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Abstract
Volumetric muscle loss (VML) refers to a composite, en bloc loss of skeletal muscle mass resulting in functional 
impairment. These injuries normally heal with excessive fibrosis, minimal skeletal muscle regeneration, and poor 
functional recovery. Functional muscle transfer is a treatment option for some patients but is limited both by the 
degree of functional restoration as well as donor site morbidity. As such, new therapeutic options are necessary. De 
novo regeneration of skeletal muscle, by way of tissue engineering, is an emerging strategy to treat VML. This 
review evaluates available scaffolds for promoting skeletal muscle regeneration and functional recovery following 
VML. The use of growth factors and stem cell therapies, which may augment scaffold integration and skeletal 
muscle reconstitution, are also discussed. Regenerative medicine with the use of scaffolds is a promising area in 
skeletal muscle reconstruction and VML treatment.
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INTRODUCTION
Volumetric muscle loss (VML) following trauma or surgical resection is characterized by irreversible 
damage or loss of composite skeletal muscle tissue[1,2]. VML injuries can be particularly morbid when 
involving the lower extremities, as they significantly impair ambulation[3,4]. Critical sized loss of skeletal 
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muscle tissue (20% of muscle volume), as seen in substantial VML injuries, overwhelms the natural 
reparative and regenerative ability within skeletal muscle[3,5,6]. Instead of muscle regeneration, VML injuries 
normally heal with substantial fibrosis, permanent muscle damage, and poor extremity function. These 
sequelae significantly detract from the patient’s ability to perform daily activities, ambulate, and reestablish 
quality of life[1,2,7-9]. An example of a patient with VML injury from a pre-tibial sarcoma is described 
[Figure 1].

Treatment options following extremity VML injury remain limited[2,10]. The most common treatment to 
restore strength across an injured muscle is free or pedicled functional muscle transfer. However, this 
results in incomplete functional recovery and involves donor site morbidity and weakness[11-17]. Targeted 
physical therapy promotes muscle regeneration and healing following VML, but only results in partial 
recovery of the original function[10,18]. Novel tissue engineering strategies, in place of autologous muscle 
transfer, are key to skeletal muscle regeneration and functional recovery following VML injuries[19-22]. This 
review will evaluate current tissue engineering strategies using scaffolds to promote skeletal muscle recovery 
in the treatment of VML.

PATHOPHYSIOLOGY OF VML
VML results in limited muscle fiber regeneration, substantial functional limitation and disability, and 
excessive fibrosis[1,4,23]. Muscle regeneration in VML pathology is insufficient due to the loss of essential 
regenerative elements such as growth factors, intact basal lamina of the extracellular matrix (ECM), and 
stem cells[1]. Skeletal muscle stem cells (MuSCs) are required for skeletal muscle regeneration and are 
activated by signals from growth factors to enter the cell cycle and proliferate in response to injury[24,25]. 
Broadly, skeletal muscle regeneration is initiated with pro-inflammatory M1 macrophages that phagocytose 
necrotic myofibers and activate quiescent MuSCs[26,27]. Anti-inflammatory M2 macrophages then replace M1 
macrophages over the next week and promote tissue regeneration by supporting myoblast proliferation, 
growth, and differentiation[26,27]. The significant loss of MuSCs and a disrupted basal lamina in VML 
pathology overwhelm skeletal muscles’ innate repair mechanism and result in a paucity of skeletal muscle 
regeneration following VML injury[4,19,22,28]. Additionally, growth factors, such as insulin growth factor 1 
(IGF-1), hepatocyte growth factor (HGF), and fibroblast growth factor 2 (FGF-2), that normally activate 
MuSCs to enter the cell cycle and proliferate, are downregulated[28-38]. Macrophage-mediated secretion of 
inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), which 
increase myoblast proliferation and differentiation and promote muscle regeneration, is also lacking in 
VML pathology[24,35,39-44]. Taken together, the cells and growth factors required for myogenesis are deficient 
in skeletal muscle following VML, severely impairing functional reconstitution of the muscle.

In contrast, fibrogenic cytokines, such as transforming growth factor β1 (TGF-β1), are upregulated and 
result in a pathologic proliferation of fibroblasts and ECM components (collagen, laminin, and fibronectin), 
leading to extensive fibrosis[3,23,35,44]. Fibrosis further prevents normal neuron and vasculature ingrowth, 
resulting in denervated and ischemic muscle with little elasticity, loss of strength, and impaired contraction 
and relaxation[5,40]. As such, VML injuries exhibit minimal restoration of strength as myogenesis is 
diminished. Fibrosis further limits muscle strength and excursion, reinnervation, and revascularization 
within the site of VML injury.

TISSUE-ENGINEERED SCAFFOLDS FOR SKELETAL MUSCLE REGENERATION
Tissue engineering combines scaffolds, cells, and biochemical cues to aid in tissue regeneration and repair as 
a treatment for VML. Scaffolds are three-dimensional (3D) structural constructs that support ECM 
deposition, limit fibrosis, promote skeletal muscle regeneration, and augment functional muscle 
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Figure 1. VML in Patient. (A) Patient presented with sarcoma in pre-tibial region; (B) Tumor extirpation results in loss of medial soleus, 
gastrocnemius, and tibialis anterior muscle; (C) Reconstruction utilizing non-functioning free muscle transfer. Patient exhibits 
permanent weakness in foot extension and flexion.

recovery[11,18,19,45,46]. Broadly, scaffolds serve as a template for tissue formation and are composed of synthetic 
or natural biological materials[45]. We will review tissue engineering approaches with hydrogel, acellular, 
nanofibrous, and electroconductive scaffolds.

The two main approaches to using scaffolds to treat VML are (1) in vivo skeletal muscle regeneration using 
scaffold development and (2) implantation of an ex vivo skeletal muscle construct [Figure 2][47,48]. Firstly, in 
vivo tissue engineering involves seeding of host-derived progenitor cells into the scaffold and then 
transplantation into the defect. Low viability, retention, and immune rejection of the seeded cells are some 
limitations of this technique[47,49]. For ex vivo tissue engineering, a functionally mature construct of 
contractile myofibers developed from ex vivo culture of scaffolds, biological factors, and progenitor cells is 
implanted into the muscle defect[50]. However, the contractile force produced by scaffolds and oxygen and 
nutrient diffusion to support cell viability is significantly lower than that of native muscle tissue[51,52]. 
Addressing these limitations is necessary to make scaffold therapy a reliable option for VML treatment.

Scaffold design and considerations
Scaffolds are constructed extracellular matrices that help direct muscle regeneration and optimize functional 
recovery [Figure 3]. The choice of material, composition of scaffolds, growth factor integration, and 
cellularity can all be modified in scaffold-based VML treatment[25,27]. Changes in each of these properties 
provide both advantages and limitations. Scaffold architecture directly modulates cell adhesion, 
morphology, orientation, migration, proliferation, genetic expression, and differentiation[53,54]. The porosity 
of scaffolds modulates nutrient exchange and oxygen transport and facilitates cell seeding, penetration, and 
distribution[55-58]. Balanced rates of scaffold degradation to tissue growth maintain structural stability with 
increasing mechanical stress until the tissue can maintain its structure without additional support[27,59]. 
Biologically active molecules such as growth factors and cytokines can further regulate muSC function and 
behavior[39,40]. Engineered scaffolds can also be utilized to deliver MuSCs and initiate direct tissue repair and 
regeneration in the area of injury[25,60,61].

Scaffolds as a mechanism for cell and growth factor delivery
While acellular scaffolds alone have demonstrated improvement in endogenous skeletal muscle 
regeneration through recruitment and proliferation of host cell populations, they result in incomplete 
functional recovery with sub-optimal muscle tissue regeneration and scaffold integration[60,63]. To improve 
muscle regeneration, scaffolds can be used to deliver growth factors to promote myogenesis following 
VML[25,27,64]. IGF-1 and basic fibroblast growth factor (bFGF) have previously been shown to improve 
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Figure 2. Tissue engineering approaches in treatment of volumetric muscle loss. In an in vivo approach, progenitor cells are obtained 
from the host to be seeded into the scaffolds, together with incorporation of biochemical cues (such as growth factors), the construct is 
immediately applied to the defect. In ex vivo tissue engineering, the same materials are first incubated together in a bioreactor so that a 
differentiated and functional construct is produced prior to implantation. Figure was created with Google Drawing.

Figure 3. Scaffold implantation into VML injury in a rat. (A) VML injury to rat tibialis anterior using a 6 mm punch biopsy; (B) Acellular 
collagen glycosaminoglycan scaffold implantation to the defect[62].

healing following muscle injury[40,65]. In the context of VML pathology, TNF-α and IL-6, and growth factors 
IGF-1, HGF, vascular endothelial growth factor (VEGF), and FGF-2 have been studied for skeletal muscle 
regeneration following VML injury[25,66-75]. Controlled release of growth factors through scaffold materials 
over time is more effective than single bolus dosing and results in improved muscle regeneration[76,77]. 
Similarly, intramuscular injection of cells allows for local engraftment and prevents widespread distribution 
of cells, but local engraftment[78]. Progenitor cell populations other than MuSCs have also been studied for 
the reconstruction of VML, including myoblasts[79-81].

In preclinical studies, hydrogels in conjunction with IGF-1 and bFGF showed significant improvements in 
muscle formation and functional recovery in a murine latissimus dorsi VML model compared to hydrogels 
alone, hydrogels with MPCs, and keratin hydrogels with MPCs, bFGF, and IGF-1[80]. A correct ratio of cells 
and growth factors remains unclear. Perivascular stem cells (PSCs) and mesenchymal stem cells (MSCs) 
have also demonstrated improved myogenesis in the area of VML injury, and a fibrin-laminin hydrogel 
with MSCs improved muscle mass and myogenic marker expression[82-85]. Scaffold delivery of combinations 
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of growth factors and progenitor cells is a promising option for VML therapy[25,77,86].

HYDROGEL SCAFFOLDS
Hydrogels are 3D networks of hydrophilic synthetic or natural polymer chains. They are a popular choice of 
scaffold due to their easily manipulated physical and chemical properties that mimic the native ECM[87-89]. 
ECM-derived biomaterials commonly used to create hydrogel scaffolds include collagen, fibrin, keratin, 
polysaccharides, and alginate, but hydrogels can be synthetic or a combination of both to allow for more 
durability and mechanical strength[55,90-92]. An acellular hydrogel containing methacrylic acid significantly 
increased muscle fiber growth with a significant 1.5-fold increase in torque production, vascularization, and 
innervation in murine tibialis anterior (TA) VML injury model (P < 0.01)[93]. In vivo incorporation of 
growth factors and progenitor cells in hydrogels into the targeted area of injury can also be used to promote 
cell viability, myogenic differentiation, and angiogenesis. One study involving keratin hydrogels with IGF-1 
and bFGF demonstrated significantly greater recovery contractile force than in keratin hydrogels with 
MPCs, with about 70% of native muscle force, in a murine latissimus dorsi model of VML injury[80]. 
Myoblasts with IGF-1, FGF, and VEGF delivered in vivo using keratose/alginate hydrogels and myoblasts 
seeded into fibrin hydrogels alone both demonstrated myogenesis, reduced scar tissue, and construct 
vascularization in animal models on VML[81,94-97]. Delivery of MuSCs using a polymer scaffold causes 
significantly higher engraftment of cells into host muscle compared to direct injection into the defect[61,98]. 
Muscle-derived stem cells seeded onto collagen scaffolds showed a significant 1.5-fold increase in cross-
sectional area of rectus femoris muscle at 8 weeks post-injury compared to untreated VML in a murine 
model of VML[99]. Mesenchymal stem cells in a fibrin-laminin scaffold demonstrated an 8.2% increase in 
normalized muscle mass and significantly increased myofibers compared to the untreated group in a 
gastrocnemius-soleus murine model of VML[85]. Manipulation of biomaterials in hydrogels to influence cell 
behavior, improve mechanical strength, and reduce host immune response is a key area of interest. 
Combinations of synthetic, such as polycaprolactone, and natural materials are researched to enhance 
hydrogels’ mechanical strength and increase myogenesis in VML models[87,91,92,100]. Adjusting crosslinking 
modulates hydrogel strength; chemical crosslinking reinforces mechanical strength in contrast to physical 
crosslinking[57,101,102]. The components of hydrogels such as collagen, gelatin, and alginate or polyethylene 
glycol correspond to fibrous, microporous, and nanoporous architectures, which subsequently influence 
cellular migration, proliferation, and nutrient exchange[57,58,103]. Biomaterials can be modified with 
immunomodulatory genes and the selection of biomaterial based on patient age and sexuality are two 
studies of interest[104,105]. Induced pluripotent stem cells (iPSCs), adult somatic cells that has been 
reprogrammed to become pluripotent, have gained traction due to their immunocompatibility and 
differentiation potential, and delivery of iPSCs using fibrin hydrogels have demonstrated improved in situ 
muscle contractility and improved engraftment of host myofibers and MuSCs in a VML murine model[106]. 
Hydrogels are very tunable, but the ideal biomaterial and combination of progenitor stem cells and growth 
factors for large-scale muscle regeneration have yet to be achieved.

DECELLULARIZED SCAFFOLDS
Decellularized scaffolds are comprised of native ECM components after the removal of all tissue cellular 
components[107-109] [Table 1]. As such, these scaffolds precisely mimic native tissue architecture.  Skeletal 
muscle ECM is key to constructive remodeling in muscle regeneration as it influences cellular adhesion, 
signaling, and proliferation and is a major source of growth factors to recreate the complex architecture of 
muscle tissue[109,110]. Acellular scaffolds utilizing porcine urinary bladder ECM have demonstrated improved 
migration of PSCs to the injury site with de novo skeletal muscle cell formation and functional improvement 
in both a murine model for VML and three out of five patients with extremity VML injuries[108,111]. In 
another small-scale clinical study of 13 patients with injuries to a variety of muscles, implantation of three 
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Table 1. Comparison of techniques to treat VML

Technique Advantages Disadvantages Takeaways

Free muscle 
transfer

-Some functional restoration and 
volume recovery 
-Currently used in clinics[13,23]

-Donor site morbidity 
-Incomplete functional recovery 
-Lack of donor tissue 
-Requires highly skilled surgical team[11-17]

-Current standard of treatment for VML  
-Other techniques are necessary to 
achieve better function and muscle 
volume

Acellular 
scaffolds

-Native ECM is retained 
-Augments natural recruitment of 
progenitor cells 
-Minimizes host immunogenicity 
-Tissue-specific ECM, has been used 
in small-scale clinical 
studies[109,111,112]

-Decellularization process must be thorough 
to avoid an adverse host immune response 
-Ability to regenerate sufficient muscle 
volume and restoration of function is still 
incomplete[27,60]

-Improvements in functionality and 
muscle regeneration in few clinical 
studies 
-Fast to produce and shelf-ready 
-May have the quickest path for approval 
for commercialization[112]

Cellular 
scaffolds

-Increased delivery of progenitor 
cells supports recovery and 
regeneration 
-Easily manipulated architecture and 
biomaterials[27,61]

Has-only been studied in in vitro and in vivo 
animal models,  
-Ability to regenerate sufficient muscle 
volume and restoration of function is still 
incomplete[27,123]

-Most promising avenue for skeletal 
muscle tissue engineering 
-Various combinations of cells, growth 
factors, and biomaterials can be 
incorporated

porcine-derived acellular scaffolds demonstrated an average improvement of 37.3% in strength, a 27.1% 
enhancement in functional range-of-motion tasks, and a 27.2% increase in bulk muscle at six months[112]. 
However, conflicting results exist regarding the use of decellularized scaffolds for the treatment of 
VML[11,45,63]. Porcine urinary bladder ECM in a rat TA VML injury model showed 100-fold less myosin-
positive fibers compared to those in the autograft at two, eight, and sixteen weeks post-injury, indicating 
insufficient muscle fiber regeneration[110]. When normalized to uninjured contralateral muscles, functional 
recovery, defined by the maximal isometric torque of TA, in the acellular scaffold was significantly less than 
that of the autograft[110]. Similarly, decellularized scaffolds implanted into a rat TA VML injury model did 
not show de novo muscle regeneration, characterized by myosin-positive fibers, but instead had increased 
fibrotic tissue in the injury site at eight weeks post-injury compared to minced muscle scaffolds that showed 
substantial muscle regeneration[113]. Maximal tetanic isometric TA muscle torque was assessed in vivo, and 
similarly showed 15% more torque production with the minced muscle scaffolds compared to that of 
decellularized scaffolds[113].

Collectively, decellularized or acellular scaffolds may be unable to regenerate sufficient muscle tissue for 
VML therapy[60,110]. One study on a rat model of VML compared acellular muscle ECM and minced muscle 
grafts and found no appreciable muscle regeneration, increased collagen deposition/fibrosis, and reduced 
muSC presence in rats with acellular muscle ECM at 8 weeks[113]. Incorporation of progenitor cells into 
acellular scaffolds has been proposed as a solution. Progenitor cell delivery using acellular ECM, including 
MSCs, myoblasts, and MuSCs, has demonstrated improved skeletal muscle regeneration, functional 
recovery, and angiogenesis at the injury site in animal models[114-119]. The addition of murine myoblasts in a 
murine TA VML injury model showed a significant increase in muscle volume, mass, and myofiber density 
compared to scaffolds without the incorporation of myoblasts.[120] Previous rodent studies have indicated 
that the reduced density of MuSCs in the ECM scaffold may have contributed to the limited muscle 
regeneration seen after scaffold implantation[60,110,113]. Recent strategies maximize muscle growth and vessel/
nerve vascularization. One study aimed to reduce scar tissue and demonstrated reduced fibrosis and 
improved myofiber regeneration using a decellularized muscle aponeurosis scaffold that distributed 
mechanical stiffness[121]. An acellular laminin-enriched fibrin scaffold demonstrated improved myofiber 
regeneration and an average 60% increase in torque production in a rat TA model of VML[122]. More studies 
are needed to determine the effectiveness of acellular and decellularized scaffolds for muscle regeneration 
and functional recovery.
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NANOFIBROUS SCAFFOLDS
Nanofibrous scaffolds expand tissue engineering capabilities to emulate the ECM architecture at the 
nanometer scale and guide cell adhesion and proliferation[124]. Nanofibrous constructs, made of synthetic or 
natural biomaterials, have a desirable high surface area to volume ratio and high porosity and are created 
through electrospinning, self-assembly, or phase separation[124,125]. Nanofibers, through electrospinning, 
produce an anisotropic microenvironment that guides geometric myoblast alignment to favor myoblast 
fusion and muscle regeneration[126,127]. Electrospinning produces anisotropic, geometrically aligned 
nanofibers that mimic native ECM morphology and function[127,128]. Electrospun nanofiber orientation can 
guide MSC and fibroblast cell growth and may be preferred in tissue-engineered scaffolds[127,128]. Very 
recently, one study developed an injectable, anisotropic, nanofibrous hydrogel with magnetic controlled 
short nanofibers to guide cell alignment and organization using a remote magnetic field. These anisotropic 
scaffolds significantly improved the alignment of myofibers in vivo and functional recovery in a rat TA 
VML model[129].

Vascular and nerve regeneration have been explored with nanofibrous scaffolds. One study involving 
spatially patterned aligned myotubes from an in vitro co-culture of murine myoblasts and vascular 
endothelial cells in nanofibrillar scaffolds[130]. Implantation of the organized skeletal muscle into a mouse TA 
VML injury model resulted in highly organized myofibers and increased vascularization and synchronized 
contractility compared to endothelialized muscle tissue from non-aligned scaffolds, highlighting the 
potential for improvements in angiogenesis in scaffold tissue engineering[130]. Another study over core-shell 
composite scaffolds, with a nanofiber yarn core and hydrogel shell that are seeded with myoblasts, and 
demonstrated both enhanced myofiber alignment and elongation[131]. Pre-innervated scaffolds using co-
cultured spinal motor neurons and myocytes in aligned nanofibrous scaffolds in a rat VML model showed 
greatly increased MuSCs, myocyte fusion and mature neuromuscular junction (NMJs), and muscle 
regeneration, indicating great potential for pre-innervated scaffolds to treat VML[21]. Cell infiltration is a key 
limitation in electrospun scaffolds, but adjusting biomaterial selection and variations in electrospinning and 
post-processing procedures are used to account for this drawback[125,132-136]. Further research is necessary to 
explore engineered nanofibrous scaffolds to improve spatial organization, vascularization, and innervation 
of regenerated muscle tissue [Table 2].

ELECTROCONDUCTIVE SCAFFOLDS
Electroconductive scaffolds incorporate conductive materials such as carbon nanotubes, graphene, and 
conductive nanopolymers to mimic the electrical properties of native ECM[137]. The addition of electrical 
properties to scaffolds enhances the regeneration of aligned myofibers, leading to contractile function 
recovery, which is currently missing in natural and synthetic biomaterial-based scaffolds[12,138-140]. Electrically 
stimulated in vitro skeletal muscle constructs improved contractile force, supported myoblast differentiation 
into myotubes, and increased the size of myobundles[141-143]. Graphene hydrogels have become increasingly 
popular and have been shown to improve myoblast and fibroblast proliferation and differentiation 
in vitro[144-146]. Reduced graphene oxide (RGO) with nanocomposite polymer helped myocyte differentiation 
and skeletal muscle regeneration, angiogenesis, and functional recovery in vivo[147]. Carbon nanotubes have 
exceptionally strong electroconductive abilities and have potential to be used for implanted cell tracking and 
cellular behavior sensing, but they also possess potential cytotoxicity[148-150]. Conductive nanopolymers, such 
as PCL, have modifiable physical properties and can be used in composite hydrogels or electrospun 
nanofibers to enhance myoblast differentiation and functional maturation[151-155]. Murine myoblasts cultured 
in vitro on composite gelatin-polyaniline electrospun nanofibers demonstrated improved myotube 
contractility[155]. More recently, an elastic, hemostatic and conductive nanocomposite cryogel composed of 
RGO and gelatin exhibited significant cell proliferation, myogenic differentiation, and increased repair 
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Table 2. Comparison of different types of scaffolds

Scaffold type Advantages Disadvantages

Hydrogel -Easily manipulated physical and chemical properties that mimic the native 
ECM[87-89] 
-Composed of a variety of synthetic and natural materials (collagen, gelatin, 
fibrin, etc.) that influence cellular migration, proliferation, and nutrient 
exchange[57,58,103]

-Highly tunable nature of hydrogels leads to 
wide variability of results between studies 
-Limited vascularization and innervation 
capability compared to nanofibrous scaffolds

Nanofibrous -Emulate the ECM architecture at the nanometer scale[124,125] 
-Guide cell adhesion and proliferation at the nanometer scale 
-High porosity and surface area: volume ratio 
-Improved myofiber alignment[126,127] 
-Capability for pre-innervated scaffolds[130]

-Electrospun scaffolds have poor cell 
infiltration and migration[125,132-136] 
-Low mechanical strength of scaffold 
-Less tunable than hydrogels

Electroconductive -Enhances regeneration of aligned myofibers, leading to contractile function 
recovery[12,138-140] 
-Support contractile force and myoblast differentiation[141-143]

-Carbon-containing scaffolds possess 
potential cytotoxicity[148-150] 
-Less tunable than hydrogels

efficiency in a rat VML model[156]. An injectable electroconductive, biodegradable hydrogel with murine 
myoblasts showed higher myofiber density and capillary density in a rat TA VML model[157].

3D BIOPRINTING AND BIOINKS
In comparison to traditional tissue engineering strategies, 3D bioprinting using bioinks (combinations of 
scaffolds, cells, and growth factors) replicates the complex structure of skeletal muscle while precisely 
controlling the spatial positioning of cells and biomaterials [Figure 4][123,126,158]. Non-bioprinted biomaterial 
scaffolds fail to regain normal physiologic force generation and mature functional constructs and are 
limited in the ability to direct biomolecule deposition[126]. An in vivo nanocomposite VEGF-eluting hydrogel 
bioink demonstrated adherence to skeletal muscle and improved functional recovery with reduced fibrosis 
in a murine model of VML[159]. Other bioprinted scaffolds include a decellularized bioink that allowed for 
high cell viability, enhanced tissue and nerve vascularization, and functional recovery in a rat VML model 
and an in vivo colloidal foam-based porous hydrogel that showed significant functional restoration and 
force generation[160,161]. A methacrylated gelatin hydrogel with human adipose-derived cells, developed using 
an in situ crosslinking strategy to prevent loss of cell viability, showed improvements in hindlimb grip 
strength and muscular volume in a murine TA VML model[162]. One study involving a bioprinted acellular 
gelatin hydrogel with MPCs demonstrated TA muscle functional recovery of 82% in a rat TA VML model at 
eight weeks[163]. Functional neural integration of 3D bioprinted scaffolds has also recently been studied but 
still remains a challenge for engineered skeletal muscle[163]. A pre-innervated 3D bioprinted scaffold with 
human MPCs and human neural stem cells showed accelerated functional restoration by integration with 
host neurons and improved myofiber and NMJ formation in a rat model of VML[164]. Three-dimensional 
bioprinted scaffolds hold great promise, but scaffold immunocompatibility, systemic effects of implanted 
cells, and ability to bioprint thick skeletal muscle > 1 mm to allow for vascularization need to be 
investigated[126,163]. Bioprinting patient-derived stem cells and the development of various combinations of 
bioinked materials and cells require further direction and study[126].

BARRIERS TO CLINICAL TRANSLATION
Current research on tissue-engineered skeletal muscle constructs for VML is mostly limited to small animal 
models [Table 3]. A few human clinical studies on decellularized ECM scaffolds derived from animal tissues 
have shown limited success in the restoration of muscle function[8,112]. Implantation of an acellular porcine-
derived scaffold in a 13-patient cohort study showed an average improvement of 37.3% in strength, 27.1% 
improvement in functional range-of-motion tasks, and 27.2% increase in bulk muscle at six months[112]. 
Muscles injured included the anterior tibial compartment, brachialis, biceps, deltoid, quadriceps, rectus 
femoris, sartorius, and hamstring, with an average tissue deficit of 66.2% and ranged from 25%-90% 
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Table 3. Comparison of animal models of VML

Animal 
model Advantages Disadvantages

Mouse -Cost-effective and readily available[108] 
-Easily reproducible injury 
-Ability to obtain a large cohort

-Smaller scale defect than seen clinically[171] 
-Limited translational capacity to humans 

Rat -Larger than mouse model 
-Easily reproducible injury 
-Physiologically, morphologically, and genetically more similar to humans 
compared to mice

-Smaller scale defect than seen clinically[171] 
-Limited translational capacity to humans 
 

Sheep 
/Pigs 
/Canine

-Larger size defect for more clinically relevant applications -Limited by price, resources needed to care for 
them 
-Few large animal models

Figure 4. Diagram of a handheld 3D printer used to print scaffolds directly into the muscle defect[165].

compared to the contralateral muscle at enrollment into the study. By 24-28 weeks, strength testing ranged 
from -17.88% to 136.1% and improvements in force production in 8 of the 13 patients and overall significant 
improvement of 37.3% ± 12.4% and range-of-motion in at least one task improved by 27.1% ± 10.5% for all 
the patients[112]. By eight months, bulk muscle, identified by dense tissue on imaging, showed an average 
increase of 27.2%. Prior to ECM implantation, all the patients had personalized physical therapy regimens 
and standard-of-care treatments as well. However, the range of improvements varied widely among 
patients, and it is difficult to compare between patients with different injured muscles. The improvements in 
strength, range of motion, and bulk muscle, although positive, are still insufficient to fully restore muscle 
functionality to its pre-injury state.
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Here, it is important to mention the incorporation of physical therapy to augment functional recovery 
following VML. Some studies in rodent models have demonstrated synergistic improvements in muscle 
strength by adding an exercise regimen[10,165,166]. One study involving a 3D bioprinted scaffold composed of 
gelatin methacryloyl with colloidal foam-like porosity incorporated progressive aerobic exercise using an 8-
week treadmill running regimen and found a significant 25% improvement in tetanic gastrocnemius 
strength compared to the same treatment group without exercise in a murine gastrocnemius VML 
model[165]. Scaffold implantation, in combination with exercise training, synergistically improved functional 
recovery[165]. Similarly, one study involving a rat TA VML injury model alone, without the use of scaffolds, 
found a 17% improvement in maximal isometric torque after providing free-reign access to running 
wheels[166]. Another study evaluated early rehabilitation therapy of passive range of motion in a murine 
posterior compartment VML model and found 3-fold reduced muscle stiffness compared to VML alone[10].

In addition to the role of physical therapy, the use of electrical stimulation on muscle regeneration can 
further augment functional recovery. Intermittent electrical stimulation can potentially enhance the 
strength of the remaining muscle post-VML injury. The previous study involving early rehabilitation 
incorporated a regimen of passive range of motion with electrical stimulation and demonstrated 32% greater 
isometric plantarflexion torque compared to VML alone and 21% greater compared to range of motion 
therapy alone[10]. Clinically, early mobilization and therapy lead to improved function and recovery[166]. 
Further preclinical studies that incorporate exercise and physical therapy with scaffold implantation can 
hopefully translate to improved functional recovery in clinical patients. Challenges still remain for VML 
therapy to gain greater functional improvements and large volume muscle tissue.

The ideal scaffold with the optimum microarchitecture (porosity, elasticity, biodegradability, anisotropic), 
progenitor cell population, and combination of growth factors to effectively guide myogenesis in vivo is yet 
to be designed[131,167]. Vascularization, innervation, and immunocompatibility are essential for scaffold 
success, and no tissue engineering technology has been fully successful[60,64,167]. Force generation by 
engineered muscle tissue is reduced on strength testing compared to that of natural muscle[126]. Regeneration 
of large quantities of aligned myofibers for clinically sufficient functional restoration following scaffold 
implantation has yet to be achieved[126]. A better understanding of intricate spatiotemporal events in skeletal 
muscle regeneration and subsequent application to tissue-engineered scaffolds are needed[12,60]. Successful 
engineered scaffolds for tissue regeneration necessitate the formation of large volumes of autologous 
myoblasts, growth-factor delivery to support integration and survival of implanted cells in vivo, vessel and 
nerve vascularization, and immunomodulation to prevent excessive scar[22,120,139,168-170]. If scaffolds are cellular, 
rejection following scaffold implantation must also be considered. Scalability and accurate representation of 
tissue engineered constructs in VML animal models to human patients present another major challenge in 
clinical applications[170]. Muscle defects in mice and rats, the most used VML models, are much smaller than 
those seen clinically, and increasing scaffold size for clinical use will need effective strategies to promote 
angiogenesis, myogenesis, and neural integration within the construct. Variability in animal models, 
anatomic location and creation of muscle defects, and muscle function and recovery assessment tools can all 
lead to variable preclinical results, further limiting the translation from these studies to clinical settings[171]. 
Additionally, the pathway to industrialization and commercialization of tissue-engineered scaffolds requires 
improvements in efficient, quick, and cost-effective methods of manufacturing with thorough clinical trial 
testing that shows acceptable patient safety and clinical effectiveness from regulators and clinicians[158,172].

CONCLUSIONS AND FUTURE DIRECTIONS
While there is a current paucity of options for VML treatment, tissue engineering techniques offer 
opportunities to promote myogenesis and fibrosis following VML injury. The current standard of care using 
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autologous functional muscle transfer is limited by the degree of functional recovery and donor site 
morbidity. Development of effective treatments to address large deficits in skeletal muscle mass is hopeful 
with tissue engineering. Bioengineered scaffolds can mimic native ECM and incorporate biophysical and 
biochemical cues to guide host cellular responses and functions, resulting in improved functional recovery. 
Translation into human patients has been achieved in thirteen patients so far with an acellular scaffold and 
physical therapy[111,112]. Clinical translation of scaffold treatment in patients with VML injuries could 
resemble the following paradigm: wound debridement, assessment of strength and range-of-motion, tissue-
engineered scaffold implantation, and lastly, functional muscle flap coverage. With bioengineered scaffold 
implantation, patients with extremity VML injuries can achieve improved muscle functionality and, 
subsequently, a better quality of life. A combination of extensive physical therapy, scaffold implantation, 
and functional muscle transfer has the potential as a viable treatment option for VML. Although many 
challenges remain, further research in this area may allow for scaffolds to emerge as clinically useful 
treatment modalities for VML injury.
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