Article

Energy Materials

Open Access

Check for updates

Single-atomic-Ni electrocatalyst derived from phthalocyanine-modified MOF for convoying CO₂ intelligent utilization

San-Mei Wang^{1,2,5}, Xiaoshi Yuan^{1,2,5}, Shenghua Zhou², Xiaofang Li², Shu-Guo Han², Wenlie Lin², Lirong Zheng⁴, Dong-Dong Ma^{2,*}, Qi-Long Zhu^{2,3,*}

¹College of Chemistry, Fuzhou University, Fuzhou 350002, Fujian, China.

²State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, Fujian, China.

³School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
⁴Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
⁵Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, Fujian, China.

***Correspondence to:** Prof. Dong-Dong Ma, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Gulou District, Fuzhou 350002, Fujian, China. E-mail: madong@fjirsm.ac.cn; Prof. Qi-Long Zhu, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Gulou District, Fuzhou 350002, Fujian, China. E-mail: qlzhu@fjirsm.ac.cn

How to cite this article: Wang SM, Yuan X, Zhou S, Li X, Han SG, Lin W, Zheng L, Ma DD, Zhu QL. Single-atomic-Ni electrocatalyst derived from phthalocyanine-modified MOF for convoying CO₂ intelligent utilization. *Energy Mater* 2024;4:400032. https://dx.doi.org/10.20517/energymater.2023.123

Received: 28 Dec 2023 First Decision: 26 Feb 2024 Revised: 9 Mar 2024 Accepted: 26 Mar 2024 Published: 9 Apr 2024

Academic Editor: Huajie Yin, Hong Xu Copy Editor: Fangyuan Liu Production Editor: Fangyuan Liu

Abstract

Single-atomic-site catalysts have been demonstrated as promising candidates for electrochemical CO_2 reduction reaction (eCO_2RR). However, the universal construction strategies need to be further developed to synthesize the desired single-atomic-site catalysts with high eCO_2RR activity for feasible CO_2 utilization. Herein, a novel 2-methylimidazole-phthalocyanine-Ni (IM_4NiPc) coordinatively modified ZIF-8 was rationally fabricated and applied to derive the single-atomic-Ni electrocatalyst (Ni-N-C-I), which is capable of delivering much improved activity for eCO_2RR , compared to the pristine IM_4NiPc immobilized onto ZIF-8-derived N-doped carbon surface, and is also comparable to the best reported catalysts. The satisfied Faradaic efficiency, current density and stability of CO_2 -to-CO electroconversion over Ni-N-C-I are shown to originate from the verified Ni-N₄ configuration, particularly, reaching a CO Faradaic efficiency of 99% in a wide potential range. Moreover, based on the outstanding eCO_2RR activity of Ni-N-C-I, we successfully realized the exemplary synthesis of amide polymer materials through CO-

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

mediated electro/thermocatalytic cascade processes, demonstrating the feasibility of utilizing CO_2 for material manufacturing. This finding is expected to provide useful insight on the precise design and rational synthesis of the novel single-atomic-site catalysts for future CO_2 intelligent utilization.

Keywords: Single-atomic-site catalysts, electrochemical CO₂ reduction reaction, electro/thermocatalytic cascade process, amide polymers

INTRODUCTION

A strategy that kills three birds with one stone has attracted extensive attention, that is, electrocatalytic CO_2 reduction systems, which not only convert excess CO_2 to alleviate environmental issues but also generate value-added industrial feedstocks and especially store the intermittent renewable energy^[1-5]. Although electrocatalytic CO_2 reduction reaction (eCO₂RR) can be operated under mild conditions, it still faces some problems such as efficient activation of CO_2 to confront competitive hydrogen evolution reaction, economic construction of electrocatalysts and upgrading separation of products to optimize costs and benefits^[6-10]. Currently, in order to overcome these bottlenecks, by screening various electrocatalytic materials and understanding their structure-activity relationships in eCO_2RR , it is imperative to further develop effective, economical, and environmentally friendly strategies for constructing new electrocatalysts.

In virtue of structural and visual identification guided by X-ray absorption spectroscopy, aberrationcorrected high-angle annular dark-field scanning transmission electron microscopy, and other techniques, the single-atomic-site catalysts featuring high selectivity, efficient atom utilization, well-defined catalytic site, etc., have exponentially grown to drive the flourishment of various reactions (e.g., eCO₂RR)^[11-20]. Numerous studies have demonstrated that pyrolytic transition metal-based single-atomic-site catalysts (such as Fe, Co, Ni, etc.) possess obvious advantages in achieving electrochemical CO₂-to-CO conversion under ordinary conditions^[21-30]. More importantly, the construction methods of single-atomic-site electrocatalysts not only determine the selectivity and stability of catalytic reactions but also affect economic issues such as preparation cost^[31-33]. Notably, owing to the intelligent designability and versatile functionality of the architectures (such as composition, porosity, etc.), the metal-organic frameworks (MOFs), particularly zeolite imidazole frameworks (ZIFs), have been utilized as the platforms for packaging, anchoring and dispersing metal precursors to obtain single-atomic-site electrocatalysts for efficient eCO₂ RR^[34-40]. For example, pioneeringly, Zhao et al. reported that Ni-single atoms (SAs)/N-doped carbon (N-C) derived from ZIF-8 can efficiently drive electrochemical CO₂-to-CO conversion with enhanced current densities and Faradaic efficiencies when compared to Ni nanoparticle-based counterpart^[41]. Moreover, by confining metal complexes into ZIF-8, pyrolytically derived single-atomic-site electrocatalysts also achieve selective CO₂ electroreduction^[42]. These studies undoubtedly provide scientific references for developing CO₂ electroconversion using low-cost ZIF-8 precursors^[43]. Nevertheless, directly using low-concentration and unpurified CO from CO, electroconversion for subsequent material manufacturing has great industrial feasibility and flexibility, yet there is a dearth of case studies.

In this work, firstly and innovatively, taking ZIF-8 as the classical casting pattern and unique 2methylimidazole-phthalocyanine-Ni (IM₄NiPc) as an additive ligand, we successfully constructed a novel pyrolytic single-atomic-Ni catalyst (Ni-N-C-l) to evaluate the electrocatalytic activity of CO_2 -to-CO transformation, revealing the optimal activity under economical construction. Concretely, the designed Ni-N-C-l electrocatalyst featuring recognized Ni-N₄ coordination structure shows outstanding CO_2 -to-CO stability of 20 h with near-uniform Faradaic efficiencies, which surpasses the vast majority of reported eCO_2RR materials. More importantly, based on the excellent eCO_2RR activity of Ni-N-C-l, we further demonstrated that the cascade synthesis of amide polymer materials can be achieved through the upgrading of aminocarbonylation with instantly generated CO.

EXPERIMENTAL

Synthesis of Ni-N-C-I

Firstly, 2.30 g of 2-methylimidazole and 0.025 g of IM_4NiPc were dissolved in 30 mL of methanol using ultrasound for 5 min, which was subsequently added into 30 mL of methanol containing 1.04 g of $Zn(NO_3)_2 \cdot 6H_2O$ under vigorous stirring. The obtained solution was stirred for another 24 h. The precipitate, namely ZIF-8-(IM₄NiPc), was collected by centrifugation and washed with methanol for several times and dried in vacuum at 70 °C for 12 h.

Secondly, the above ZIF-8-(IM_4NiPc) powder was heat-treated at 1,000 °C for two hours under Ar atmosphere to produce the Ni-N-C-l catalyst.

Synthesis of Ni-N-C-a

First, 0.05 g of N-C derived from ZIF-8 (carbonized at 1,000 °C) was dispersed in 50 mL of methanol via sonication for 30 min. Next, 30 mL of methanol containing 0.025 g of IM_4NiPc was added to the above solution. After being stirred for 24 h, the Ni-N-C-a catalyst was obtained using a similar collection method.

Polymer engineering

Tris(4-iodophenyl) amine (TIA) (62.1 mg, 0.1 mmol), palladium acetate (10 mg), piperazine or 2-methy piperazine (0.15 mmol), and bis(2-diphenylphosphinophenyl)ether (DPEphos, 10 mg) were added in 8 mL of toluene solution. The mixed solution was heated to 80 °C while continuously pumping in the produced gas from eCO_2RR . After reaction for 12 h, the obtained polymer materials were washed with toluene and ethanol and then dried under vacuum at 60 °C.

The additional detailed experimental data, such as reagents, characterizations, and electrochemical measurements, are provided in the supporting information.

RESULTS AND DISCUSSION

Synthesis and characterization of catalysts

Distinguishing traditional introduction of node-evolved or cavity-confined nickel sites, we innovatively designed and synthesized a novel IM_4NiPc molecule with four 2-methylimidazole groups as the additive ligands to introduce the active Ni sites into ZIF-8 (denoted as ZIF-8-(IM_4NiPc), as shown in Supplementary Figure 1 and Figure 1A. Importantly, the feasibility of this strategy is mainly dependent on the IM_4NiPc having good methanolic solubility, well-defined structure [Figure 1B and C]^[44], and unique coordination ability with Zn^{2+} [Supplementary Figure 2]; other detailed data are shown in the supporting information and Supplementary Figures 3-5. Moreover, Figure 1A further depicts a schematic representation of the synthesis procedure for ZIF-8-(IM_4NiPc) derived Ni-N-C-l catalyst. Meanwhile, for comparison, IM_4NiPc was also immobilized onto congeneric pyrolytic N-C to form the counterpart, labeled as Ni-N-C-a.

Fundamentally, the Ni-N-C-l/a electrocatalysts were controlled to load nearly identical Ni contents to shut out the influence of nickel contents^[45,46], as verified by inductively coupled plasma atomic emission spectrometry (ICP-AES) tests [Supplementary Figure 6]. The powder X-ray diffraction (PXRD) patterns in Supplementary Figure 7 and Figure 2A present that ZIF-8-(IM₄NiPc) displays similar characteristic patterns with pristine ZIF-8, indicating the introduction of the IM₄NiPc molecules does not disturb the ZIF-8 framework. Subsequently, the designed two catalysts have been successfully derived from the parent

Figure 1. Synthesis illustration of (A) IM_4NiPc , ZIF-8-(IM_4NiPc), Ni-N-C-I and Ni-N-C-a, (B) optical photograph of IM_4NiPc in methanol, and (C) high-resolution mass spectrum of IM_4NiPc .

materials, exhibiting similar carbon characteristics but without any diffraction peaks associated with Ni nanoparticles. This indicates the highly dispersed configuration of Ni species. Furthermore, the Raman spectra of two catalysts reveal low-intensity ratios of the D band to G band [Figure 2B]. Particularly, the designed Ni-N-C-l exhibits a lower ratio value, indicating a higher degree of graphitization due to the participation of IM₄NiPc. It is well-known that pore engineering in catalysts is closely related to the exposure of active sites and continuous mass transfer. Accordingly, representative N₂ sorption isotherms disclose the specific surface areas and pore size distribution of the selected catalysts [Figure 2C and D]. Interestingly, compared to Ni-N-C-a catalyst, the Ni-N-C-l reveals a higher specific surface area of 1,342 m² g⁻¹, indicating that designing a metallomacrocycle-assisted route is an efficient tactic to construct the accessible single-atom sites. Moreover, the surface compositions and chemical states of the Ni-N-C-l/a were further investigated by X-ray photoelectron spectroscopy (XPS)^[47], as depicted in Figure 2E and F. Generally, the N 1s spectra of the selected catalysts can be fitted into five typical peaks corresponding to pyridinic N, metal-N species, pyrrolic N, graphitic N, and oxidized N, respectively^[48-50]. Meanwhile, we prudently assigned N species of IM₄NiPc molecules in the N 1s spectrum of the Ni-N-C-a catalyst. In fact, the peak area of graphite N in Ni-N-C-l is larger than that of Ni-N-C-a, which is in agreement with the outcomes of Raman spectra, illustrating the potential higher conductivity of Ni-N-C-l. Impressively, in comparison with Ni²⁺ (855.8 eV) in Ni-N-C-a, the Ni 2p spectrum of pyrolytic Ni-N-C-l indicates the oxidation state of Ni to be between Ni^o and Ni²⁺. This finding is in line with previous studies^[51-53], further supporting the existence of single Ni atoms.

Figure 2. (A) PXRD patterns, (B) Raman spectra, (C) N_2 sorption isotherms, (D) pore size distributions, (E) XPS N 1s and (F) Ni 2p spectra of the designed catalysts.

We next used scanning electron microscopy (SEM) to identify the morphologies of the designed catalysts. Compared with protogenetic ZIF-8, the particle size of ZIF-8-(IM₄NiPc) was significantly reduced after introducing molecular nickel source [Supplementary Figure 8]. After pyrolysis, the Ni-N-C-l material exhibits a shrunk morphology as compared to ZIF-8-(IM₄NiPc) [Supplementary Figure 9]. To further visualize morphologies of the Ni-N-C-l/a, we employed transmission electron microscopy (TEM). As can be observed in Figure 3, Ni-N-C-l displays a fluffed nanoparticle feature consistent with the SEM result, with an absence of metal particles or clusters. Furthermore, the energy-dispersive X-ray (EDX) element mapping images show that Ni, N, and C are uniformly dispersed throughout the sample of Ni-N-C-l [Figure 3B]. This is also observed in the Ni-N-C-a sample [Supplementary Figure 10], which likewise suggests the high dispersity of nickel species at the same scale. More importantly, the aberration-corrected high-angle annular dark-field scanning TEM (AC-HAADF-STEM) image clearly shows that Ni-N-C-l consists of atomically dispersed Ni sites, as evidenced by the distinct white dots in Figure 3C. The X-ray absorption near-edge structure (XANES) spectrum of Ni-N-C-l [Figure 3D], obtained from the Ni K-edge, displays the Ni edge energy of Ni-N-C-l that lies between those of metal foil and NiPc references. This observation suggests that the Ni species in Ni-N-C-l may exist within the valence state of 0 to +2, which agrees with the XPS results. Moreover, the signal of the D_{4h} symmetry structure with 1s to 4p_z transition in Ni-N-C-l is lower than that of NiPc, indicating that the symmetric structure of square-planar Ni-N₄ was modulated during pyrolysis. Additionally, the analysis of the Fourier transformed extended X-ray absorption fine structure (EXAFS) supports the existence of atomically dispersed Ni sites with Ni-N

Figure 3. (A) TEM, (B) EDX elemental mapping and (C) AC-HAADF-STEM images of Ni-N-C-I, (D) Ni k-edge XANES and (E) Fourier transformed EXAFS spectra of Ni foil, NiO, NiPc and Ni-N-C-I, (F) EXAFS R-space fitting curve of Ni-N-C-I.

coordination in Ni-N-C-l [Figure 3E], in accordance with the reported works^[54-56]. In particular, the fitting analysis is carried out to verify the atomic configuration of Ni-N-C-l; that is, the single Ni atom is coordinated with four N atoms [Figure 3F, Supplementary Figure 11 and Supplementary Table 1].

eCO₂RR performance

Based on the analysis of structures and morphologies mentioned above, the electrocatalytic activities of CO_2 conversion over the comparable catalysts have been evaluated in a typical H-type cell with CO₂-saturated 0.5 M KHCO₃ solution. Linear sweep voltammetry (LSV) curves indicate that Ni-N-C-l exhibits an exceptional current density of nearly 70 mA cm⁻² at -1.1 V, greatly surpassing that of Ni-N-C-a [Figure 4A]. Intriguingly, the LSV curves in Ar-saturated solutions further indicate the contribution of CO₂ electroconversion to current densities [Supplementary Figure 12]. Generally, the reduction products from electrochemical CO₂ conversion were analyzed by off-line 'H nuclear magnetic resonance (NMR) spectrometer and online gas chromatograph (GC), respectively. By combining the obtained 'H NMR and GC spectra of Ni-N-C-l operating at -0.78 V [Supplementary Figures 13 and 14], indeed, the only reduction product of CO₂ electroconversion is CO. As shown in Figure 4B and Supplementary Figures 15 and 16, the Ni-N-C-l catalyst exhibits higher Faradic efficiencies of CO (FE_{co}) within a wider potential window compared to other counterparts. Concretely, the FE_{co} and current densities of Ni-N-C-l were optimized by controlling the amount of IM4NiPc (related to active sites) and the carbonization temperature (related to conductivity). Moreover, as observed in Figure 4C and Supplementary Figure 17, the CO partial current densities (j_{CO}) of Ni-N-C-l are better than those of Ni-N-C-a, reaching a j_{CO} of 57.5 mA cm⁻² at -0.98 V, which is 4.75 times higher than that of Ni-N-C-a. To further emphasize the superiority of Ni-N-C-l in CO₂ electroreduction, it is evident that it exhibits higher turnover frequency (TOF) values [Figure 4D]. Undeniably, the stability is another essential reference for the practical application of catalysts. Figure 4E demonstrates the exceptional long-time durability of Ni-N-C-l, as both j and FE_{co} almost remain unchanged for continuous electrolysis of 20 h at -0.78 V. This stands in sharp contrast to the Ni-N-C-a counterpart and reported catalysts [Supplementary Table 2], showcasing the outstanding eCO₂RR performance of structure-endowed Ni-N-C-l from multiple perspectives.

Figure 4. (A) LSV curves, (B) FE $_{CO'}$ (C) $j_{CO'}$ (D) TOFs and (E) long-time durability of Ni-N-C-a and Ni-N-C-I.

To gain a deep understanding of the eCO_2RR kinetics of the investigated catalysts in this system, a fitted Tafel slope of Ni-N-C-l in Supplementary Figure 18 indicates that the first electron transfer to form siteadsorbed intermediates may be the rate-determining step^[24,57]. Meanwhile, the electrochemical active areas of the two catalysts were compared by evaluating the electrochemical double-layer capacitances, and the results show that Ni-N-C-l has a larger active surface area [Supplementary Figure 19]^[58]. In addition, the fast interfacial charge-transfer capacity of Ni-N-C-l during the eCO₂RR is verified by the Nyquist plot in Supplementary Figure 20, as compared to Ni-N-C-a. These findings undeniably demonstrate the inherent high activity of Ni-N-C-l towards CO_2 electroconversion, with a traceable mechanism [Supplementary Figure 21].

Integrated CO₂ electroreduction to polymer engineering

To tackle the issue of economic and efficient product purification, we proposed, for the first time, the direct downstream conversion protocol of CO through polymer engineering. As can be seen in Supplementary Figure 22, we constructed the cascade design by integrating electrocatalysis and thermocatalysis. Interestingly, the two proof-of-concept covalent organic polymers with different functional groups (simplified as COP and COP-Me) were correspondingly obtained by carbonyl insertion under vent gas from CO_2 electroreduction [Figure 5A]. By analyzing XRD patterns and SEM images, we can preliminarily determine the synthesis of amorphous polymers with irregular morphologies [Supplementary Figures 23 and 24]. In order to further confirm the synthesis of target materials, infrared

Figure 5. (A) Schematic diagram of designed COP and COP-Me based on CO_2 -to-CO steered carbonyl insertion, (B) IR and (C) UV spectra of COP, COP-Me and TIA, (D) TG curves of COP and COP-Me, (E) application diagram of polymer materials from CO_2 conversion.

(IR), ultraviolet (UV) and ¹H NMR characterization were performed. As shown in Figure 5B, we can obviously observe the vibration peaks of amide groups at 1,600~1,700 cm⁻¹ in the COP and COP-Me, in comparison with tris(4-iodophenyl)amine (TIA). UV-Vis spectra clearly indicate the generation of new skeleton structures with differentiated absorption [Figure 5C]. ¹H NMR spectra in Supplementary Figure 25 further reveal the anisotropic C-H environments of polymers compared to the monomer. In addition, thermogravimetric (TG) analysis shows that COP and COP-Me have similar thermal stability [Figure 5D]. In prospect, these industrial CO₂-derived polymer materials may be used in wastewater treatment, precious metal recovery, and other fields [Figure 5E]^[59,60]. By means of this cascade strategy, the integration of electrochemical CO₂-to-polymer engineering is achieved, meaningfully, offering a potential avenue for future operation.

CONCLUSIONS

In summary, we successfully demonstrated the fabrication of the single-atomic-site catalyst from the phthalocyanine-modified MOF and the novel manufacturing of polymer materials from CO_2 through electro/thermocatalytic cascade processes steered by the designed catalyst. Importantly, the derived Ni-N-C-l catalyst with traceable Ni-N₄ configuration can effectively realize the CO_2 -to-CO electroconversion with approximately 100% FE_{CO} and long-term stability, thus guaranteeing the direct intellectual utilization of the unpurified CO generated by eCO_2RR . Particularly, our exotic electro/ thermocatalytic cascade system for extending chemical valorization of CO_2 not only highlights the need of the rational design of electrocatalysts but also offers a sustainable and cost-effective strategy for synthesizing valuable amide polymer materials.

DECLARATIONS

Acknowledgments

The authors thank Prof. Xin-Tao Wu for his constructive suggestions.

Authors' contributions

Conceived the research and designed the experiments: Ma DD, Zhu QL Prepared the phthalocyanines and catalysts: Wang SM Carried out the electrochemical testing: Wang SM, Yuan X Carried out the AC-HAADF-STEM measurement: Lin W Completed the manuscript: Wang SM, Ma DD, Zhu QL Discussed and revised the manuscript: Wang SM, Yuan X, Zhou S, Li X, Han SG, Lin W, Zheng L, Ma DD, Zhu QL

Availability of data and materials

The details of materials and reagents, instrumentation and characterizations, and electrochemical measurements were shown in the supporting information.

Financial support and sponsorship

The authors are grateful for the financial support of the National Key Research and Development Program of China (2021YFA1500402), the National Natural Science Foundation of China (NSFC) (52332007, 22105203, 22175174, and 22375203), the Natural Science Foundation of Fujian Province of China (2021J06033 and 2022L3092), and the China Postdoctoral Science Foundation (2022M723147).

Conflicts of interest

All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Copyright

© The Author(s) 2024.

REFERENCES

- 1. Tomboc GM, Choi S, Kwon T, Hwang YJ, Lee K. Potential link between Cu surface and selective CO₂ electroreduction: perspective on future electrocatalyst designs. *Adv Mater* 2020;32:e1908398. DOI
- 2. Zhu S, Delmo EP, Li T, et al. Recent advances in catalyst structure and composition engineering strategies for regulating CO₂ electrochemical reduction. *Adv Mater* 2021;33:e2005484. DOI
- 3. Chen S, Li WH, Jiang W, et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. *Angew Chem Int Ed* 2022;61:e202114450. DOI
- 4. Ross MB, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal 2019;2:648-58. DOI
- Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. What would it take for renewably powered electrosynthesis to displace petrochemical processes? *Science* 2019;364:eaav3506. DOI PubMed
- 6. Khezri B, Fisher AC, Pumera M. CO₂ reduction: the quest for electrocatalytic materials. J Mater Chem A 2017;5:8230-46. DOI
- 7. Lu Q, Rosen J, Zhou Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 2014;5:3242. DOI
- 8. Sa YJ, Lee CW, Lee SY, Na J, Lee U, Hwang YJ. Catalyst-electrolyte interface chemistry for electrochemical CO₂ reduction. *Chem Soc Rev* 2020;49:6632-65. DOI
- 9. Wang G, Chen J, Ding Y, et al. Electrocatalysis for CO₂ conversion: from fundamentals to value-added products. *Chem Soc Rev* 2021;50:4993-5061. DOI
- Jia S, Ma X, Sun X, Han B. Electrochemical transformation of CO₂ to value-added chemicals and fuels. CCS Chem 2022;4:3213-29. DOI
- 11. Han SG, Ma DD, Zhu QL. Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO₂ reduction. *Small Methods* 2021;5:e2100102. DOI PubMed
- 12. Liu J, Cai Y, Song R, et al. Recent progress on single-atom catalysts for CO₂ electroreduction. Mater Today 2021;48:95-114. DOI

- 13. Wang X, Jia Y, Mao X, et al. Edge-rich Fe-N₄ active sites in defective carbon for oxygen reduction catalysis. *Adv Mater* 2020;32:e2000966. DOI
- 14. Hu C, Wang Y, Chen J, et al. Main-group metal single-atomic regulators in dual-metal catalysts for enhanced electrochemical CO₂ reduction. *Small* 2022;18:e2201391. DOI
- 15. Ma D, Han S, Cao C, et al. Bifunctional single-molecular heterojunction enables completely selective CO₂-to-CO conversion integrated with oxidative 3D nano-polymerization. *Energy Environ Sci* 2021;14:1544-52. DOI
- Su X, Yang XF, Huang Y, Liu B, Zhang T. Single-atom catalysis toward efficient CO₂ conversion to CO and formate products. ACC Chem Res 2019;52:656-64. DOI PubMed
- 17. Li X, Rong H, Zhang J, Wang D, Li Y. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. *Nano Res* 2020;13:1842-55. DOI
- 18. Zhang E, Wang T, Yu K, et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO₂ reduction. *J Am Chem Soc* 2019;141:16569-73. DOI
- 19. Li J, Guan Q, Wu H, et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. *J Am Chem Soc* 2019;141:14515-9. DOI
- Wang WL, Santos EJ, Jiang B, et al. Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett 2014;14:450-5. DOI
- 21. Han S, Ma D, Zhou S, et al. Fluorine-tuned single-atom catalysts with dense surface Ni-N₄ sites on ultrathin carbon nanosheets for efficient CO₂ electroreduction. *Appl Catal B Environ* 2021;283:119591. DOI
- 22. Pan F, Deng W, Justiniano C, Li Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO₂ reduction. *Appl Catal B Environ* 2018;226:463-72. DOI
- 23. Wang C, Ren H, Wang Z, Guan Q, Liu Y, Li W. A promising single-atom Co-N-C catalyst for efficient CO₂ electroreduction and high-current solar conversion of CO₂ to CO. *Appl Catal B Environ* 2022;304:120958. DOI
- 24. Li Y, Zhang SL, Cheng W, et al. Loading single-Ni atoms on assembled hollow N-rich carbon plates for efficient CO₂ electroreduction. *Adv Mater* 2022;34:e2105204. DOI
- 25. Yang J, Qiu Z, Zhao C, et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel singleatom catalysts. *Angew Chem Int Ed* 2018;57:14095-100. DOI
- 26. Zhao S, Chen G, Zhou G, et al. A universal seeding strategy to synthesize single atom catalysts on 2D materials for electrocatalytic applications. *Adv Funct Mater* 2020;30:1906157. DOI
- 27. Li X, Zeng Y, Tung C, et al. Unveiling the in situ generation of a monovalent Fe(I) site in the single-Fe-atom catalyst for electrochemical CO₂ reduction. *ACS Catal* 2021;11:7292-301. DOI
- 28. Wang C, Liu Y, Ren H, Guan Q, Chou S, Li W. Diminishing the uncoordinated N species in Co-N-C catalysts toward highly efficient electrochemical CO₂ reduction. *ACS Catal* 2022;12:2513-21. DOI
- **29.** Li X, Bi W, Chen M, et al. Exclusive Ni- N_4 sites realize near-unity CO selectivity for electrochemical CO₂ reduction. *J Am Chem Soc* 2017;139:14889-92. DOI
- **30**. Gu J, Hsu CS, Bai L, Chen HM, Hu X. Atomically dispersed Fe³⁺ sites catalyze efficient CO₂ electroreduction to CO. *Science* 2019;364:1091-4. DOI PubMed
- Li S, Nagarajan AV, Alfonso DR, et al. Boosting CO₂ electrochemical reduction with atomically precise surface modification on gold nanoclusters. *Angew Chem Int Ed* 2021;60:6351-6. DOI
- 32. He Y, Shi Q, Shan W, et al. Dynamically unveiling metal-nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN₄ active sites. *Angew Chem Int Ed* 2021;60:9516-26. DOI
- **33**. Liu S, Sun C, Xiao J, Luo J. Unraveling structure sensitivity in CO₂ electroreduction to near-unity CO on silver nanocubes. *ACS Catal* 2020;10:3158-63. DOI
- 34. Ma D, Zhu Q. MOF-based atomically dispersed metal catalysts: recent progress towards novel atomic configurations and electrocatalytic applications. *Coord Chem Rev* 2020;422:213483. DOI
- **35**. Zhang Y, Jiao L, Yang W, Xie C, Jiang HL. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO₂ reduction. *Angew Chem Int Ed* 2021;60:7607-11. **DOI**
- **36**. Cheng H, Wu X, Feng M, et al. Atomically dispersed Ni/Cu dual sites for boosting the CO₂ reduction reaction. *ACS Catal* 2021;11:12673-81. DOI
- Yan C, Li H, Ye Y, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO₂ electroreduction. *Energy Environ Sci* 2018;11:1204-10. DOI
- **38**. Li Y, Adli NM, Shan W, et al. Atomically dispersed single Ni site catalysts for high-efficiency CO₂ electroreduction at industrial-level current densities. *Energy Environ Sci* 2022;15:2108-19. DOI
- Zeng L, Wang Z, Wang Y, et al. Photoactivation of Cu centers in metal-organic frameworks for selective CO₂ conversion to ethanol. J Am Chem Soc 2020;142:75-9. DOI
- 40. Abdel-Mageed AM, Rungtaweevoranit B, Parlinska-Wojtan M, Pei X, Yaghi OM, Behm RJ. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. *J Am Chem Soc* 2019;141:5201-10. DOI PubMed
- 41. Zhao C, Dai X, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO₂. J Am Chem Soc 2017;139:8078-81. DOI
- 42. Wang Y, Jiang Z, Zhang X, et al. Metal phthalocyanine-derived single-atom catalysts for selective CO₂ electroreduction under high

current densities. ACS Appl Mater Interfaces 2020;12:33795-802. DOI

- Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. *Proc Natl Acad Sci USA* 2006;103:10186-91. DOI PubMed PMC
- 44. Ma D, Han S, Zhou S, et al. Molecularly dispersed heterogenized metallomacrocycles: molecular structure sensitivity of CO₂ electrolysis. *CCS Chem* 2023;5:1827-40. DOI
- 45. Jiao L, Li X, Wei W, et al. Hierarchically ordered porous superstructure embedded with readily accessible atomic pair sites for enhanced CO₂ electroreduction. *Appl Catal B Environ* 2023;330:122638. DOI
- 46. Cao C, Zhou S, Zuo S, et al. Si Doping-induced electronic structure regulation of single-atom Fe sites for boosted CO₂ electroreduction at low overpotentials. *Research* 2023;6:0079. DOI PubMed PMC
- Ma D, Han S, Cao C, Li X, Wu X, Zhu Q. Remarkable electrocatalytic CO₂ reduction with ultrahigh CO/H₂ ratio over singlemolecularly immobilized pyrrolidinonyl nickel phthalocyanine. *Appl Catal B Environ* 2020;264:118530. DOI
- Cheng H, Wu X, Li X, et al. Zeolitic imidazole framework-derived FeN₅-doped carbon as superior CO₂ electrocatalysts. *J Catal* 2021;395:63-9. DOI
- 49. Zheng T, Jiang K, Ta N, et al. Large-scale and highly selective CO₂ electrocatalytic reduction on nickel single-atom catalyst. *Joule* 2019;3:265-78. DOI
- Liu C, Wu Y, Sun K, et al. Constructing FeN₄/graphitic nitrogen atomic interface for high-efficiency electrochemical CO₂ reduction over a broad potential window. *Chem* 2021;7:1297-307. DOI
- 51. Jiao L, Yang W, Wan G, et al. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO₂ at low pressures. *Angew Chem Int Ed* 2020;59:20589-95. DOI
- Petraki F, Papaefthimiou V, Kennou S. The electronic structure of Ni-phthalocyanine/metal interfaces studied by X-ray and ultraviolet photoelectron spectroscopy. Organic Electronics 2007;8:522-8. DOI
- 53. Wang X, Chen Z, Zhao X, et al. Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO₂. *Angew Chem Int Ed* 2018;57:1944-8. DOI
- Boppella R, Austeria P M, Kim Y, et al. Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO₂ reduction: identifying the role of pyrrolic-N and synergistic electrocatalysis. Adv Funct Mater 2022;32:2202351. DOI
- 55. Yang HB, Hung S, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO₂ reduction. *Nat Energy* 2018;3:140-7. DOI
- Jiang K, Siahrostami S, Zheng T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO₂ reduction. *Energy* Environ Sci 2018;11:893-903. DOI
- 57. Geng Z, Cao Y, Chen W, et al. Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO₂ reduction. *Appl Catal B Environ* 2019;240:234-40. DOI
- Hu M, Wang N, Ma D, Zhu Q. Surveying the electrocatalytic CO₂-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level. *Nano Res* 2022;15:10070-7. DOI
- 59. Ou X, Niu Y, Liu Q, et al. Recent progress in CO₂-based polyurethanes and polyureas. Prog Polym Sci 2024;149:101780. DOI
- Zhang N, Wu S, Zheng H, Li G, Liu H, Duan H. Recent progress of multilayer polymer electrolytes for lithium batteries. *Energy* Mater 2023;3:300009. DOI