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Abstract

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in adults and is one critical area of the 
medical sciences. Atherosclerosis is the main underlying pathology and is characterized by chronic inflammation of 
the arterial walls. The current treatment modalities for CVD target hypertension, hyperlipidemia and hemostasis, and 
suppress inflammation without directly addressing the origin of inflammation. Thus, many individuals with multiple 
classic risk factors for CVD do not experience acute ischemic events. Moreover, myocardial infarction and stroke 
continue to occur in up to two-thirds of all patients. Because many cardiovascular events have not been explained 
by genetics or other risk factors, and multiple epidemiologic studies have consistently suggested an infectious 
component, the introduction of entirely novel approaches for diagnostics and treatment that target infections are 
acutely needed. These complementary novel approaches addressing additional manageable risk factors such as 
infections will be based on the concept of personalized medicine to control CVD and achieve longevity, while also 
increasing the quality of life. There are a variety of avenues that could enable such novel approaches. These focus on 
the discovery and characterization of the infective component of atherosclerosis, the atherosclerosis microbiome. 
Specifically, we provide an update of the latest developments in the oral microbiome and its relation to CVD.
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INTRODUCTION
Cardiovascular disease (CVD) is the commonest cause of mortality and morbidity globally[1,2]. Compared 
with the past, global progress in extending life expectancy is forecasted to be slower from 2016 to 
2040. This trend resulted from predicted slowed advances on key drivers including stagnated gains on 
cardiovascular diseases, which was a major factor in historical improvements in life expectancy[3]. 

Atherosclerosis is a chronic vascular inflammation associated with hypercholesterolemia, accumulation 
of lipids, hypertension, diabetes, smoking, smooth muscle cell proliferation, cell apoptosis, necrosis, 
fibrosis, and genetic factors. Atherosclerosis causes plaque accumulation, obstructing blood f low and 
contributes to acute ischemic events such as myocardial infarction or stroke. In these events, the arterial 
wall inflammatory lesion becomes destabilized, leading to plaque rupture and discharge of its necrotic core 
in the circulation, triggering coagulation and thrombosis. Such vulnerable plaques present the highest risk 
of acute events. The risk of atherosclerotic disease has been observed to be significantly higher in patients 
with periodontal disease, independently of other established risk factors.

Many CVD patients do not present any of the classical risk factors. Between 60%-70% of individuals with 
multiple cardiovascular disease risk factors have not experienced a cardiovascular event[4] and only 50% of 
the CVD patients have been shown to have elevated serum cholesterol[5]. While major statin trials report 
an average 28% reduction in low-density lipoprotein (LDL) cholesterol and a 31% reduction in relative 
risk, patients still have significant residual risk[6]. Likewise, myocardial infarction and stroke continue to 
occur in up to two-thirds of all patients, even after many of these factors are addressed[7]. This “forgotten” 
majority of patients leave wide open the door for exploration of risk factors that have not been adequately 
addressed to date. 

While the importance of the traditional risk factors is well established, the data indicate additional factors 
contributing to atherogenesis. Infectious processes and products of the endogenous microbiome are 
capable to modulate atherosclerosis and its complications either directly, or indirectly, by eliciting local and 
systemic responses that potentiate atherogenesis. Here we will focus on bacterial infections as potential 
contributors to vascular inf lammation, with an emphasis on periodontal pathogens as an established 
component of the atherosclerosis microbiome.

CURRENT VIEW OF THE INFECTIOUS COMPONENT OF ATHEROSCLEROSIS. ASSOCIATION 

OF PERIODONTITIS WITH CVD
The initiation of atherogenic process is typical for a chronic inflammatory disease. This process starts with 
recruitment of leukocytes from blood flow, mediated by a range of endothelial surface-expressed adhesins 
(more details in the study by Libby[8]). The endothelial activation and subsequent leukocyte recruitment/
transmigration in tissue is in response to an activating stimulus, which includes microbial constituents.

Gingivitis and its advanced stage, chronic periodontitis, are the most prevalent microbial infections in 
man. Only in recent decades has the association between periodontal diseases and systemic conditions 
such as coronary heart disease and stroke became subject to investigation[9-16]. 

The largest genome network analysis (63,746 cases and 130,681 controls) identified lipid metabolism and 
inflammation as main pathways involved in the genetic predisposition to coronary artery disease (CAD). 
Specifically, the four most significant pathways mapping to putative genes involved in CAD are linked to 
lipid metabolism and inflammation, underscoring the causal role of these activities in the genetic etiology 
of CAD. However, the genetic variants strongly associated with CAD explain approximately only at most 
10.6% of CAD heritability[17-19]. 
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Infection is an understudied contributing factor in vascular inf lammation. Nevertheless, infectious 
component as a risk factor is supported by an abundance of epidemiological evidence[20,21] and animal 
models. Multiple independent pathways of evidence already pinpoint inflammation as a key regulatory 
process that links multiple risk factors for atherosclerosis and its complications with altered arterial 
biology[22]. Vascular infection due to transient bacteremia, from leaky guts or periodontal lesions alike, can 
lead to persistent inflammation, including one due to an intracellular bacterial “privileged niche”. Indeed, 
blood levels of inflammation markers (e.g., C-reactive protein, CRP) have been associated with vascular 
risk factors and the prevalence and incidence of atherothrombotic CVD[23]. Consequently, hsCRP (a high 
sensitivity CRP test) is an important prognostic factor for atherosclerosis[24]. 

More critical evidence can be found in the Northern Manhattan study of stroke incidence and prognosis. 
This prospective cohort study (1625 participants, mean age 68.5 ± 10.1 years; 64.9% women) demonstrated 
that infectious burden is associated with established measure of risk of stroke, carotid plaque intima-
media thickness[25-27]. Interestingly, a measure of infectious burden associated with risk of atherosclerosis 
and stroke was independently associated in this study with cognitive performance. This demonstrated that 
infections may be a culprit in cognitive impairment as well[28].

Similarly, the Oral Infections and Vascular Disease Epidemiology Study (INVEST) demonstrated a direct 
relationship between tooth loss and carotid plaque prevalence[29] Specifically, colonization with pathogenic 
periodontal pathogens was associated with carotid artery intima-media thickness (IMT), a measure of 
subclinical vascular disease[30]. INVEST also demonstrated that severe periodontal bone loss was associated 
with a nearly 4-fold increase in risk for the presence of carotid atheroma [odds ratio (OR) 3.64, P < 0.05][31]. 
The study also provided data supporting an effect of the subgingival periodontal bacteria level and both 
systolic and diastolic blood pressure in addition to prevalence of hypertension[32]. At a protein level, higher 
secretory phospholipase A2 activity (an inf lammatory enzyme associated with atherosclerosis) at high 
tertile of etiologic presence presents a mechanistic explanation of the link between periodontal bacteria 
and CVD[33]. 

In the Atherosclerosis Risk in Communities (ARIC) study of 8,363 men and women from four United 
States communities (aged 52 to 75 years), patients with both high attachment loss and high tooth loss [OR 
= 1.5, 95% confidence interval (CI): 1.1 to 2.0] and also edentulous individuals (OR = 1.8, 95%CI: 1.4 to 
2.4) had elevated odds of prevalent coronary heart disease (CHD) in comparison with controls with low 
attachment loss and low tooth loss. A number of traditional risk factors for CHD were factored in. The 
ARIC results thus presented evidence that both tooth loss and periodontal disease (PD) are associated with 
prevalent CHD[34]. 

The Periodontitis and Its Relation to Coronary Artery Disease compared 805 patients (< 75 years of age) 
with myocardial infarction (MI) and 805 age-, sex- (male 81%), and area-matched controls (mean age 62 ± 8) 
without MI. This study determined that periodontitis was more common (43%) in patients than in controls 
(33%; P < 0.001). A significant increased risk for MI was observed in periodontitis patients (OR adjusted for 
confounders, 1.28; 95%CI)[35]. 

In a Polish case-control study, the level of PD was significantly associated with the risk of acute MI (OR = 
2.4, 95%CI: 1.1 to 5.2, P = 0.0203). This was even after an adjustment for age, sex, smoking, hypertension, 
diabetes, body-mass index, education and income[36]. Interestingly, severe infection was sometimes 
associated with MI only in females. Similarly in another study, severe periodontitis was more prevalent in 
female patients than female controls (14% vs. 4%, P = 0.005). An increased risk for severe periodontitis in 
female patients with a first MI was reported (adjusted OR = 3.72, 95%CI: 1.24 to 11.16, P = 0.005)[37]. 
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Furthermore, multivariate analysis of coronary heart disease (CHD) individuals demonstrated a higher 
prevalence of oral diseases and lower compliance to oral disease prevention compared to healthy controls. 
The analysis showed a positive association between edentulousness (OR = 1.37, 95%CI: 1.02 to 1.85), the 
number of endodontic lesions (OR = 4.37, 95%CI: 1.69 to 11.28), chronic periodontitis (OR = 5.87, 95%CI: 1.17 
to 29.4), and CHD[38]. 

Similarly, a 9-year follow-up study examined a possible correlation between the duration of periodontal 
disease state and cardiometabolic risk factors. The odds ratio for the presence of ≥ 1 cardiometabolic risk 
factor (hypertension, hyperglycemia, dyslipidemia or obesity) in individuals with a longitudinal presence 
of periodontal pockets for ≥ 6 years was significantly higher compared to individuals without periodontal 
pockets[39]. 

Finally, the recent Malmö Offspring Study is a population-based study using multivariable regression 
models to analyze the presence of carotid plaque and asymptomatic carotid plaque as related to measures 
of periodontal disease. This study demonstrated that the risk of developing a carotid plaque in study 
subjects with periodontitis was significantly higher compared to periodontitis-free subjects, with odds 
ratioof 1.75 (95%CI: 1.11 to 2.78)[40]. 

Not surprisingly, endodontic infections were also associated with vascular inflammations. For example, 
endodontic infection was associated with higher prevalence of CHD and initial endothelial damage[41,42]. 
In a cross-sectional study of the association between apical periodontitis (AP) and CVD using noninvasive 
methods, f low-mediated dilatation (FMD) was found to be significantly impaired in AP patients (mean 
= 4.9% ± 2.05%) in comparison with healthy individuals (mean = 9.74% ± 2.59%, P = 0.000). There was a 
statistically significant difference observed between carotid IMT of the AP group (mean = 0.64 ± 0.12 mm) 
and control group (mean = 0.54 ± 0.08 mm) (P = 0.000). Furthermore, there was a significant inverse 
correlation observed between c-IMT and FMD (rs = -0.381, P < 0.001). This indicated an impaired FMD 
and greater carotid IMT in AP patients, supporting an association between endodontic infection and 
cardiovascular inflammatio[43]. 

Seroepidemiology
Serological animal and cell culture studies provided evidence that bacterial infection, often by the red 
complex pathogen Porphyromonas gingivalis, a major etiologic agent of PD, emerges as a new, important 
factor for atherosclerosis[44]. Based on the accumulated epidemiological data, the infection hypothesis 
for initiation/exacerbation of atherosclerosis has already been established[45,46]. Specifically, periodontal 
inf lammatory mediators were recognized as contributors to or triggers for systemic inf lammatory 
responses. Subgingival periodontal infection demonstrated an increased risk of developing atherosclerosis 
in periodontal patients by 168%[47]. 

The ARIC study also presented an association between systemic antibody response to periodontal 
pathogens and coronary heart disease in ever and never smokers[48]. The latest ARIC data presented 
significant association between high gingival inf lammation, tooth loss, severe tooth loss, and severe 
periodontitis with diabetes, coronary heart disease, hsCRP, and IL-6, while only severe disease was 
associated with stroke[49]. 

Furthermore, coronary disease was more common among seropositive for P. gingivalis subjects, relative to 
the seronegative (14.0% and 9.7%, respectively; P = 0.029). Hence, CHD was more prevalent in individuals 
with a high combined antibody response against Aggregatibacter actinomycetemcomitans and P. gingivalis 
than in those with a low response (17.4% and 11.1%, P = 0.026). When adjusted for age and several CHD 
risk factors, the subjects with a high combined antibody response had an OR of 1.5 (95%CI: 0.95 to 
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2.50, P = 0.077) for prevalent coronary disease. The combined antibody response was directly associated 
with prevalent CHD (P = 0.046) and inversely associated with the concentration of serum high-density 
lipoprotein (HDL) cholesterol (P = 0.050). This demonstrated that serum antibodies to major periodontal 
bacteria were associated with CHD[50]. 

In addition, the same group demonstrated that systemic exposure to P. gingivalis predicts incident stroke. 
Investigating seropositive subjects, it was found that they had a multivariate odds ratio of 1.6 (95%CI: 1.0 to 
2.6) for stroke, compared with the seronegative subjects. Additionally, patients with a history of stroke or 
CHD at baseline contained more often P. gingivalis IgA than the controls, 79.7% vs. 70.2%. The seropositive 
subjects had an odds ratio of 2.6 (1.0 to 7.0) for secondary stroke, compared with the seronegative[51]. In the 
CVD-free individuals (n = 893), systemic exposure to P. gingivalis increased the risk of stroke as follows: 
compared to seronegative subjects, men and women that were IgG-seropositive for P. gingivalis presented 
a multivariate OR (95%CI) of 1.63 (1.06 to 2.50) and 2.30 (1.39 to 3.78) for stroke, respectively. Interestingly, 
higher OR was observed in males, who had never smoked. Compared to seronegative men, P. gingivalis 
IgA-seropositive men had a OR of 3.31 (1.31 to 8.40, P = 0.012) for stroke. There was no association found 
between antibody titers to A. actinomycetemcomitans and stroke, suggesting that the systemic exposure 
specifically to P. gingivalis may contribute to incident stroke[52]. 

These authors also presented data demonstrating that periodontitis also causes mild changes in HDL 
metabolism. These changes appear to be less severe than those occurring during the acute-phase 
response. Thus, periodontitis may reduce the anti-atherogenic properties of HDL, increasing the risk for 
CHD. Importantly, the HDL-mediated cholesterol eff lux improved after periodontal treatment. More 
interestingly, this increase was significant (P < 0.05) among those patients whose CRP titers decreased (53.7% 
reduction, P = 0.015) and who were PCR-positive for A. actinomycetemcomitans[53].

In comparison, P. gingivalis induces HDL oxidation, impairing the atheroprotective function of HDL. 
P gingivalis likely makes it proatherogenic by raising a proinflammatory response via interaction with 
monocytes and macrophages[54]. Overall, the presence of A. actinomycetemcomitans and P. gingivalis, major 
causative organisms in periodontitis was shown to be the strongest determinant of the systemic antibody 
response to these pathogens[55].

Concerning serum antibodies, in coronary disease as well as in periodontal disease patients the antibody 
titers against P. gingivalis were the most prevalent. Hs-CRP test levels and antibody titers to P. gingivalis 
have been reported to be higher in periodontitis patients than in control subjects[56]. Interestingly, while 
periodontal patients were seropositive for both studied P. gingivalis strains, FDC381 and Su63, higher 
antibody titers to P. gingivalis Su63 only was observed in coronary disease patients. This finding indicates 
that specific genomic virulence determinants present in particular P. gingivalis strains may affect 
atherogenesis[57]. 

The association of P. gingivalis antibodies with mortality is however non-linear. In a specific study, 
mortality was highest for those just above the median anti-P. gingivalis response and a reduced risk was 
present among those with low or high titers of the antibody[58], suggesting that the efficiency of the immune 
response itself may be the key to control of the infection. 

In a first 27-year long-term study of association of chronic oral infections in childhood with subclinical 
carotid atherosclerosis in adulthood in 755 participants, the infections were associated with adulthood 
IMT. The relative risk (RR) found was 1.95 (95%CI), especially elevated in boys, RR 2.25 (95%CI). The 
associations were independent of cardiovascular risk factors[59]. Specifically, the salivary IgA antibody levels 
to malondialdehyde acetaldehyde-modified low-density lipoprotein (MAA-LDL), Rgp44 (gingipain A 
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hemagglutinin domain of P. gingivalis), and Aa-HSP60 (heat shock protein 60 of A. actinomycetemcomitans) 
were discovered to be elevated in stable-CAD and acute coronary syndrome patients when compared to 
CAD-healthy subjects[60]. Periodontal patients were characterized by higher levels of subgingival bacteria. 
The serum IgA/IgG burden indicated higher risk for acute coronary syndrome (OR = 1.84, 95%CI: 1.01 
to 3.35 for IgA; OR = 1.87, 95%CI: 1.01 to 3.46 for IgG). This risk was independent of other cardiovascular 
risk factors (body mass index, number of teeth, subgingival bacterial levels and periodontal diagnosis)[61]. 
The serological differences in periodontitis patients may present risk factors for atherosclerosis. These 
seroepidemiological findings are consistent with an association between periodontitis and cardiovascular 
disease. 

Association of bacteria with atheromatous tissue
Identification of periodontal pathogens in vascular tissue. While oral tissues are the primary sites 
for P. gingivalis infection, it has been long shown it can also enter the circulation daily through the 
microvasculature following tooth brushing and other dental procedures[62]. Routine procedures such 
as tooth extraction may also lead to transient bacteremia[63-65]. Periodontal biofilm bacteria are thus 
disseminated to large vessels. Consequently, bacterial DNA was detected in atheromas by PCR[66] where 
P. gingivalis was the most abundant pathogen compared to all others tested species[67]. Similarly, a high 
content of periodontal pathogens were detected in atheromatous arterial specimens from atherosclerosis 
patients. The pathogens were specifically detected within primary atheromatous lesions. Critically, most 
patients had severe periodontitis[68]. 

Using reverse transcription polymerase chain reaction, DNA from endodontic bacteria was identified in 
20/36 (56%) of aortic aneurism tissue specimens and DNA from periodontal bacteria in 17/36 (47%) of 
these specimens[69]. Compared to cardiac bypass control samples, both ruptured and unruptured aneurysm 
specimens presented significantly more bacterial DNA (P = 0.003 and 0.001, respectively)[70]. Further, 
quantitation of DNA from periodontopathic bacteria using universal and species-specific TaqMan probe/
primer sets demonstrated total bacterial DNA in 94.9%, and periodontopathic bacterial DNA in 92.3 % 
of the atherosclerotic plaques from periodontal disease patients[71]. Using sequence analysis of bacterial 
16S rRNA libraries from atherosclerotic plaques, 23 bacterial species/phylotypes were identified, where 15 
(60.9%) of the phylotypes were reported as yet uncultivable or as yet uncharacterized species[72]. P. gingivalis 
DNA was found in 21 of 91 (23%) samples taken from carotid endarterectomies[73]. 

More importantly, live invasive periodontal pathogens, P. gingivalis and A. actinomycetemcomitans were 
identified in a patient plaque[74]. In the same line of investigation, a large number of strains were cultivated 
from patient plaques, belonging to different species, mostly associated with periodontal biofilm, including 
P. gingivalis[75,76]. It will also be interesting to adapt to atheromas the recently communicated reverse-
genomics-enabled cultivation and characterization of as-yet-uncultured species[77].

It has also been shown that more than 90% of all infections in the head and neck region can have an 
odontogenic origin[78]. Most recently, P. gingivalis proteinase gingipain was detected in 96% of the 53 
brain tissue sections from Alzheimer’s patients[79], indicating overall systemic hematogenous spread of 
periodontal bacteria. 

Effects of bacterial infection of vasculature
A variety of communications on animal experiments have suggested that bacterial infection may 
predispose to early atherosclerosis[80] and plaque instability[81]. In addition to passive dissemination by 
way of the bloodstream, bacteria may disseminate and cause low-grade focal infections due to their 
ability to invade and persist intracellularly. Low-grade infection presents mixed positive/negative results 
for infection, inflammation or pathogen identification since it requires prolonged culturing. Thus, using 

Page 6 of 18                                                   Kozarov et al. Vessel Plus 2020;4:10  I  http://dx.doi.org/10.20517/2574-1209.2019.31



quantitative polymerase chain reaction, it was shown that bacterial DNA was present in atherosclerotic 
plaque and - of note - the amount of this DNA correlated with the amount of leukocytes in the 
atherosclerotic plaque[82]. 

Bacteria possess a profound ability to disrupt the host homeostasis. For example, infection with P. gingivalis 
induces procoagulant effects in human endothelial cells[83]. Very important, an invasive, but not a non-
invasive, P. gingivalis strain accelerated atherosclerosis in a murine model[84], pointing to the significance of 
strain-specific genomic virulence determinants. Furthermore, it was found that P. gingivalis invasion (but 
not a non-invasive mutant) in ApoE (±) mice was critical for atherosclerosis progression[45]. 

Bacterial infection can also cause apoptosis in endothelia[85]. There is a large body of evidence that P. 
gingivalis has developed an elaborate proteolytic system composed of surface-located or secreted enzymes, 
Rgp and Kgp gingipains, which serve to provide these asaccharolytic bacteria with sole source of nutrients 
in the form of small peptides and amino acids, thus functioning as virulence factors leading to tissue 
destruction[86-88]. Consequently, the proteolytic activities of this infectious agent may also contribute to 
vascular disruption and subsequent obstruction of the lumen. 

At the same time, P. gingivalis cytotoxic activities have been well characterized[89] and loss of cell adhesion 
properties with subsequent apoptotic cell death has been observed[90-92]. Even more aggravating, P. gingivalis 
efficiently activates coagulation factors, thus promoting platelet aggregation[93-96]. Thus, internalized 
destructive platelet-aggregating inf lammatory agent such as P. gingivalis combined with macrophage 
infiltration in intimal regions would likely contribute to triggering apoptosis and formation of necrotic 
core, potentially leading to plaque weakening and rupture, folloed by triggering of the coagulation cascade, 
thrombosis and acute ischemic events.

The Rgp gingipains of P. gingivalis lyse lipoproteins producing 2 apoE fragments, as well as 2 apoB-100 
fragments, in LDL, while the Kgp gingipain lyses HDL, induce reactive oxygen species (ROS) and degrade 
antioxidants. In addition, both Rgp and Kgp gingipains induce lipid peroxidation. Thus, P. gingivalis may 
affect the lipoproteins expression in blood, another facet of its contribution to atherogenesis[97]. Similarly, 
Pep19 from P. gingivalis HSP60 has a distinct ability to induce native-LDL oxidation which may serve as a 
plausible mechanism by which this peptide may drive epitope spreading to the neoantigen, i.e., oxidized 
LDL, in the pathogenesis of atherosclerosis[98].

During endodontic (apical PD) infection, ligation of toll-like receptors (TLRs) on phagocytes’ surface 
triggers activation of humoral and cellular responses and also phagocytosis, synthesis of ROS and 
production of inf lammatory mediators, cytokines and matrix metalloproteinases. TLRs provide innate 
immune sensing of conserved pathogen-associated molecular patterns. TLR - mediated signaling also 
contribute importantly to cardiovascular disease. For a recent review of this particular subject, see[99]. 

Specifically, oxidative stress has been strongly involved in the pathogenesis of atherosclerosis[100]. The ROS-
producing systems in the vasculature include reduced nicotinamide adenine dinucleotide phosphate 
oxidase, xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthase. 
Oxidative stress due to ROS overproduction contributes to all stages of atherogenesis, from the plaque 
formation to the most critical stage, the plaque rupture[101-103]. All cardiovascular risk factors such as 
hypercholesterolemia, hypertension, diabetes mellitus, and smoking increase ROS and decrease endothelial 
NO synthesis[104]. 

Bacterial pathogens can cause oxidative stress via triggering LDL oxidation at the atherosclerotic lesion. 
In addition to hematogenous dissemination to the atheroma, bacteria may spread in the system while 
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intracellular, since they survive and multiply in peripheral blood mononuclear cells[75]. They are also able 
to replicate and persist within vascular endothelial and smooth muscle cells (SMCs)[105]. Intracellular 
Chlamydophila pneumoniae infection has been shown to induce ROS in macrophages, endothelial and 
smooth muscle cells, causing oxidative stress[106,107]. This can lead to endothelial dysfunction, foam cell 
formation, SMC proliferation, platelet aggregation as well as cytokine, growth factor, and cell adhesion 
molecule production[101]. 

Periodontal bacteria are extensively studied in respect of oxidative stress. P. gingivalis-induced ROS 
production was shown to activate the NOD-like receptor family, thus increasing the aortic gene expression 
of Nod-like receptor family, pyrin domain containing 3 (NLRP3), pro-interleukin (IL)-1β, pro-IL-18 and 
pro-caspase-1[108]. 

Further, P. gingivalis increases the uptake of oxidized LDL, promoting the foam cell formation[109]. P. 
gingivalis also induces the synthesis and secretion into the vascular lumen of monocyte chemoattractant 
protein-1 (MCP-1), causing monocyte inf lux [110] [Figure 1]. In addition, this organism induces 
apoptosis[91,92,111], including in the presence of ox-LDL[112]. The presence of an apoptotic core is a hallmark of 
the unstable plaque. It can eventually lead to plaque erosion, rupture and acute ischemic events. Finally, P. 
gingivalis may destabilize the plaque also by enhancing matrix metalloproteinase-9 activity and oxidative 
stress through impairing the selective autophagic clearance of damaged mitochondria[113]. 

Figure 1. Bacterial component of atheromas representing transmigrating from the vascular lumen and tissue-embedded macrophages 
(MΦ). The activated inflammatory leukocytes roll over the intima, adhere to the endothelial cells and transmigrate in the tissue. This 
includes intracellular bacteria-carrying macrophages extravasating from the vascular lumen into the arterial wall. Bacteria induce host 
cells to release chemotaxis molecules (such as MCP-1) and growth factors stimulating host cell division. Invasive bacteria multiply, 
causing persistent inflammation and apoptotic cell death, forming a necrotic core and eroding the vascular wall. MN: extravasating 
monocyte;  EC: endothelial cell; SMC: smooth muscle cell; MCP-1: monocyte chemoattractant protein-1

Page 8 of 18                                                   Kozarov et al. Vessel Plus 2020;4:10  I  http://dx.doi.org/10.20517/2574-1209.2019.31



The LDL oxidation leads to an increased expression of adhesion molecules such as vascular cell adhesion 
molecule-1, intercellular adhesion molecule-1 and E-selectin on the activated endothelia. This results in 
the tethering of the leukocytes to the endothelia, adhesion and diapedesis (extravasation) into the vascular 
wall [Figure 1][114-116]. Thus, in a vicious circle, oxidative stress multiplies the effects of inflammation and 
accelerates the atherogenesis[117].

In another deleterious activity, the periodontal infection itself accelerates lipid deposition and 
atherosclerosis in animal models[118,119], and therefore addressing the infection would - as an important 
added benefit - suppress the atherogenic effects of dyslipidemia. 

Atherogenic dyslipidemia (hypercholesterolaemia and hyperlipidaemia) is defined as high plasma LDL and 
low plasma HDL cholesterol with elevated triglycerides. The increase of triglyceride and LDL cholesterol 
levels include alterations observed in lipid metabolism and lipoprotein composition. Infection and the 
concomitant inflammation induce acute-phase response contributing to atherogenic changes in lipid and 
lipoprotein metabolism[120]. 

An early and consistent effect of infection/inflammation is increased serum triglyceride level, characterized 
by an increase in very low-density lipoprotein (VLDL) levels[121,122]. High bacterial lipopolysaccharide serum 
activity (endotoxemia) has shown a strong correlation with serum triglyceride concentrations (P < 0.001)[123]. 
The increase in serum triglycerides may be due to both an increase in hepatic VLDL production and a 
decrease in the clearance of triglyceride rich lipoproteins in chronic inflammation[124]. 

Endotoxemia also modulates HDL composition and size[122]. HDL is one of the plasma lipoproteins that 
neutralize Gram-negative bacterial LPS and Gram-positive bacterial lipoteichoic acid, thus favoring the 
clearance of these products[125]. For example, the mean percentage of HDL cholesterol in Helicobacter 
pylori-seropositive patients was significantly lower than the one measured in seronegative ones (P = 0.008 
and P < 0.001, respectively)[126]. In another study, the Health 2000 Health Examination Survey, which 
included 8028 Finnish subjects aged 30 or older, no consistent association between serum lipid levels 
and periodontal infection among normoweight subjects was found. However, an association was found 
of high serum triglycerides and low HDL with periodontal infection among obese subjects[127]. Overall, 
these authors were not able to present evidence that unfavorable lipid composition can be considered as an 
important risk for periodontal infection in a general adult population[128]. 

Specifically, for periodontal infections, both total and LDL-cholesterol were significantly associated with 
antibody titer to P. gingivalis in non-obese patients[129]. The latest meta-analysis suggested that periodontitis 
is significantly associated with reduced HDL (P = 0.0005), elevated LDL (P = 0.003) and triglycerides (P < 
0.0001) compared to healthy controls, supporting the rationale that periodontal disease is associated with 
lipid metabolic control[130].

Effect of periodontal treatment on atherosclerotic inflammation
Due to the extended amount of time during which the atherogenesis takes place and even more to obvious 
ethical reasons, it is virtually impossible to obtain an unambiguous demonstration of the effectivity of 
antibacterial treatment on atherosclerotic inflammation. This however should not prevent from exploring 
the alternative approaches to examine attenuation and moreover, reversal of atherogenesis via resolution of 
the vascular inflammation. 

Current therapeutic strategies focus on anti-inf lammation, i.e., on pharmacologic intervention in 
the inf lammatory pathways. However, only resolution of inf lammation will restore the homeostasis. 
The isolation and characterization of resolving agonist molecules using endogenous lipid mediators 
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of resolution as potential therapeutic agents for the management of inf lammation has opened a new 
promising area of research[131-134].

Thus, in an established rabbit model of aortic plaque development, it was shown that oral/topical application 
of a proresolution lipid mediator, Resolvin E1 (RvE1) diminished diet and periodontitis- induced aortic 
atherogenesis. Importantly, RvE1 not only significantly attenuated the arterial inflammation; the treatment 
also prevented periodontal inflammation (P < 0.05). In the absence of the latter, oral/topical administration 
of RvE1 led to a reduction of the arterial plaque and a lower intima-media thickness ratio. RvE1 also 
reduced the inf lammatory cell infiltration in the animal model compared to non-treated controls (P < 
0.001). In addition, local oral RvE1 application significantly diminished serum CRP levels (P < 0.05)[135,136]. 

Multiple clinical investigations have also indicated a positive effect of periodontal disease treatment 
on systemic inf lammation. Periodontal therapy of periodontitis patients demonstrated significant 
improvements in periodontal pocket depth, in brachial artery FMD and in serum IL-6. A trend toward 
reduction in serum CRP has been reported in this study as well[137]. Similarly, after non-surgical treatment 
of periodontal patients, serum leptin, IL-6, and CRP levels were significantly decreased (mean ± SD before 
and after, P value, respectively: leptin, 8.02 ± 5.5, 7.10 ± 4.4, P = 0.015; IL-6, 1.73 ± 1.02, 1.36 ± 0.73, P = 0.048; 
and CRP, 802.0 ± 1065, 491.2 ± 479.3, P = 0.047)[138]. Further, in a study of 49 patients with moderate to 
advanced level of periodontitis, hsCRP and anti-P. gingivalis antibody levels were measured and the effect 
of periodontitis treatment, including surgery and use of antibacterials, was analyzed on both markers. The 
hsCRP levels and antibody titers were higher in the periodontitis patients than in the 40 periodontally 
healthy control subjects. Furthermore, periodontal treatment significantly decreased he CRP levels and the 
antibody titers (P < 0.005). A significant reduction of hs-CRP levels was communicated as a result of the 
treatment in patients with hs-CRP levels > 1 mg/L (P < 0.005)[56]. 

More data supporting treatment were provided by the INVEST study of 420 participants (68 ± 8 years old) 
at baseline and 3-year follow-up. The longitudinal carotid artery IMT progression was recorded. 
Adjustments were made for age, sex, race/ethnicity, diabetes, smoking status, education, body mass index, 
systolic blood pressure, LDL cholesterol and HDL cholesterol. An attenuation of the IMT progression was 
reported with improvement in clinical or microbial periodontal status[139]. 

A positive association has also been reported between severe periodontitis and oxidative stress[140]. 
Introduction of periodontal therapy triggered a burst of inflammatory response before a progressive and 
consistent reduction of systemic inf lammation followed by an endothelial function improvement[141]. 
Furthermore, the reactive oxygen metabolites (d-ROMs) test values decreased and the biological 
antioxidant potential test values increased in patients with chronic apical periodontitis after endodontic 
therapy treatment. The oxidative stress levels in these patients exhibited a downtrend, returning to normal 
in 90 days post treatment[142]. Periodontal treatment however did not improve vasodilation in coronary 
disease patients in a brief follow-up period, even though it maintained the titers of vascular inflammation 
markers[143]. An in-depth review on oxidative stress in periodontal disease, focusing on the relationship 
between the local and systemic markers of oxidative stress and periodontal disease is in[144]. More 
viewpoints on the subject of treatment are reviewed in[145,146]. 

Finally, a meta-analysis was conducted investigating the literature on the association between carotid 
IMT (c-IMT), FMD and periodontitis. The effect of periodontal treatment on carotid IMT and FMD was 
assessed. Periodontal disease diagnosis was associated with a mean increase in c-IMT of 0.08 mm (95%CI: 
0.07 to 0.09). The mean difference in FMD was 5.1% when compared to controls (95%CI: 2.08% to 8.11%). As 
a consequence of periodontal treatment, a mean improvement on FMD of 6.64% (95%CI: 2.83% to 10.44%) 
was observed between test and controls. This meta-analysis demonstrated an association between arterial 
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inflammation, increased c-IMT and impaired FMD and PD. The results suggested a beneficial effect of 
periodontal treatment on FMD leading to improvement in endothelial function[147]. 

EXPLORING CUTTING-EDGE TECHNOLOGIES TO DISCOVER NEW THERAPEUTIC TARGETS 

AND APPROACHES FOR DRUG DEVELOPMENT. ATHEROSCLEROSIS MICROBIOME
Presenting major fiscal burden, CVD is the costliest disease in the US at $555 billion (American Heart 
2017, http://bit.ly/2LfsC5A) and €210 billion in the European Union (2017, http://bit.ly/2UDXS2F). This 
underscores the need for novel diagnostic and therapeutic developments since cost-effective and rapid 
approaches are lacking. 

A major incentive for novel approaches is that many CVD events have not been explained by classical 
risk factors. To address a modifiable risk factor, such as microbial pathogens, Robert Koch’s postulate 
must be satisfied, namely the pathogen must be isolated from the diseased tissue. Thus, C. pneumoniae 
was isolated from a carotid endarterectomy specimen[148]. However, it took time before a polybacterial 
infectious component from atherosclerotic plaques was identified, and these clinical isolates cultivated. 
This achievement demonstrated the existence of atherosclerosis microbiome, a sample of the microbial 
community localized within human atheromatous tissues[67,74,75,149]. Such advancement enabled an entirely 
new approach to CVD diagnosis and treatment, fulfilling Koch’s postulate. 

A natural approach to restore the homeostasis, reversing the atherogenic process, is via control of 
the inf lammatory component, often originating from periodontal lesions. The latest network analysis 
confirmed inf lammation and lipid metabolism as the two key biological pathways involved in the 
predisposition to CVD[150]. Of note, there is still no approach successfully addressing the actual source of 
the inf lammation. Taking the potential opportunities presented by the identification of prokaryotes in 
vascular inflammations, randomized placebo-controlled clinical trials using antibiotics in the context of 
CVD have been designed[151,152]. However, the results were disappointing, since the administered treatment 
may not have reached its target (i.e., intracellular location sheltering bacteria from antibiotics as well as 
from immune response). The latest anti-inflammation trials (CIRT[153], CANTOS[154,155], TETHYS[156], SOLID-
TIMI 52[157]) did not target the plausible origin of inflammation, intracellular bacteria. The PEGASUS-TIMI 
54 trial, although also targeting ischemic events, was strictly thrombosis-related. 

As mentioned before, both ethical considerations and the slow progress of atherosclerosis preclude 
conducting a clinical trial to establish causality. Importantly, the WIZARD trial design predicted that 
a positive effect of drugs would tighten the association between atherosclerosis and bacteria without 
proving causality[158]. As stated by Peter Libby, renowned vascular disease physician, “A therapeutic 
trial of antibiotics still would not establish a causal relationship between any particular infectious agent 
and atherosclerosis. Yet, if antibiotic treatment could reduce atherosclerosis events, the public health 
implications could be enormous; hence the need to keep an open mind”[159]. 

In addition, animal studies suggest that atherosclerosis is induced or aggravated by invasive infectious 
agents (i.e., persistent IC infection)[45,84,160-163].

It is becoming clear that atherosclerosis represents chronic vascular inf lammation partly of microbial 
etiology. Intracellular invasive pathogens induce a low-grade persistent inflammation that exacerbate the 
atherogenesis. Therefore, to address intracellular infections as etiologic factors for CVD, entirely novel 
anti-infectives and vaccines are required[164]. Alleviating this key pathological feature (i.e., IC bacteria 
internalized in vascular tissue) could significantly improve the clinical outcome. 
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Evidence supporting this view is several-fold: (1) epidemiological data support an infectious component in 
atherosclerosis; (2) atherosclerosis has many of the characteristics of a chronic infectious disease; and (3) 
internalization of bacteria can produce a “privileged niche” (i.e., shelter from immune response and drugs)[165]. 

Of note, a variety of species, mostly with periodontal origin were cultivated from atheromatous tissue 
of endarterectomy patients[74-76]. These are promising targets for intervention, specifically P. gingivalis, 
a gram-negative anaerobe capable of invading a variety of non-phagocytic eukaryotic cells[166-170]. P. 
gingivalis is a key periodontal pathogen[171] causing inflammation and host tissue destruction. It becomes 
internalized and also persists in vascular cells[105]. While oral tissues are the primary sites for P. gingivalis 
infection, it can also enter the circulation daily through the microvasculature and its role in periodontitis 
is established[30]. Most importantly, an invasive P. gingivalis strain accelerated atherosclerosis in a murine 
model[84] and as mentioned before its tissue invasion ability was critical for atherosclerosis progression[45]. 
These advancements pave the way for further promising developments along the Alzheimer’s treatment 
technology where P. gingivalis is identified as a key target[79]. 

Addressing the atherosclerosis microbiome: a new approach to CVD risk modification
The cultivation and identification in atheromatous plaques of a variety of viable bacteria suggests that 
atherosclerotic lesions can be induced or exacerbated by these inflammatory pathogens. Importantly, it was 
shown that bacteria not only invaded both vascular cell types but also persisted intracellularly. Moreover, 
the bacteria were transmitted between both cell types and to healthy cells, explaining the chronicity of 
infection[105]. Such intracellular polymicrobial flora has been well demonstrated[172], pointing to a plausible 
contributor to premature atherosclerosis[173]. 

A natural approach to restore the homeostasis is reversing the atherogenic process, via control of the 
inflammatory component, often originating from periodontal lesions. An important advantage of such 
approach is that the main problem in medical care can be addressed as initiated or exacerbated by 
prokaryotes. Targeting bacteria, thus minimizing the side effects of treatment, is inherently more attractive 
than the current complicated designs addressing metabolic pathways. 

Moreover, the infection itself accelerates lipid deposition and atherosclerosis in animal models[118,119], and 
therefore addressing the infection would also suppress the effects of hyperlipidemia. 

A variety of available methodologies can be adapted to bring about development of vaccines and small 
molecule inhibitors of the identified pathogens. The emergence of infections, specifically from periodontal 
origin as a potential risk factor for CVD, is leading to a convergence in oral and medical care that will 
hopefully benefit the patients and public health[174]. 
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