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Abstract
Building controllers for legged robots with agility and intelligence has been one of the typical challenges in the pursuit
of artificial intelligence (AI). As an important part of the AI field, deep reinforcement learning (DRL) can realize se-
quential decision making without physical modeling through end-to-end learning and has achieved a series of major
breakthroughs in quadrupedal locomotion research. In this review article, we systematically organize and summarize
relevant important literature, covering DRL algorithms from problem setting to advanced learning methods. These
algorithms alleviate the specific problems encountered in the practical application of robots to a certain extent. We
first elaborate on the general development trend in this field from several aspects, such as the DRL algorithms, simu-
lation environments, and hardware platforms. Moreover, core components in the algorithm design, such as state and
action spaces, reward functions, and solutions to reality gap problems, are highlighted and summarized. We further
discuss open problems and propose promising future research directions to discover new areas of research.

Keywords: Deep reinforcement learning, quadrupedal locomotion, reality gap

1. INTRODUCTION
Wheeled and tracked robots are still unable to navigate themost challenging terrain in the natural environment,
and their stability may be severely compromised. Quadrupedal locomotion, on the other hand, can greatly ex-
pand the agility of robot behavior, as legged robots can choose safe and stable footholds within their kinematic
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Figure 1. Several typical quadrupedal locomotion studies based on DRL algorithm: (A) recovering from a fall [6]; (B) a radically robust
controller for quadrupedal locomotion in challenging natural environments [7]; (C) learning agile locomotion skills by imitating real-world
animals [10]; (D) producing adaptive behaviors in response to changing situations [9]; (E) coupling vision and proprioception for navigation
tasks [11]; (F) integrating exteroceptive and proprioceptive perception for quadrupedal locomotion in a variety of challenging natural and
urban environments over multiple seasons [8]; (G) utilizing prior knowledge of human and animal movement to learn reusable locomotion
and dribbling skills [12]; and (H) leveraging both proprioceptive states and visual observations for locomotion control [13].

reach and rapidly change the kinematic state according to the environment. To further study quadrupedal
locomotion on uneven terrain, the complexity of traditional control methods is gradually increased as more
scenarios are considered [1–4]. As a result, the associated development and maintenance becomes rather time-
consuming and labor-intensive, and it remains vulnerable to extreme situations.

With the rapid development of the artificial intelligence field, deep reinforcement learning (DRL) has recently
emerged as an alternative method for developing legged motor skills. The core idea of DRL is that the con-
trol policy learns to make decisions to obtain the maximum benefit based on the reward received from the
environment [5]. DRL has been used to simplify the design of locomotion controllers, automate parts of the
design process, and learn behaviors that previous control methods could not achieve [6–9]. Research on DRL
algorithms for legged robots has gained wide attention in recent years. Meanwhile, several well-known re-
search institutions and companies have publicly revealed their implementations of DRL-based legged robots,
as shown in Figure 1.

Currently, there are several reviews on applying DRL algorithms to robots. Some works summarize the types
of DRL algorithms and deployment on several robots such as robotic arms, bipeds, and quadrupeds [14]. They
discuss in detail the theoretical background and advanced learning algorithms of DRL, as well as present key
current challenges in this field and ideas for future research directions to stimulate new research interests. There
is also a work summarizing some case studies involving robotic DRL and some open problems [15]. Based on
these case studies, they discuss common challenges in DRL and how the work addresses them. They also
provide an overview of other prominent challenges, many of which are unique to real-world robotics settings.
Furthermore, a common paradigm for DRL algorithms applied to robotics is to train policies in simulations
and then deploy them on real machines. This can lead to the reality gap [16] (also known as sim-to-real gap)
problem, which is summarized for the robotic arm in [17]. These reviews introduce the basic background
behind sim-to-real transfer in DRL and outline the main methods currently used: domain randomization,
domain adaptation, imitation learning, meta-learning, and knowledge distillation. They categorize some of
the most relevant recent works and outline the main application scenarios while also discussing the main
opportunities and challenges of different approaches and pointing out the most promising directions. The
closest work to our review simply surveys current research on motor skills learning via DRL algorithms [18],
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without systematically combing through the relevant literature and without an in-depth analysis of the existing
open problems and future research directions.

In this survey, we focus on quadrupedal locomotion research from the perspective of algorithm design, key
challenges, and future research directions. The remainder of this review is organized as follows. Section 2 for-
mulates the basic settings in DRL and lists several important issues that should be alleviated. The classification
and core components of the current algorithm design (e.g., the DRL algorithm, simulation environment, hard-
ware platform, observation, action, and reward function) are introduced in Section 3. Finally, we summarize
and offer perspectives on potential future research directions in this field.

2. BASIC SETTINGS AND LEARNING PARADIGM
In this section, we first formulate the basic settings of standard reinforcement learning problems and then
introduce the common learning paradigm.

Quadrupedal locomotion is commonly formulated as a reinforcement learning (RL) problem, which in the
framework of Markov decision processes (MDPs) is specified by the tuple 𝑀 := (S,A, 𝑅, 𝑃, 𝜌0, 𝛾), where S
and A denote the state and action spaces, respectively; 𝑅 : S × A → R is the reward function; 𝑃(s′ |s,a) is
the stochastic transition dynamics; 𝜌0(s) is the initial state distribution; and 𝛾 ∈ [0, 1] is the discount factor.
The objective is to learn a control policy 𝜋 that enables a legged robot to maximize its expected return for a
given task [19]. A state 𝑠𝑡 is observed by the robot from the environment at each time step 𝑡, and an action
a𝑡 ∼ 𝜋 (a𝑡 | s𝑡) is derived from robot’s policy 𝜋. The robot next applies this action, which results in a novel
state 𝑠𝑡+1 and a scalar reward 𝑟𝑡 = 𝑅 (s𝑡 ,a𝑡). As a result, a trajectory 𝜏 := (s0,a0, 𝑟0, s1,a1, 𝑟1, ...) is obtained
by repeating applications of this interaction process. Formally, the RL problem requires the robot to learn a
decision making policy 𝜋(a |s) that maximizes the expected discounted return:

J (𝜋) := E𝜏∼𝑝𝜋 (𝜏)

[
𝐻−1∑
𝑡=0

𝛾𝑡𝑟𝑡

]
, (1)

where 𝐻 denotes the time horizon of each episode and 𝑝𝜋 (𝜏) = 𝑝 (s0)
∏𝐻−1

𝑡=0 𝑝 (s𝑡+1 | s𝑡 ,a𝑡) 𝜋 (a𝑡 | s𝑡) repre-
sents the likelihood of a trajectory 𝜏 under a given policy 𝜋, with 𝑝 (s0) being the initial state distribution.

For quadrupedal locomotion tasks, most of the current research is based on a similar learning paradigm, as
shown in Figure 2. First, we need to build a simulation environment (e.g., ground, steps, and stairs), and then
design the state and action space, reward function and other essential elements. DRL-based algorithms are
further designed and used to train policies in the simulation. The trained policy is finally deployed on the real
robot to complete the assigned task.

3. DRL-BASED CONTROL POLICY DESIGN FOR QUADRUPEDAL LOCOMOTION
In this section, we detail the key components of a DRL-based controller. The classification results are presented
in Tables 1 and 2 in the Appendix. After the most relevant publications in this field are summarized, their
key parts are further condensed. As shown in Figure 3, we firstly review and analyze the general state and
development trend of current research (e.g., DRL algorithms, simulators, and hardware platforms). Then,
important components of DRL algorithm (state and action design, reward function design, solution to reality
gap, etc.) are presented, as shown in Figure 4. These specific designs would help to alleviate open questions,
which are further discussed in Section 4. Please refer to the Appendix for more details.
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Figure 2. A common paradigm for DRL-based quadrupedal locomotion research. This paradigm is mainly divided into training and testing
phases. The policy interacts with the simulated environment and collects data for iterative updates, and then the trained policy is deployed
to the real robot.
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Figure 3. Several statistical results from important papers on quadrupedal locomotion research. A full summary of classification results
of the most relevant publications is presented in Tables 1 and 2 in the Appendix. These papers were selected from journals and confer-
ences (ArXiv, CoRL, ICRA, RSS, IROS, Science Robotics, ICLR, etc.) in recent years. (a-c) Trends in the usage times of several DRL-based
algorithms, simulation platforms, and real robots. The x and y axes represent the year and the number used, respectively. (d) Number of
papers accepted by the journal or conference. The x and y axes represent journals (or conferences) and the number of papers published,
respectively.

3.1. DRL algorithm
Although many novel algorithms have been developed in the DRL community, most current quadrupedal
locomotion controller designs still use model-free DRL algorithms, especially PPO and TRPO [20,21]. For a
complex high-dimensional nonlinear system such as robots, stable control is the fundamental purpose. Most
researchers choose the PPO (TRPO) algorithm for utilization in their research due to its simplicity, stability,
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theoretical justification, and empirical performance [20–22].

Similar to on-policy algorithms, PPO (TRPO) has been criticized for its sample inefficiency; thus,more efficient
model-free algorithms (ARS [23], SAC [24], V-MPO [25], etc.) are sometimes considered. Some researchers have
also recently used advanced algorithms for more challenging tasks. For example, the multi-objective variant of
the VMPO algorithm (MO-VMPO) [26] has been utilized to train a policy to track the planned trajectories [27].
Some researchers have introduced guided constrained policy optimization (GCPO) method for tracking base
velocity commands while following defined constraints [28]. Moreover, formore efficient real-world fine-tuning
and to avoid overestimation problems, REDQ, an off-policy algorithm [29], is used for real robots [30].

3.2. Simulator
The robot simulator should be able to simulate the dynamic physical laws of the robot itself more realistically
and efficiently solve the collisions generated when the robot interacts with the environment. Over the past few
years, the Pybullet [31] and RaiSim [32] simulation platforms have been the choice ofmost researchers. However,
the current robotic simulators in academia are still relatively simple, and the precision is far less than that of
simulators in games. For robots, directly realizing end-to-end decision making from perception to control
is difficult without an accurate and realistic simulator. Common robotic simulators, such as Pybullet and
RaiSim, can only solve control-level simulations, but they are stretched for real-world simulations. They have
been developed to run on CPUs with reduced parallelism. On the other hand, while mujoco [33] is a popular
DRL algorithm verification simulator, it is rarely used as a deployment and testing platform for real-world
quadrupedal locomotion algorithms. A possible explanation is that the highly encapsulated mujoco simulator
makes it difficult for researchers to develop it further.

Recently, NVIDIA released a new simulator, IsaacGym [34], which simulates the environmentwithmuchhigher
accuracy than the aforementioned simulators, and can simulate and train directly on GPUs. This simulator is
scalable and can simulate a large number of scenarios in parallel, so researchers can use DRL algorithms for
large-scale training. It can also build large-scale realistic complex scenes, and its underlying PhysX engine can
accurately and realistically model and simulate the motion of objects. Therefore, more researchers have begun
to use Isaac Gym as the implementation and verification platform of DRL algorithm [35–38].

3.3. Hardware platform
In the early research stage, Minitaur [39] with only eight degrees of freedom was used to verify the feasibility
of the DRL algorithm in simple experimental scenarios. To accomplish more complex tasks, robots (Unitree
Laikago, Unitree A1, ANYmal [40], etc.) with more than 12 degrees of freedom are used by researchers. While
theANYmal series robots are well known for their high hardware costs, low-cost robots such asUnitree A1 are a
more prevailing choice among researchers. Lower-cost hardware platforms allow DRL algorithms to be more
widely used. More recently, a wheel-legged quadruped robot [38] demonstrated skills learned from existing
DRL controllers and trajectory optimization, such as ducking and walking, and new skills, such as switching
between quadrupedal and humanoid configurations.

3.4. Publisher
Currently, DRL-based quadrupedal locomotion research is an emerging and promising field, andmany papers
have not been officially published. The published papers are mainly in journals or conferences related to the
field of robotics, and there are four outstanding works [6–9] published on Science Robotics. It is worth noting
that the field is actually an intersection of several fields, and some excellent studies have been published at
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Figure 4. The key components of the DRL-based controller design from the classification result of the most relevant publications. Tables 1
and 2 in the Appendix provide a completed summary.

conferences in the machine learning field.

3.5. State, action, reward, and others
State, action, and reward are integral and important components for training controllers. The design of these
components will directly affect the performance of the controller. However, there is no fully unified standard
and method for the specific design.

For the design of state space, on the one hand, considering too few observations can lead to a partially ob-
servable controller. On the other hand, providing all available readings results in a brittle controller that is
overfitted to the simulation environment. Both affect the performance of the controller in the real machine,
so researchers can only make trade-offs based on practical problems. In current research works, for simple
tasks (walking, turning on flat ground, etc.), proprioception alone (base orientation, angular velocity, joint po-
sition and velocity, etc.) is sufficient to solve the problem [10,39,41]. For more complex tasks (walking on uneven
ground, climbing stairs or hillsides, avoiding obstacles, etc.), exteroception, such as visual information, needs
to be introduced [8,13,42]. Adding additional sensors alleviates the partial observation issues to some extent.

Most researchers use the desired joint positions (residuals) as the action space and then calculate the torque
through a PD controller to control the robot locomotion. Early studies [43] experimentally demonstrated that
controllers with such action space can achieve better performance. However, recent studies also attempt to use
lower-level control commands to obtain highly dynamic motion behavior to avoid the use of PD controllers
and control torque directly [44]. Although the current DRL-based controllers have achieved outstanding per-
formance [6–8], their stability is still not as good as the common control methods, such as MPC controllers [45].
The force–position hybrid control method adopted by MPC is worthy of reference and further research. Fur-
thermore, in some studies based on hierarchical DRL, the latent commands serve as the action space of the
high-level policy to guide the behavior of low-level policies [46,47].

In general, the design of the reward function is fairly laborious, especially for complex systems such as robots.
Small changes in the reward function hyperparameters have the potential to have a large impact on the final
performance of the controller. In order for the robot to completemore complex tasks, the reward functionmust
be designed with sufficient detail [6–8,48]. Some specific factors include the desired direction, base orientation,
angular velocity, base linear velocity, joint position and velocity, foot contact states, policy output, and motor
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Figure 5. In the DRL-based real-world quadrupedal locomotion field, open problems mainly include sample efficiency, generalization and
adaptation, partial observation, and reality gap. Future research directions are highlighted and pointed out around these open problems.
Based on the current research states of quadrupedal locomotion, we expound the future research prospects from multiple perspectives.
In particular, world models, skill data, and pre-trained models require significant attention, as these directions will play an integral role in
realizing legged robot intelligence.

torque.

Many studies have also considered additional information, such as trajectory generators [46,49–51], control meth-
ods [52–54], motion data [10,12,55,56], etc. Trajectory generators and control methods mainly introduce prior
knowledge in the action space, narrowing the search range of DRL control policies, which greatly improves
the sample efficiency under a simple reward function. Motion data are often generated by other suboptimal
controllers or assessed via public datasets. Through imitation learning based on the motion data, the robot can
master behaviors and skills such as walking and turning. In both simulations and real-world deployment, the
robot eventually manages to generate natural and agile movement patterns and completes the assigned tasks
according to the external reward function.

3.6. Solution to reality gap
Under the current mainstream learning paradigm, the reality gap is an unavoidable problem that must be
addressed. The domain randomization method is used by most researchers due to its simplicity and effec-
tiveness. The difference between simulation and real environment is mainly reflected in physical parameters
and sensors. Therefore, researchers mainly randomize physical parameters (mass, inertia, motor strength, la-
tency, ground friction, etc.), add Gaussian noise to observations, and apply disturbing force, etc. [35,48,50,57,58].
However, domain randomization methods trade optimality for robustness, which can lead to conservative
controllers [59]. Some studies have also used domain adaptation methods, that is, use real data to identify the
environment [60,61] or obtain accurate physical parameters [62]. Furthermore, these methods can improve the
generalization (adaptation) performance of robots in challenging environments. For more solutions to the
reality gap, please refer to the relevant review paper [63].

4. OPEN PROBLEMS AND FUTURE PROSPECTS
In this section, we discuss the long-standing open questions and promising future research directions in the
DRL-based quadrupedal locomotion field around these issues, as shown in Figure 5. Solutions to these open
problems are described in Section 3.

4.1 Open problems
4.1.1. Sample efficiency
In many popular DRL algorithms, millions or billions of gradient descent steps are required to train policies
that can accomplish the assigned task [64–66]. For real robotics tasks, therefore, such a learning process requires
a significant number of interactions, which is infeasible in practical applications. In the face of increasingly
complex robotic tasks, without improvement in the sample efficiency of algorithms, the number of training
samples needed will only increase with model size and complexity. Furthermore, a sample-efficient DRL algo-
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rithm can deal with sparse-reward tasks, which greatly reduces the difficulty of designing reward functions. It
also alleviates the serious time burden for the researchers to tune the parameters of reward function.

4.1.2. Generalization and adaptation
Generalization is another fundamental problem of the DRL algorithm. Current algorithms perform well in
single-task and static environments, but they struggle with multi-task and dynamically unstructured envi-
ronments. That is, it is difficult for robots to acquire novel skills and quickly adapt to unseen environments
or tasks. Generalization or adaptation to new scenarios remains a long-standing unsolved problem in the
DRL community. In general, there are two broad categories of problems in robotics tasks: the observational
generalization (adaptation) problem and the dynamic generalization (adaptation) problem. The former is a
learning problem for robots considering high-dimensional state spaces, such as raw visual sensor observations.
High-dimensional observations may incorporate redundant, task-irrelevant information that may impair the
generalization ability of robot learning. Currently, there are many related studies published on physical manip-
ulation [67–71] but only a few cutting-edge works on quadrupedal locomotion tasks [8,11,13]. The latter mainly
takes into account the dynamic changes of the environment (e.g., robot body mass and ground friction coeffi-
cient) [72–74]. This causes the transition probability of the environment to change, i.e., the robot takes the same
action in the same state, but it transitions to a different next state.

4.1.3. Partial observation
Simulators can significantly reduce the training difficulty of the DRL algorithms because we have access to the
ground-truth state of the robots. However, due to the limitations of the onboard sensors of real robots, the
policies are limited to partial observations that are often noisy and delayed. For example, it is difficult to accu-
rately measure the root translation and body height of a legged robot. This problem is more pronounced when
faced with locomotion or navigation tasks in complex and unstructured environments. Several approaches
have been proposed to alleviate this problem, such as applying system identification [75], removing inaccessi-
ble states during training [39], adding more sensors [8,11,13], and learning to infer privileged information [7,76].

4.1.4. Reality gap
This problem is caused by differences between the simulation and real-world physics [16]. There are many
sources of this discrepancy, including incorrect physical parameters, unmodeled dynamics, and random real-
world environments. Furthermore, there is no general consensus on which of these sources plays the most
important role. A straightforward approach is domain randomization, a class ofmethods that uses a wide range
of environmental parameters and sensor noises to learn robust robot behaviors [39,77,78]. Since this method is
simple and effective, most studies on quadrupedal locomotion have used it to alleviate the reality gap problem.

4.2 Future prospects
4.2.1. Accelerate learning via model-based planning
For sequential decision making problems, model-based planning is a powerful approach to improve sample
efficiency and has achieved great success in applied domains such as game playing [79–81] and continuous con-
trol [82,83]. These methods, however, are both costly to plan over long horizons and struggle to obtain accurate
world models. More recently, the strengths of model-free and model-based methods are combined to achieve
superior sample efficiency and asymptotic performance on continuous control tasks [84], especially on fairly
challenging, high-dimensional humanoid and dog tasks [85]. How to use model-based planning in DRL-based
quadrupedal locomotion research is an issue worthy of further exploration.

4.2.2. Reuse of motion priors data
Current vanilla DRL algorithms have difficulty producing life-like natural behaviors for legged robots. Further-
more, reward functions capable of accomplishing complex tasks often require a tedious and labor-intensive
tuning process. Robots also struggle to generalize or adapt to other environments or tasks. To alleviate this
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problem to a certain extent, there have been recent DRL studies based on motion priors [86–90], which have
been successfully applied to quadrupedal locomotion tasks [12,56,91]. However, the variety of motion priors in
these studies is insufficient, and the robot’s behavior is not agile and natural. This makes it difficult for robots
to cope with complex and unstructured natural environments. Improving the diversity of motion priors is
also an interesting direction in quadrupedal locomotion research. On the other hand, there is currently a lack
of general real-world legged motion skills datasets and benchmarks, which would have significant value for
DRL-based quadrupedal locomotion research. If many real-world data were available, we could study and
verify offline RL [92] algorithms for quadrupedal locomotion. The main feature of offline RL algorithms is that
the robot does not need to interact with the environment during the training phase, so we can bypass the
notorious reality gap problem.

4.2.3. Large-scale pre-training of DRL models
The pre-training and fine-tuning paradigms for new tasks have emerged as simple yet effective solutions in
supervised and self-supervised learning. Pre-trainedDRL-basedmodels enable robots to rapidly and efficiently
acquire new skills and respond to non-stationary complex environments. Meta-learning methods seem to be
a popular solution for improving the generalization (adaptation) performance of robots to new environments.
However, current meta-reinforcement learning algorithms are limited to simple environments with narrow
task distributions [93–96]. A recent study showed that multi-task pre-training with fine-tuning on new tasks
performs as well as or better than meta-pre-training with meta test-time adaptation [97]. Research considering
large-scale pre-trained models in quadrupedal locomotion research is still in its infancy and needs further
exploration. Furthermore, this direction is inseparable from the motor skills dataset mentioned above, but it
focuses more on large-scale pre-training of DRL-based models and online fine-tuning for downstream tasks.

5. CONCLUSIONS
In the past few years, there have been some breakthroughs in quadrupedal locomotion research. However, due
to the limitations of algorithms and hardware, the behavior of robots is still not agile and intelligent. This review
provides a comprehensive survey of several DRL algorithms in this field. We first introduce basic concepts and
formulations, and then condense open problems in the literature. Subsequently, we sort out previousworks and
summarize the algorithm design and core components in detail, which includes DRL algorithms, simulators,
hardware platforms, observation and action space design, reward function design, prior knowledge, solution
of reality gap problems, etc. While this review considers as many factors as possible in systematically collating
the relevant literature, there are still many imperceptible factors that may affect the performance of DRL-based
control policies in real-world robotics tasks. Finally, we point out future research directions around open
questions to drive important research forward.
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APPENDIX
Table 1. Classification of the most relevant publications in DRL-based quadrupedal locomotion research

Publication Pub. Year Description Algorithm State Space Action Space Reward Function Simulator Robot

Sim-to-Real: Learning Agile Locomo-
tion For Quadruped Robots [39]

RSS 2018
A system to design agile loco-
motion by leveraging DRL algo-
rithms.

PPO
Orientation (2-dim), Base Angu-
lar Velocities (2-dim), andMotor
Angles (8-dim).

Desired Leg Pose.

Current and Previous Base Po-
sitions, Desired Running Direc-
tion, Motor Torques and Veloci-
ties.

Pybullet Minitaur

Policies Modulating Trajectory Gener-
ators [49]

CoRL 2018

An architecture for learning be-
haviors by using PMTG that pro-
vides memory and prior knowl-
edge.

PPO
Orientation, Base Angular Veloc-
ities, Desired Velocity (control
input), and Phase of the TG.

Leg Swing Angles
and Extensions, Fre-
quency, Amplitude,
Walking Height.

SpeedGap (Desired vs. Acutual). Pybullet Minitaur

Robust Recovery Controller for a
Quadrupedal Robot using Deep Rein-
forcement Learning [48]

ArXiv 2019
A model-free DRL approach to
control recovery maneuvers us-
ing a hierarchical controller.

TRPO +
GAE [22]

Self-Righting: Gravity, Base An-
gular Velocity, Joint Positions,
Velocities and History. Standing
Up: Base Linear Velocity, State
Space (Self-Righting). Locomo-
tion: Command, Base Height,
State Space (Standing Up).

Desired Joint
Positions.

Angular and Linear Velocity,
Height, Orientation, Torque,
Power, Joint State, Body Impulse
and Slippage, Foot Slippage and
Clearance, Self Collision, and
Action Gap.

RaiSim ANYmal

Learning to Walk via Deep Reinforce-
ment Learning [98]

RSS 2019

A sample-efficient Max. Entropy
RL algorithm requiring minimal
per-task tuning to learn neural
network policies.

SAC
Motor Angles (8-dim), Orienta-
tion (2-dim), and Base Angular
Velocities (2-dim).

Leg Swing Angles and
Extensions.

Walking Distance, Joint Acceler-
ations and Angles, and Base Roll
Angle.

Pybullet Minitaur

Data Efficient Reinforcement Learning
for Legged Robots [99]

CoRL 2019

A model-based RL framework
for learning locomotion from
only 4.5minutes of data collected
on a quadruped robot.

MPC + CEM
Base Linear Velocity, Orientation
(3-dim), and Motor Positions.

Leg Swing Angles
and Extensions, and
Phase Scales.

Speed Gap, and Base Orienta-
tion.

Pybullet Minitaur

Hierarchical Reinforcement Learning
for Quadruped Locomotion [46] IROS 2019

A hierarchical framework to au-
tomatically decompose complex
locomotion tasks.

ARS

High-Level: Base Position and
Orientation. Low-Level: PMTG
State, Orientation, Base Angu-
lar Velocities, and Latent Com-
mand.

High-Level: Com-
mand, Duration.
Low-Level: Motor
Position, PMTG
Param.

Steering Angle, Moving
Distance.

Pybullet Minitaur

Realizing Learned Quadruped Loco-
motion Behaviors through Kinematic
Motion Primitives (kMPs) [55]

ICRA 2019

kMPs is effective to learn
quadrupedal walking using DRL,
and realize these behaviors in
Stoch.

PPO
Joint Angles, Velocities and
Torques, and Orientation.

Leg End-Point Posi-
tions.

Position Change, Energy Con-
sumption, and Motor Torques
and Velocities.

Pybullet Stoch

DeepGait: Planning and Control of
Quadrupedal Gaits using Deep Rein-
forcement Learning [100]

ICRA 2019

A technique for training terrain-
aware locomotion, which com-
binesModel-Based Planning and
RL.

PPO, TRPO,
GAE

Planner: Terrain Elevation, Base
State and Velocity, Joint Torques,
Feet State, Phase Variables. Con-
troller: Phase (Current&Next),
Joint Angles and Velocities.

Planner: Candidate
Phase. Controller:
Desired Joint
Positions.

Planner: Goal Distance and Ori-
entation, Work, Stance Phases.
Controller: Target and Slip, Joint
Velocities and Torques, Base Ve-
locities, Angular Deviation.

RaiSim ANYmal
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Learning agile and dynamic motor
skills for legged robots [6]

Science
Robotics 2019

A Sim2Real method lever-
aging fast, automated and
cost-effective data generation
schemes.

TRPO
Height, Base Velocities, Joint
State (withHistory), PreviousAc-
tion, Command, Gravity.

Desired Joint
Positions.

Locomotion: Base Velocities,
Cost, Torque, Joint Speed, Foot
State, Direction, Fluency. Recov-
ery: Torque, Joint Motion, HAA,
HFE, KFE, Slip and Impulse, In-
ternal Contact, Direction, Flu-
ency.

RaiSim ANYmal

Learning to Walk in the Real World
with Minimal Human Effort [41]

CoRL 2020

A system for learning
quadrupedal locomotion
policies with Deep RL in the
real world with minimal human
effort.

SAC
Motor Angles (6-step), IMU
Readings (6-step), and Previous
Action (6-step).

Desired Joint
Positions.

Base Position and Yaw, and
Smoothness.

Pybullet Minitaur

Dynamics and Domain Random-
ized Gait Modulation with Bezier
Curves for Sim-to-Real Legged
Locomotion [50]

ArXiv 2020

A quadrupedal Sim2Real frame-
work utilizing offline RL with dy-
namics and domain randomized
to allow traversing uneven ter-
rain.

ARS [23]

Orientation (2-dim), Base Angu-
lar Velocities (3-dim) and Linear
Accelerations (3-dim), and Foot
Phase.

Foot Position Residu-
als.

Distance, Orientation (2-dim),
Base Angular Velocities (3-dim).

Pybullet Mini Spot

Guided Constrained Policy Optimiza-
tion for Dynamic Quadrupedal Robot
Locomotion [28]

IEEE
Robotics

Autom 2020

A CPPO-based RL framework
for tracking velocity commands
under constraints.

GCPO
Base Height and Velocities, Ori-
entation, Joint State, Policy Out-
put, Desired Base Velocity.

Desired Joint
Positions.

Linear and Angular Velocity,
Torque, Foot Acceleration
and Slip, Smoothness, and
Orientation.

RaiSim,
PyBullet and
MuJoCo.

ANYmal

Learning a Contact-Adaptive Con-
troller for Robust, Efficient Legged Lo-
comotion [101]

CoRL 2020

A hierarchical framework com-
bining Model-Based Control
and RL to synthesize robust
quadrupedal controllers.

DQN
Pose (without linear positions
and foot positions), Primitive
(previously-used).

One-Hot Primitive
Selection Vector
(9-dim)

Torques, Base Linear Velocity,
Desired Base Linear Velocity.

IsaacGym [102] Unitree
Laikago

Zero-Shot Terrain Generalization for
Visual Locomotion Policies [103]

ArXiv 2020

A learning approach for ter-
rain locomotion using exterocep-
tive inputs without ground-truth
height maps.

PPO

Distance to Env., Orientation,
Base Velocity, Joint Angles, Tar-
get Distance and Direction, Pre-
vious Action, Trajectory Genera-
tor Param.

Gait Frequency,
Swing Height, Stride
Length, Residual
Action.

Euclidean Distance (Base to Tar-
get) and Timestep Duration.

Pybullet
Unitree
Laikago

Learning Generalizable Locomotion
Skills with Hierarchical Reinforce-
ment Learning [47]

ICRA 2020

A sample-efficient and generaliz-
able hierarchical framework for
learning locomotion skills on
real-world robots.

SAC Phase (1-dim)
Desired Joint
Positions.

Forward Distance and Orienta-
tion Deviation.

PyBullet
Daisy

Hexapod

Learning Agile Robotic Locomotion
Skills by Imitating Animals [10]

RSS 2020
A system enabling legged robot
to learn agile locomotion skills
by imitating real-world animals.

PPO
Pose (Orientation (3-dim) and
Joint Rotations) and Action Se-
quence.

Joint Torques for De-
sired Positions.

Motion Gap (Current vs. Refer-
ence in Joint Velocities and State,
End-Effector Positions, Base
Pose and Velocity).

PyBullet
Unitree-
Laikago
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Learning Quadrupedal Locomotion
over Challenging Terrain [7]

Science
Robotics 2020

A novel Sim2Real solution incor-
porating proprioception show-
ing remarkable zero-shot gener-
alization.

TRPO

Goal Direction, Gravity, Base
Velocities and Frequency, Joint
States and Velocities, FTG
Phases and Frequencies, Joint
History, Terrain Normal Vector,
Foot Height, Contact Forces and
Target History, Contact States,
Friction, External Force.

Leg Frequencies and
Foot Position Residu-
als.

Linear and Angular Velocity,
Base Motion Reward and
Collision, Foot Clearance, Target
Smoothness, and Torque.

RaiSim
ANYmal-B,
ANYmal-C

Multi-expert learning (MEL) of adap-
tive legged locomotion [9]

Science
Robotics 2020

A MEL architecture to generate
adaptive skills from a group of ex-
pert skills.

SAC
Joint Position, Gravity, Base Ve-
locities, Phase Vector, and Goal
Position.

Expert: Desired Joint
Positions. Gating:
Variable Weights.

Base Pose, Height and Velocity,
Regularisation (Torque, Veloc-
ity), Foot State, Body State, Ref-
erence Positions and Contacts,
Goal Position.

PyBullet Jueying3

Efficient Learning of Control Policies
for Robust Quadruped Bounding us-
ing Pretrained Neural Networks [57]

ArXiv 2021
A training method for learning
bounding gaits, which combines
pre-training and DRL.

PPO2

Base Height, Gravity Direction,
Base Angular Velocity and Lin-
ear Acceleration, and Joint Posi-
tion and Angular Velocity.

Desired Joint
Positions.

Base Velocity, Joint Torque
and Velocity, Gait, Position
uniformity, Torque unifor-
mity, Smoothness, and Pitch
Limitations.

RaiSim
Jueying-Mini

robot

Learning Coordinated Terrain-
Adaptive Locomotion by Imitating a
Centroidal Dynamics Planner [27]

ArXiv 2021

A terrain adaptive controller ob-
tained by training policies to re-
produce trajectories planned by a
non-linear solver.

V-MPO [25] ,
MO-

VMPO [26] ,

Image, State (Base, End-Effector,
Joint, CoM), Velocities (Base,
Joint), Orientation, Previous Ac-
tion, Command.

Desired Joint
Positions.

Joint Positions, Base Position,
End-Effector Positions, Base Lin-
ear and Angular Velocities, and
Quaternion.

Mujoco ANYmal

Learning Free Gait Transition for
Quadruped Robots via Phase-Guided
Controller [58]

IEEE
Robotics and
Automation
Letters 2021

A novel quadrupedal framework
for training a control policy to lo-
comote in various gaits.

PPO

Velocity Command, Sine andCo-
sine Values (4 phases), Joint Posi-
tion and Velocity, Angular Veloc-
ities, Gravity.

Desired Joint
Positions.

Joint Torque, Desired Velocity,
Base Balance, and Foot Contact.

RaiSim
Black Panther

robot

Fast and Efficient Locomotion via
Learned Gait Transitions [52]

CoRL 2021

A hierarchical learning frame-
work in which gait transitions
emerge automatically with a re-
ward of min. energy.

ARS [23]
Desired and Actual Base Linear
Velocity

Desired Leg Fre-
quency, Cutoff
(Swing and Stance
Phase), Phase Offset.

Torques, Base Velocities, and
Survival.

Pybullet Unitree A1

SimGAN:Hybrid Simulator Identifica-
tion for Domain Adaptation via Adver-
sarial RL [104]

ICRA 2021

A framework for domain adapta-
tion by identifying a simulator to
match the simulated trajectories
to the target ones.

PPO
Orientation, Base Height, Base
Linear Velocities and Joint An-
gles (12-dim).

Desired Joint
Torques.

Base Forward Velocity, Joint
Limit Count, and Torque.

Pybullet
Unitree
Laikago

Hierarchical Terrain-Aware Control
(HTC) for Quadrupedal Locomotion
by Combining DRL and Optimal Con-
trol [54]

IROS 2021
A novel HTC framework leverag-
ing DRL for the high-level and
optimal control for the low-level.

SAC
Global Height Map, Motors Po-
sitions, Orientation, and Gait
Phase.

Goal Swing, Base
Height and Velocity,
Orientation.

Desired Forward Velocity to Tar-
get and Orientation.

Pybullet Unitree A1

3https://www.deeprobotics.cn/
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A Hierarchical Framework for
Quadruped Locomotion Based on
RL [105]

IROS 2021

A well-performing quadruped
robot system for learning lo-
comotion in real-world terrains
without pre-training.

SAC
Angle Error, Orientation, and
Command.

Goal Position, Base
Velocity, Pitch, and
Leg Lift Max. Height.

Base Target Positions (with Previ-
ous), Orientation, and Survival.

Webots [106] Yobogo

Terrain-Aware Risk-Assessment-
Network-Aided (RAN) DRL for
Quadrupedal Locomotion in Tough
Terrain [51]

IROS 2021
A terrain-aware DRL-based con-
troller integrating a RAN to guar-
antee the action stability.

SAC

Elevation Map, Goal Direction,
Base Velocities, Joint State and
Velocity, FTG Phases, Frequen-
cies (Base and FTG), Joint His-
tory, Foot Targets and Con-
tact Forces, Contact States, Env.
Param.

Desired Joint
Positions.

Linear and Angular Velocity,
Base Motion and Collision, Foot
Clearance, Target Smoothness,
Torque, and Traversability Map.

Pybullet Unitree A1

Real-Time Trajectory Adaptation
for Quadrupedal Locomotion using
DRL [53]

ICRA 2021

A policy using DRL to get noisy
reference trajectory in order to
generate a quadrupedal tracking
system.

PPO

Robot Positions and Velocities,
Reference Positions and Veloc-
ities, Corrected Trajectory Po-
sitions and Velocities, Height
Maps.

Base State and Ve-
locity Deviation, End-
Effector State and Ve-
locities Deviation.

Torque, Foot State, Smoothness,
Orientation, Joint Motion, Tra-
jectory Tracking, Goal.

RaiSim ANYmal

Coupling Vision and Propriorception
for navigation of Legged Robots [11]

CVPR
workshop

2021

Incorporating vision and propri-
oception in navigation tasks of
legged robots.

PPO
Proprioception, Command Ve-
locities, Previous Action and Ex-
trinsic Vector.

Desired Joint
Positions.

Velocity Gap, Energy Consump-
tion, Lateral Movement, and Hip
Joints.

RaiSim Unitree A1

Minimising Energy Consumption
Leads to the Emergence of Gaits in
Legged Robots [107]

CoRL 2021

Energy constraints leading to the
emergence of natural locomo-
tion, and the choice is related to
the desired speed.

PPO
Joint Positions and Velocities,
Orientation, Foot Contact, Previ-
ous Action.

Desired Joint
Positions.

Linear and Angular Velocity, and
Joint Torques and Velocities.

RaiSim Unitree A1

RMA: Rapid Motor Adaptation for
Legged Robots [60]

RSS 2021
RMA algorithm for real-time
online adaptation problems in
quadruped robots.

PPO
Joint Positions and Velocities,
Orientation (2-dim), and Foot
Contact Vector.

Desired Joint
Positions.

Base Motion and Orientation,
Work, Ground Impact, Smooth-
ness, Joint Speed, Foot Slip.

RaiSim Unitree A1

Human Motion Control of
Quadrupedal Robots using DRL [108] RSS 2022

A quadrupedal motion control
system allowing human opera-
tion.

PPO
Sensor Data (with history), Ac-
tions History, and Reference
Poses (with history).

Desired Joint
Positions [43]

Joint Imitation, End-Effector,
Base Sate, Deviation, and
Acceleration.

RaiSim Unitree A1

Learning Torque Control for
Quadrupedal Locomotion [44] ArXiv 2022

A quadrupedal torque control
framework predicting high-
frequency joint torques via
RL.

PPO
Base Velocities, Gravity, Joint Po-
sition and Velocity, Command,
Last Action.

Desired Torques.

Base Velocities and Height, Ori-
entation, Joint Motion, Foot
State, Knee Collision, Action
Rate, Gaits, and Hips Reward.

Isaac, Pybullt Unitree A1

Model-free RL for Robust Locomotion
usingDemonstrations fromTrajectory
Optimization [109]

ArXiv 2022

A RL approach to create robust
policies deployable on real robots
without additional training us-
ing a single optimised demon-
stration.

PPO

Joint Positions and Velocities,
Orientation (Yall and Roll) and
Angular Velocities (Yall and
Roll).

Desired Joint
Positions.

Joint Position, and Base Position,
Quaternion and Angular Veloc-
ity.

Pybullet Solo8

Legged Robots that Keep on Learn-
ing: Fine-Tuning Locomotion Policies
in the Real World [30]

ICRA 2022
A robot RL system for fine-
tuning real-world locomotion
policies.

REDQ [29]
Orientation (3-step), Joint An-
gles (3-step), Actions (3-step),
Future Target Poses.

Desired Joint
Positions.

Joint States and Velocities, End-
Effector State, Base Pose and Ve-
locity.

Pybullet Unitree A1

http://dx.doi.org/10.20517/ir.2022.20


Zhang
etal.IntellR

obot2022;2(3):275­97
I

http://dx.doi.org/10.20517/ir.2022.20
Page

293

RLOC: Terrain-Aware Legged Loco-
motion using RL and Optimal Con-
trol [42]

IEEE
Transactions
on Robotics

2022

A unified model-based and data-
driven approach for quadrupedal
locomotion over uneven terrain.

SAC, TD3,
GCPO [28]

Planning: Base State, Joint States,
Goal Velocity, Elevation Map.
Adaption: Base State, Feet Goal,
Torques, Elevation Map. Recov-
ery: Joint Position, Goal Posi-
tions and Velocity.

Planning: Coordi-
nates. Adaption:
Joint Torques. Recov-
ery: Desired Joint
Positions.

Planning: Base Velocities,
Torque, Foot Slip, Stability.
Adaption: State Deviation,
Robot State. Recovery: State
Space (Planning), Foot Motion
(Foot, Joint), Smoothness.

RaiSim
ANYmal B,
ANYmal C

Rapid Locomotion via Reinforcement
Learning [36]

RSS 2022
A MIT Mini Cheetah controller
achieving record agility.

PPO
Joint Angles andVelocities, Grav-
ity, Previous Actions, Goal Veloc-
ity.

Desired Joint
Positions.

Velocity Tracking, Base Pose,
Self-Collision, Joint Limits,
Torques, Action Rate, Airtime.

IsaacGym
MIT Mini
Cheetah

Learning to Walk in Minutes Using
Massively Parallel DRL [35] CoRL 2022

A robotic training framework
achieving fast policy generation
via parallelism.

PPO
Base Velocities, Gravity, Joint
Motion, Previous Actions, Ter-
rain Measurements.

Desired Joint
Positions.

Velocity Tracking, Joint Motion,
Torques, Action Rate, Collisions,
Feet Airtime.

IsaacGym
ANYmal B,
ANYmal C,
Unitree A1

AdversarialMotion PriorsMakeGood
Substitutes for Complex Reward Func-
tions [91]

ArXiv 2022
Substituting reward functions
with stylish rewards learned
from motion captures.

PPO
Joint Angles and Velocities, Ori-
entations and Previous Actions.

Joint Torques for De-
sired Positions.

Linear and Angular Velocity
Tracking, and Motion Prior
Discrimination

Issac Gym Unitree A1

Advanced Skills through Multiple Ad-
versarial Motion Priors in RL [56] ArXiv 2022

An adversarial motion prior-
based RL approach to allow for
multiple, discretely switchable
styles.

PPO
Base State andVelocities, Gravity,
Joint Positions and Velocity, and
Wheel Positions.

Desired Joint
Positions.

Linear and Angular Velocity
Tracking, Pose, and Joint
Velocity and Position.

Issac Gym
Quadruped
Humanoid
Transformer

Learning robust perceptive locomo-
tion for quadrupedal robots in the
wild [8]

Science
Robotics 2022

A quadrupedal locomotion so-
lution integrating exteroceptive
and proprioceptive perception.

PPO

Command, Base Pose and Mo-
tion, Joint History, CPG Phase,
Height Samples, Contact States,
Friction, External Forces, Air-
time.

Phase Offset, Joint Po-
sition Target.

Velocities, Body Motion, Foot
Clearance, Collisions, Joint Mo-
tion and Constraint, Smooth-
ness, Torque, Slip.

RaiSim ANYmal-C

Imitate and Repurpose: Learn-
ing Reusable Robot Movement
Skills From Human and Animal
Behaviors [12]

ArXiv 2022

Learning reusable locomotion
skills for real legged robots using
prior knowledge of human and
animal movement.

V-MPO,
MO-VMPO,

Base States and Motion, Latent
Command, Joint States and Ve-
locities, Gravity, Goal Velocity
and Position, Ball Position, End-
Effector Position, Clip ID.

High-Level: Latent
Command. Low-
Level: Desired Joint
Positions.

Imitation: Tracking CoM,
Joint Velocities, End-Effector
Positions, Body Quaternions,
Current Draw. Walking: Track-
ing Velocity. Ball Dribbling:
Tracking Ball Positions.

MuJoCo ANYmal

Learning vision-guided quadrupedal
locomotion end-to-end with cross-
modal transformers [13]

ICLR 2022

An end-to-end RL method lever-
aging both proprioceptive states
and visual observations for loco-
motion control.

PPO
Orientation, Joint Rotations, Pre-
vious Actions (3-step), and Im-
age (4 dense depth).

Desired Joint
Positions.

Distance, Motor Torques,
Survival, and Collected Sphere
Count.

Pybullet Unitree A1

RL with Evolutionary Trajectory
Generator: A General Approach for
Quadrupedal Locomotion [62]

IEEE
Robotics

Autom 2022

A novel RL-based approach con-
taining an evolutionary foot tra-
jectory generator.

SAC

Orientation (3-dim), Joint An-
gles and Angular Velocities, Feet
Contact Vector (4-dim), and
Base Velocity.

Desired Joint
Positions.

Base Position, Desired Direction,
and Consumed Energy.

Pybullet Unitree A1

Table 2. More information about publications (Supplement to Table 1)

Publication Others Solution to Reality Gap Open-Source Package
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Sim-to-Real: Learning Agile
Locomotion For Quadruped
Robots [39]

Open-loop Controller.

Improving Simulation Fidelity (Actuator Model, Latency),
and Dynamics Randomization (Mass, Motor Strength, Iner-
tia, Control Step, Latency, Battery, Friction, IMU bias and
noise.

https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet/gym/pybullet_envs/minitaur/envs

Policies Modulating Trajectory
Generators [49]

Trajectory Generator. Random Directional Virtual Forces. /

Robust Recovery Controller for a
Quadrupedal Robot using Deep
Reinforcement Learning [48]

/
Randomized Physical Properties, Actuator Model, Additive
Noise to the Observation.

/

Data Efficient Reinforcement
Learning for Legged Robots [99]

Trajectory Generators. / /

Hierarchical Reinforcement
Learning for Quadruped
Locomotion [46]

PMTG [49] / /

Realizing Learned Quadruped
Locomotion Behaviors through
Kinematic Motion Primi-
tives [55]

Recorded Data (Joint Angles and
Orientation for 4800 steps).

/ /

DeepGait: Planning and Con-
trol of Quadrupedal Gaits us-
ing Deep Reinforcement Learn-
ing [100]

CROC [110] / /

Learning agile and dynamic mo-
tor skills for legged robots [6]

A controller generating foot tra-
jectories to train the actuator
model.

Actuator Model, Curriculum Training, Randomised Bodies
(Size and Position), Random Command and Initial State.

/

Dynamics andDomain Random-
izedGaitModulationwith Bezier
Curves for Sim-to-Real Legged
Locomotion [50]

Open-loop Bezier curve Gait
Generator.

Domain Randomization (Base Mass , Leg Link Masses, Foot
Friction, XYZ Mesh Magnitude).

https://github.com/OpenQuadruped/spot_mini_mini

Guided Constrained Policy
Optimization for Dynamic
Quadrupedal Robot Locomo-
tion [28]

/
Noisy Observations and Actions, and Domain Randomisa-
tion (Gravity, Actuator Torque Scaling, Link Mass and Size,
Actuator Damping, and Step Time).

/

Learning a Contact-Adaptive
Controller for Robust, Efficient
Legged Locomotion [101]

A simple model-based
method [45] .

/ /

Zero-Shot Terrain Generaliza-
tion for Visual Locomotion
Policies [103]

PMTG / /

Learning Generalizable Locomo-
tion Skills with Hierarchical Re-
inforcement Learning [47]

MPC (High-Level Planning), Si-
nusoidal Policy (TG, Low-Level
Controller).

/ /
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Learning Agile Robotic Loco-
motion Skills by Imitating Ani-
mals [10]

MoCap Clips [111] . Domain Randomization and Domain Adapation. https://github.com/erwincoumans/motion_imitation

Learning Quadrupedal Locomo-
tion over Challenging Terrain [7] Foot Trajectory Generator.

Actuator Model, Randomized Physical Parameters, Teach-
Student Training Set-up, and Automated Curriculum synthe-
sizing Terrains.

/

Multi-expert learning of adaptive
legged locomotion [9]

Reference Gait to provide Joint
Position Reward and Foot Con-
tact Reward.

Action Filtering and Smoothing Loss [112] . /

Efficient Learning of Control
Policies for Robust Quadruped
Bounding using Pretrained Neu-
ral Networks [57]

SLIP: Spring Linear Inverted
Pendulum (Model-based
Controller).

Domain randomization (LinkMass, Inertia and CoM, Initial
Direction and Ground Friction and Restitution).

/

Learning Coordinated Terrain-
Adaptive Locomotion by Imitat-
ing a Centroidal Dynamics Plan-
ner [27]

TOWR [113] / /

Learning Free Gait Transition
for Quadruped Robots via Phase-
Guided Controller [58]

Hopf Oscillator andmanually de-
signed functions [114] .

Domain Randomization (External Force and Torque,
Ground Friction and Height, Mass, Body Size, Noise of Joint
Position and Velocity, Body Posture, and Angular Velocity).

https://github.com/ZJU-XMech/PhaseGuidedControl

Fast and Efficient Locomotion
via Learned Gait Transitions [52]

Centroidal Dynamics
Model [115] .

/ /

SimGAN: Hybrid Simulator
Identification for Domain
Adaptation via Adversarial
Reinforcement Learning [104]

/ Hybrid Simulator Identification. /

Hierarchical Terrain-Aware Con-
trol for Quadrupedal Locomo-
tion by Combining Deep Rein-
forcement Learning andOptimal
Control [54]

Optimal Control.

Domain Randomization (Mass, Inertia, Motor Strength and
Friction, Latency, Lateral Friction, Battery, Joint Friction,
CoM position noise, External force, and Step Height and
width.

/

A Hierarchical Framework for
Quadruped Locomotion Based
on Reinforcement Learning [105]

Trajectory Generator.
Domain Randomization (Leg Profile and Mass, Base Mass
Distribution, Leg Inertia Matrix, and Communication De-
lay).

/

Terrain-Aware Risk-Assessment-
Network-Aided Deep Re-
inforcement Learning for
Quadrupedal Locomotion in
Tough Terrain [51]

PMTG [49] .
Domain Randomization (Mass, Inertia, Motor Strength and
Friction, Latency, Lateral friction, Battery, Joint friction).

/
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Real-Time Trajectory Adapta-
tion for Quadrupedal Locomo-
tion using Deep Reinforcement
Learning [53]

TOWR [113] , WBC [116] .
Domain Randomization, Actuator Modelling, Shifting Ini-
tial Position, Changing Gravity, Actuator Torque Scaling,
and Perturbing the Robot Base.

/

Coupling Vision and Propriocep-
tion for navigation of Legged
Robots [11]

FMM [117] , librealsense4 . RMA-based Adaption Module [60] . /

Minimizing Energy Consump-
tion Leads to the Emergence of
Gaits in Legged Robots [107]

/ RMA-based Adaption Module. /

RMA: Rapid Motor Adaptation
for Legged Robots [60]

/ RMA-based Adaption Module. /

Human Motion Control of
Quadrupedal Robots using Deep
Reinforcement Learning [108]

Human Motions.
Domain randomization (Link Mass, Ground Friction Coef-
ficients and Slope, Proportional and Derivative Gain, and
Communication Delay).

/

Learning Torque Control for
Quadrupedal Locomotion [44] /

Domain randomization (Base Linear and Angular Velocity,
Projected Gravity, Joint Position and Velocity, Ground Fric-
tion and External Disturbances).

/

Model-free Reinforcement
Learning for Robust Locomo-
tion using Demonstrations from
Trajectory Optimization [109]

Trajectory Optimization Algo-
rithm [118] .

/ /

Legged Robots that Keep on
Learning: Fine-Tuning Loco-
motion Policies in the Real
World [30]

MoCap Dog Recording [111]and
Side-Step motion for A1 [10] .

Real-World Fine-Tuning. https://github.com/lauramsmith/fine-tuning-locomotion

RLOC: Terrain-Aware Legged
Locomotion using Reinforce-
ment Learning and Optimal
Control [42]

Dynamic Gaits Controller.

Domain randomization (Gravity, Actuator Torque Scaling,
Link Mass and Size, Actuator Damping), Perturbation on
Robot Base, and Smoothing Filters for Elevation Map, Ac-
tuator Model.

/

Rapid Locomotion via Reinforce-
ment Learning [36]

Curriculum Strategy. Domain Randomization. /

Learning to Walk in Minutes Us-
ingMassively Parallel Deep Rein-
forcement Learning [35]

/
Domain Randomization (Ground Friction and External
Force), and Noisy Observations.

https://github.com/leggedrobotics/legged_gym

4https://github.com/IntelRealSense/librealsense

http://dx.doi.org/10.20517/ir.2022.20


Zhang
etal.IntellR

obot2022;2(3):275­97
I

http://dx.doi.org/10.20517/ir.2022.20
Page

297

Adversarial Motion Priors Make
Good Subsitutes for Complex Re-
ward Functions [91]

German Shepherd Motion
Dataset [119] .

Domain Randomization (Friction, Base Mass, Velocity Per-
turbation, Motor Gain Multiplier).

https://github.com/Alescontrela/AMP_for_hardware

Advanced Skills through Multi-
ple Adversarial Motion Priors in
Reinforcement Learning [56]

Motion Data from another RL
policy or an MPC controller.

Actuator Model, Domain Randomisation (Rough Terrin,
Disturbances, External Force), Curriculum Training, and
Joint-Velocity-Based Trajectory Termination.

/

Learning robust perceptive loco-
motion for quadrupedal robots
in the wild [8]

Foot Trajectory Generator.

Actuator Model, Domain Randomisation (Robot Mass, Ini-
tial Joint Position and Velocity, Orientation, External Force,
Friction Coefficient, Curriculum Learning, and Randomized
Height Sampling.

/

Imitate and Repurpose: Learn-
ing Reusable Robot Movement
Skills From Human and Animal
Behaviors [12]

MoCap Dataset of dog walking
and turning behaviors [111] .

Domain Randomization (Body Mass, Centre of Mass, Joint
Position and Reference, Joint Damping and Friction loss,
Geom Friction, P Gain, and Torque Limit).

/

Learning Vision-Guided
Quadrupedal Locomotion
End-to-End with Cross-Modal
Transformers [13]

/
Domain Randomization (KP, KD, Inertia, Lateral Friction,
Mass,Motor Friction and Strength, and Sensor Latency), and
Random Depth Input.

https://github.com/Mehooz/vision4leg

Reinforcement Learning with
Evolutionary Trajectory Gener-
ator: A General Approach for
Quadrupedal Locomotion [62]

Evolutionary Trajectory Genera-
tor [120] .

Teacher-Student Learning Setting, Domain Adaptation,and
Domain Randomization (Control Latency, Foot Friction,
Base Mass, Leg Mass, and Motor Kp, Kd), and Noisy Sensor
Input.

https://github.com/PaddlePaddle/PaddleRobotics/tree/main/QuadrupedalRobots/ETGRL
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