most significantly upregulated probeset (Fold Change = 5.69; P-value < 
10-8) followed by BLK_206255_at (Fold Change = 3.95; P-value < 10-8) and HCK_208018_s_at (Fold Change = 2.21; P-value < 10-8) 
[Supplementary Table 6]. FLT3 was co-regulated with BLK (2 probesets), HCK and LYN (3 probesets).

Supplementary Table 4]. Likewise, in KMT2A/MLL-R+ pediatric ALL cells, FLT3_206674_at was the most 
significantly upregulated probeset (Fold Change = 8.65; P-value < 1 × 10-8) followed by BLK_206255_at 
(Fold Change = 3.11; P-value < 10-8) when compared to pediatric ALL cells without KMT2A/MLL 
rearrangements [Figure 2; Supplementary Table 5]. Similarly, in KMT2A/MLL-R+ adult ALL cells, 
FLT3_206674_at was the most significantly upregulated probeset (Fold Change = 5.69; P-value < 10-8) 
followed by BLK_206255_at (Fold Change = 3.95; P-value < 10-8) when compared to leukemic cells from 
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adult ALL patients without KMT2A/MLL rearrangements [Figure 3; Supplementary Table 6].

Differentially amplified expression of PTK genes in primary leukemic blasts from KMT2A/MLL-R+ 
AML patients
We examined the PTK gene expression profiles of primary leukemic blasts from 89 children and 38 adults 
with KMT2A/MLL-R+ AML vs. normal hematopoietic cells from healthy volunteers (N = 74). In 
comparison to normal hematopoietic cells, KMT2A/MLL-R+ pediatric as well as adult AML cells were 
characterized by amplified expression of FLT3 gene. FLT3_206674_at was the most significantly 
upregulated probeset (Fold Change in pediatric KMT2A/MLL-R+ AML cells = 7.54; P-value < 1 × 10-8; Fold 
Change in adult KMT2A/MLL-R+ AML cells = 8.28; P-value < 1 × 10-8) followed by TEC_206301_at (Fold 
Change in pediatric KMT2A/MLL-R+ AML cells = 2.2; P-value < 1 × 10-8; Fold Change in adult 
K M T 2 A / M L L - R+ A M L  c e l l s  =  1 . 7 3 ;  P-value < 1 × 10-8) [Supplementary Figures 4 and 5;  
Supplementary Tables 7 and 8].

We next compared the PTK gene expression profiles of leukemic cells from pediatric and adult 
KMT2A/MLL-R+ AML cells to the PTK gene expression profiles of AML cells without KMT2A/MLL 
rearrangements from the corresponding control AML patients in the “other” categories (Children, N = 190; 
Adults, N = 504). In pediatric patients with KMT2A/MLL-R+ AML, the gene expression levels for FLT3, 
BTK, SYK, JAK2/JAK3, as well as several SRC family PTK were differentially amplified [Figure 4; 
Supplementary Table 9]. In adults with KMT2A/MLL-R+ AML, the gene expression levels for SYK, JAK 
family kinase TYK2, and the SRC family kinases FGR and HCK were differentially amplified [Figure 5; 
Supplementary Table 10].

The FLT3-ITD+ subset (N = 48) among the pediatric AML patients exhibited upregulated FLT3 expression 
when  compared  to  non- l eukemic  cont ro l  s amples  (N  =  74)  [Supplementary Figure 6;  
Supplementary Table 11] as well as FLT3-ITD- pediatric AML cases (N = 189) [Supplementary Figure 7; 
Supplementary Table 12]. Comparing 189 cases of FLT3-ITD- samples with 48 cases of FLT3-ITD+ pediatric 
AML samples (GSE17855) exhibited 13 differentially expressed probesets, of which four probesets were 
significantly upregulated in pediatric FLT3-ITD+ cases. FLT3_206674_at was the most significantly 
upregulated probeset (Fold Change = 1.96; P-value < 10-8) followed by BTK_205504_at (Fold Change = 1.25; 
P-value = 9.8 × 10-4) and TEC_206301_at (Fold Change = 1.23; P-value = 0.0025) [Supplementary Figure 7; 
Supplementary Table 12].

A comparison of the 88 KMT2A/MLL-R+ pediatric AML cases with 47 FLT3-ITD+ pediatric AML cases 
showed 31 differentially expressed probesets, of which 24 probesets were significantly upregulated in 
pediatric KMT2A/MLL-R+ cases. FGR_208438_s_at was the most significantly upregulated transcript (Fold 
Change = 4.40; P-value < 10-8) followed by SYK_207540_s_at (Fold Change = 3.81; P-value < 10-8) and 
JAK1_1552611_a_at (Fold Change = 2.78; P-value < 10-8). ERBB1_1565483_at was the most significantly 
downregulated transcript in KMT2A/MLL-R+ cases (Fold Change = 0.56; P-value < 10-8) followed by 
ERBB1_1565484_x_at (Fold Change = 0.57; P-value = 2.5 × 10-8) and MERTK_211912_at (Fold Change = 
0.73; Pval = 0.0016) [Supplementary Figure 8; Supplementary Table 13]

A comparison of the 88 KMT2A/MLL-R+ pediatric AML cases with 71 cases of FLT3-ITD+/NPM1+/CEBPA+ 
pediatric AML cases exhibited 34 differentially expressed probesets, of which 26 probesets were significantly 
upregulated in the KMT2A/ MLL-R+ subset. FGR_208438_s_at was the most significantly upregulated 
probeset (Fold Change = 4.31; P-value < 10-8) followed by SYK_207540_s_at (Fold Change = 3.92; P-value < 
10-8) and HCK_208018_s_at (Fold Change = 2.86; P-value < 10-8). ERBB1_1565483_at was the most 
significantly downregulated transcript in KMT2A/MLL-R+ cases (Fold Change = 0.55; P-value < 10-8) 
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Figure 4. Gene Expression Levels for Tyrosine Kinases in Leukemic Cells from Pediatric Patients with KMT2A/MLL-R+ AML vs. Other 
subsets of AML without KMT2A/MLL rearrangements. Probeset level normalized signal values from the archived data sets GSE17855 
and GSE19577 were examined in these comparisons. The cluster figure displays the expression levels in KMT2A/MLL-R+ AML cells 
mean centered to the reference group (non-KMT2A/MLL-R+ other AML subsets) for log2-transformed fold change values (blue to red 
color indicates under-expression to over-expression respectively in KMT2A/MLL-R+ samples). Co-regulated probesets are organized 
and depicted by dendrograms for both probesets (rows) and patients (columns). Comparing 190 cases of non-KMT2A/MLL-R+ other 
samples (GSE17855) with 89 cases of KMT2A/MLL-R+ pediatric AML samples [GSE17855 (N = 47) and GSE19577(N = 42)] exhibited 
38 differentially expressed probesets, of which 25 probesets were significantly upregulated in pediatric KMT2A/MLL-R+ subset of 
cases. FGR_208438_s_at was the most significantly upregulated transcript (Fold Change = 4.31 P-value < 10-8) followed by 
SYK_207540_s_at (Fold Change = 4.01; P-value < 10-8) and HCK_208018_s_at (Fold Change = 3.97; P-value < 10-8) 
[Supplementary Table 9]. SYK (3 probesets), JAK2 (2 probesets), JAK1, FGR and HCK formed a cluster of patients with significantly 
higher expression levels in KMT2A/MLL-R+ cases.
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Figure 5. Gene Expression Levels for Tyrosine Kinases in Leukemic Cells from Adult Patients with KMT2A/MLL-R+ AML vs. Other 
subsets of AML without KMT2A/MLL rearrangements. Probeset level normalized signal values from the archived data set GSE13159 
were examined in these comparisons. The cluster figure displays the expression levels in KMT2A/MLL-R+ AML cells mean centered to 
the reference group (other AML subsets without KMT2A/MLL rearrangements) for log2-transformed fold change values (blue to red 
color indicates under-expression to over-expression respectively in KMT2A/MLL-R+ samples). Co-regulated probesets are organized 
and depicted by dendrograms for both probesets (rows) and patients (columns). Side-by-side comparison of 38 adult MLL-R+ AML 
cases with 504 other non-MLL-R+ adult AML cases resulted in 15 dysregulated probesets, of which 6 were upregulated in the adult 
KMT2A/MLL-R+ subset of cases. FGR_208438_s_at was the most significantly upregulated probeset (Fold Change = 2.46; 
P-value < 10-8) followed by HCK_208018_s_at (Fold Change = 2.1; P-value < 10-8) and TYK2_205546_s_at (Fold Change = 1.29; 
P-value = 0.0012) [Supplementary Table 10]. Cluster visualization of the mean centered expression values suggested co-regulation of 
CD33 with BTK, TYK2 and SYK (3 probesets).

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202210/5221-SupplementaryMaterials.pdf
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followed by ERBB1_1565484_x_at (Fold Change = 0.56; P-value < 10-8) and MERTK_211912_at (Fold 
Change = 0.72; P-value = 1.5 × 10-4) [Supplementary Figure 9; Supplementary Table 14].

DISCUSSION
The outcome of KMT2A/MLL-R+ AML and B-ALL patients, especially those with relapsed or refractory 
leukemia, is disappointingly poor after contemporary treatments[3,5-8,10-14]. New treatment strategies are 
urgently needed for both KMT2A/MLL-R+ AML and KMT2A/MLL-R+ ALL. Therefore, a large panel of 
drugs are being evaluated as potential therapeutic agents against KMT2A/MLL-R+ AML and ALL, including 
inhibitors of Menin-MLL1 interaction[25-28]. The present study demonstrates that PTK inhibitors (PTKi), 
especially inhibitors of FLT3, may have clinical impact potential as therapeutic agents against 
KMT2A/MLL-R+ B-ALL as well as AML. Further, inhibitors of SRC family PTK may be clinically useful 
against KMT2A/MLL-R+ B-ALL and inhibitors of BTK, SYK, and JAK family PTK may be clinically useful 
against KMT2A/MLL-R+ AML. If our observations in this small series are confirmed in a larger series of 
leukemia patients, preferably with corresponding proteomics/phosphoproteomics data, proof-of-concept 
studies with FDA-approved PTKi would be warranted to further evaluate the clinical potential of PTK 
targeting in KMT2A/MLL-R+ ALL and AML.

PTK play a critical role in normal lymphohematopoiesis, and they have also been implicated as 
leukemogenic oncoproteins in the development of acute and chronic leukemias[29-31]. The incorporation of 
PTKi into the standard of care has caused a paradigm shift in the treatment of CML (PTKi: ABL1 and SRC 
inhibitors), CLL (PTKi: BTK inhibitors), Ph+ B-ALL (PTKi: ABL1 and SRC inhibitors), and AML with FLT3 
mutations (PTKi: FLT3 inhibitors)[29,30]. There is growing consensus regarding their evolving role in Ph-like 
B-ALL (PTKi: ABL1, SRC, TRK, FLT3 and JAK inhibitors) and pre-B ALL with t(1;19) (PTKi: BTK and 
SRC inhibitors)[30-53] [Table 1]. Notably, Ph+ B-ALL was associated with a very poor outcome in both 
children and adults, with less than 20% long-term survival until the introduction of PTKi capable of 
inhibiting the oncogenic BCR-ABL tyrosine kinase[36-48] [Table 1]. Due to very high rates of deep complete 
remissions and markedly improved long-term EFS and OS achieved with combinations of PTKi and 
standard chemo- or biotherapy, patients with Ph+ B-ALL are no longer considered to have a poor prognosis. 
The standard of care is being optimized by developing novel combinations of PTKi such as dasatinib and 
ponatinib with bispecific antibodies such as blinatumomab, CAR-T cells, and antibody-drug conjugates and 
using less toxic chemotherapy regimens[36-48]. Likewise, FLT3 inhibitors have contributed to improved 
outcomes in AML patients with a FLT3 mutation[49]. FLT3 is a receptor tyrosine kinase that plays an 
important role in normal lymphohematopoiesis[50]. Leukemic cells from AML patients abundantly express 
FLT3 and many AML patients have activating mutations of FLT3, including internal tandem duplication 
mutations (FLT3-ITD) and kinase domain activation loop mutations (FLT3-ALM)[50,51]. FLT3 mutations are 
rare in ALL, but a high-level expression of FLT3 was also reported in MLL-AF4 positive ALL patients and 
showed poor prognostic value[52,53]. Our study significantly expands the knowledge regarding FLT3 
expression in ALL as well as AML by demonstrating amplified expression levels in infants, children, and 
adults with KMT2A/MLL-R+ B-ALL and children with KMT2A/MLL-R+ AML. Several PTKi have been 
approved for the treatment of AML with FLT3 mutations, including midostaurin and gilteritinib [Table 1]. 
Our results suggest that FLT3 inhibitors may have clinical potential as therapeutic agents against 
KMT2A/MLL-R+ ALL. It is noteworthy that Dovitinib, a multi-functional PTKI with FLT3 inhibitory 
activity, was reported to exhibit nanomolar in vitro activity against KMT2A/MLL-R+ ALL cells[54].

One of the intriguing findings of our study relates to the amplified expression of the gene for FLT3 in 
KMT2A/MLL-R+ pediatric AML cells. Except for GSE17855, the archived datasets used in the present study 
did not contain information about the FLT3 status of the respective leukemia cases. Additional 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202210/5221-SupplementaryMaterials.pdf
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Table 1. FDA-approved Inhibitors of FLT3, ABL1, SRC, BTK/TEC, KIT, SYK, and JAK1-3

Target kinase Drug Brand

ABL1, SRC Bosutinib Bosulif, SKI-606 

ABL1, SRC, FGR, CKIT Dasatinib BMS- 354825, Sprycell

ABL1, CKIT, PDGFR Imatinib STI571, Gleevec 

ABL1 Nilotinib AMN107, Tasigna 

ABL1 Olverembatinib HQP1351

ABL1, SRC, FGR Ponatinib Iclusig 

BTK/TEC Ibrutinib PCI-32765, Imbruvica 

BTK Zanubrutinib BGB3111, Brukinsa 

BTK Acalabrutinib Calquence

FLT3 Midostaurin CPG 41251, Rydapt 

FLT3 Gilteritinib ASP2215, Xospata

JAK1 Upadacitinib ABT-494, Rinvoq 

JAK1/2 Baricitinib Olumiant, LY 3009104

JAK1/2/3, Tyk Ruxolitinib Jakafi

JAK2 Fedratinib TG101348, Inrebic

JAK3 Tofacitinib Xeljanz

KIT/PDGFR Ripretinib DCC- 2618, Qinlock 

SYK Fostamatinib R788, Tavalisse

TRKA/B/C Larotrectinib LOXO-101, Vitrakvi 

TRKA/B/C, ROS1 Entrectinib RXDX-101, Ignyta, Rozlytrek

VEGFR2, FLT3, CKIT Sunitinib Sutent

KMT2A/MLL-R+ patients whose leukemia cells do not have amplified FLT3 gene expression but an 
activating FLT3 mutation like FLT3-ITD may also benefit from the use of FLT3 inhibitors. Analysis of the 
GSE17855 contributed to our finding that in pediatric patients with KMT2A/MLL-R+ AML, the gene 
expression level for FLT3 is differentially amplified. It is noteworthy that only one patient with 
KMT2A/MLL-R+ AML had FLT3-ITD whereas 47 patients from the KMT2A/MLL-R negative “other” 
group of pediatric AML patients were FLT3-ITD+, including patients with cytogenetically normal AML 
(N = 18); AML with inv[16] (N = 1); AML with t(15;17) (N = 12); AML with t(8;21) (N = 3); AML with other 
cytogenetic features (N = 9); and AML with unknown cytogenetic features (N = 4). Therefore, our results 
should not be interpreted to suggest that FLT3 inhibitors would be preferentially active in pediatric AML 
patients with KMT2A/MLL rearrangements, as many cases without KMT2A/MLL rearrangements whose 
leukemia cells are FLT3-ITD+ may also benefit from FLT3 inhibitors. Some PTK, such as FLT3, participate 
in immune suppression mediated by leukemia cells, which may promote the immune escape of leukemic 
clones[55]. Therefore, their inhibition with PTKi may partially contribute to favorable treatment outcomes by 
lifting the immune suppression. For example, the PTKi sorafenib has been shown to abrogate the 
transcriptional downregulation of interferon regulatory factor 7 (IRF7), which resulted in an augmented 
CD8+CD107a+IFN-γ+ T cell response in mouse models of FLT-ITD+ AML[55]. Mathew et al. proposed that 
sorafenib may therefore exhibit immune-mediated anti-leukemic activity in FLT3-ITD mutant AML[55].

The SRC kinase family includes several cytoplasmic PTK, including BLK, HCK, FGR, LYN, FYN, and LCK, 
which have important regulatory functions for signal transduction pathways related to survival, 
proliferation, and apoptosis of leukemic cells[29-31]. FDA-approved SRC kinase inhibitors have become part 
of the standard of care in the treatment of CML as well as Ph+ ALL[36-48] [Table 1]. In the current study, we 
discovered the amplified expression of the genes for BLK, HCK, FGR as well as LYN in primary leukemic 
cells from infants, children as well as adults with KMT2A/MLL-R+ B-ALL. The gene for BLK was expressed 
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at a 6.77-fold higher level in infant KMT2A/MLL-R+ ALL cells, 4.38-fold higher level in pediatric 
KMT2A/MLL-R+ ALL cells, and 21.79-fold higher level in adult KMT2A/MLL-R+ ALL cells than in normal 
hematopoietic cells. Notably, the expression of the genes for BLK, HCK and LYN in primary leukemic cells 
from KMT2A/MLL-R+ ALL patients was differentially and significantly amplified regardless of the age 
group compared to the expression levels in leukemic cells from B-ALL patients without KMT2A/MLL gene 
rearrangements. Likewise, the genes of several SRC family PTK were differentially upregulated in pediatric 
and adult KMT2A/MLL-R+ AML cells. The availability of FDA-approved potent inhibitors of SRC family 
PTK such as ponatinib, bosutinib, and dasatinib [Table 1] provides an opportunity to evaluate their clinical 
impact potential for KMT2A/MLL-R+ leukemias in proof-of-concept clinical trials. The insights and lessons 
learned in the clinical development of these PTKi as precision medicines against Ph+ ALL should facilitate 
their development as potential precision medicines against KMT2A/MLL-R+ ALL as well.

Additional insights from the present study relate to the upregulation of SYK and JAK expression in 
pediatric and adult KMT2A/MLL-R+ acute leukemias. These results extend our earlier studies regarding 
upregulation of the JAK-STAT pathways in infant B-ALL[56,57] and upregulation of SYK expression in 
pediatric B-ALL[58-62]. The availability of FDA-approved potent inhibitors of SYK and JAK provides the 
opportunity to evaluate their clinical efficacy in KMT2A/MLL-R+ acute leukemias with overexpression of 
their respective targets. A significant portion of high-risk acute leukemia patients, especially those with 
KMT2A/MLL-R+ ALL or AML relapse after being treated on contemporary chemotherapy protocols due to 
cancer drug resistance of their leukemic clones, and the survival outcome of available salvage regimens is 
disappointing due to the short nature and poor quality of second remissions. We previously reported that 
the JAK/STAT signaling pathway is constitutively active in infant pro-B ALL cells and treatment with a 
JAK3 inhibitor or a pan-JAK kinase inhibitor effectively triggered their apoptosis[56,57]. JAK targeting with a 
small molecule inhibitor may be a viable strategy to overcome cancer drug resistance in KMT2A/MLL-R+ B-
ALL cells. Constitutively active JAK2-STAT5 signaling has been shown to be associated with increased 
surface PD-L1 expression due to amplified PD-L1 promoter activity in myeloproliferative neoplasms, which 
may facilitate PD-L1-mediated immune escape[63,64]. JAK2 inhibition reduces the PD-L1 expression levels 
and may therefore mitigate this risk.

SYK has been discovered to regulate the cancer drug resistance-related anti-apoptotic STAT3, NF-κB as well 
as PI-3K-AKT-mTOR pathways[60-62]. Our earlier studies have identified high-level SYK expression as a 
likely contributor to cancer drug resistance and relapse in B-ALL[60,61]. Upregulation of SYK expression was 
associated with significant upregulation of at least one of the STAT3 target genes[60]. Inhibition of SYK 
caused apoptotic death in primary leukemia cells from B-ALL patients that are resistant to 
chemotherapy[61]. Notably, a nanomedicine candidate containing the SYK-inhibiting small molecule 
compound 1,4-bis(9-O-dihydroquinidyl) phthalazine/hydroquinidine1,4-phathalazinediyldiether (C61) was 
capable of destroying > 99.9% of clonogenic B-ALL cells in vivo and thereby improved the event-free 
survival outcome of SCID mice challenged with otherwise invariably fatal doses of human leukemic B-cell 
precursors in each of three different xenograft models of chemotherapy-resistant human B-ALL[62]. Taken 
together with these earlier observations, the amplified expression of SYK in the poor prognosis 
KMT2A/MLL-R+ ALL patients prompts the hypothesis that SYKi may help overcome the cancer drug 
resistance of relapse clones and thereby provide the foundation for more effective multi-modality treatment 
regimens for KMT2A/MLL-R+ acute leukemias.
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