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Abstract
Single-atomic-site catalysts have been demonstrated as promising candidates for electrochemical CO2 reduction 
reaction (eCO2RR). However, the universal construction strategies need to be further developed to synthesize the 
desired single-atomic-site catalysts with high eCO2RR activity for feasible CO2 utilization. Herein, a novel 2-
methylimidazole-phthalocyanine-Ni (IM4NiPc) coordinatively modified ZIF-8 was rationally fabricated and applied 
to derive the single-atomic-Ni electrocatalyst (Ni-N-C-l), which is capable of delivering much improved activity for 
eCO2RR, compared to the pristine IM4NiPc immobilized onto ZIF-8-derived N-doped carbon surface, and is also 
comparable to the best reported catalysts. The satisfied Faradaic efficiency, current density and stability of CO2-to-
CO electroconversion over Ni-N-C-l are shown to originate from the verified Ni-N4 configuration, particularly, 
reaching a CO Faradaic efficiency of 99% in a wide potential range. Moreover, based on the outstanding eCO2RR 
activity of Ni-N-C-l, we successfully realized the exemplary synthesis of amide polymer materials through CO-
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mediated electro/thermocatalytic cascade processes, demonstrating the feasibility of utilizing CO2 for material 
manufacturing. This finding is expected to provide useful insight on the precise design and rational synthesis of the 
novel single-atomic-site catalysts for future CO2 intelligent utilization.

Keywords: Single-atomic-site catalysts, electrochemical CO2 reduction reaction, electro/thermocatalytic cascade 
process, amide polymers

INTRODUCTION
A strategy that kills three birds with one stone has attracted extensive attention, that is, electrocatalytic CO2

reduction systems, which not only convert excess CO2 to alleviate environmental issues but also generate
value-added industrial feedstocks and especially store the intermittent renewable energy[1-5]. Although
electrocatalytic CO2 reduction reaction (eCO2RR) can be operated under mild conditions, it still faces some
problems such as efficient activation of CO2 to confront competitive hydrogen evolution reaction, economic
construction of electrocatalysts and upgrading separation of products to optimize costs and benefits[6-10].
Currently, in order to overcome these bottlenecks, by screening various electrocatalytic materials and
understanding their structure-activity relationships in eCO2RR, it is imperative to further develop effective,
economical, and environmentally friendly strategies for constructing new electrocatalysts.

In virtue of structural and visual identification guided by X-ray absorption spectroscopy, aberration-
corrected high-angle annular dark-field scanning transmission electron microscopy, and other techniques,
the single-atomic-site catalysts featuring high selectivity, efficient atom utilization, well-defined catalytic
site, etc., have exponentially grown to drive the flourishment of various reactions (e.g., eCO2RR)[11-20].
Numerous studies have demonstrated that pyrolytic transition metal-based single-atomic-site catalysts
(such as Fe, Co, Ni, etc.) possess obvious advantages in achieving electrochemical CO2-to-CO conversion
under ordinary conditions[21-30]. More importantly, the construction methods of single-atomic-site
electrocatalysts not only determine the selectivity and stability of catalytic reactions but also affect economic
issues such as preparation cost[31-33]. Notably, owing to the intelligent designability and versatile functionality
of the architectures (such as composition, porosity, etc.), the metal-organic frameworks (MOFs),
particularly zeolite imidazole frameworks (ZIFs), have been utilized as the platforms for packaging,
anchoring and dispersing metal precursors to obtain single-atomic-site electrocatalysts for efficient eCO2

RR[34-40]. For example, pioneeringly, Zhao et al. reported that Ni-single atoms (SAs)/N-doped carbon 
(N-C) derived from ZIF-8 can efficiently drive electrochemical CO2-to-CO conversion with enhanced 
current densities and Faradaic efficiencies when compared to Ni nanoparticle-based counterpart[41]. 
Moreover, by confining metal complexes into ZIF-8, pyrolytically derived single-atomic-site 
electrocatalysts also achieve selective CO2 electroreduction[42]. These studies undoubtedly provide 
scientific references for developing CO2 electroconversion using low-cost ZIF-8 precursors[43]. 
Nevertheless, directly using low-concentration and unpurified CO from CO2 electroconversion for 
subsequent material manufacturing has great industrial feasibility and flexibility, yet there is a dearth of 
case studies.

In this work, firstly and innovatively, taking ZIF-8 as the classical casting pattern and unique 2-
methylimidazole-phthalocyanine-Ni (IM4NiPc) as an additive ligand, we successfully constructed a novel
pyrolytic single-atomic-Ni catalyst (Ni-N-C-l) to evaluate the electrocatalytic activity of CO2-to-CO
transformation, revealing the optimal activity under economical construction. Concretely, the designed Ni-
N-C-l electrocatalyst featuring recognized Ni-N4 coordination structure shows outstanding CO2-to-CO
stability of 20 h with near-uniform Faradaic efficiencies, which surpasses the vast majority of reported
eCO2RR materials. More importantly, based on the excellent eCO2RR activity of Ni-N-C-l, we further



Page 3 of Wang et al. Energy Mater 2024;4:400032 https://dx.doi.org/10.20517/energymater.2023.123 11

demonstrated that the cascade synthesis of amide polymer materials can be achieved through the upgrading 
of aminocarbonylation with instantly generated CO.

EXPERIMENTAL
Synthesis of Ni-N-C-l
Firstly, 2.30 g of 2-methylimidazole and 0.025 g of IM4NiPc were dissolved in 30 mL of methanol using 
ultrasound for 5 min, which was subsequently added into 30 mL of methanol containing 1.04 g of 
Zn(NO3)2·6H2O under vigorous stirring. The obtained solution was stirred for another 24 h. The precipitate, 
namely ZIF-8-(IM4NiPc), was collected by centrifugation and washed with methanol for several times and 
dried in vacuum at 70 °C for 12 h.

Secondly, the above ZIF-8-(IM4NiPc) powder was heat-treated at 1,000 °C for two hours under Ar 
atmosphere to produce the Ni-N-C-l catalyst.

Synthesis of Ni-N-C-a
First, 0.05 g of N-C derived from ZIF-8 (carbonized at 1,000 °C) was dispersed in 50 mL of methanol via 
sonication for 30 min. Next, 30 mL of methanol containing 0.025 g of IM4NiPc was added to the above 
solution. After being stirred for 24 h, the Ni-N-C-a catalyst was obtained using a similar collection method.

Polymer engineering
Tris(4-iodophenyl) amine (TIA) (62.1 mg, 0.1 mmol), palladium acetate (10 mg), piperazine or 2-methy 
piperazine (0.15 mmol), and bis(2-diphenylphosphinophenyl)ether (DPEphos, 10 mg) were added in 8 mL 
of toluene solution. The mixed solution was heated to 80 °C while continuously pumping in the produced 
gas from eCO2RR. After reaction for 12 h, the obtained polymer materials were washed with toluene and 
ethanol and then dried under vacuum at 60 °C.

The additional detailed experimental data, such as reagents, characterizations, and electrochemical 
measurements, are provided in the supporting information.

RESULTS AND DISCUSSION
Synthesis and characterization of catalysts
Distinguishing traditional introduction of node-evolved or cavity-confined nickel sites, we innovatively 
designed and synthesized a novel IM4NiPc molecule with four 2-methylimidazole groups as the additive 
ligands to introduce the active Ni sites into ZIF-8 (denoted as ZIF-8-(IM4NiPc), as shown in Supplementary 
Figure 1 and Figure 1A. Importantly, the feasibility of this strategy is mainly dependent on the IM4NiPc 
having good methanolic solubility, well-defined structure [Figure 1B and C][44], and unique coordination 
ability with Zn2+ [Supplementary Figure 2]; other detailed data are shown in the supporting information and 
Supplementary Figures 3-5. Moreover, Figure 1A further depicts a schematic representation of the synthesis 
procedure for ZIF-8-(IM4NiPc) derived Ni-N-C-l catalyst. Meanwhile, for comparison, IM4NiPc was also 
immobilized onto congeneric pyrolytic N-C to form the counterpart, labeled as Ni-N-C-a.

Fundamentally, the Ni-N-C-l/a electrocatalysts were controlled to load nearly identical Ni contents to shut 
out the influence of nickel contents[45,46], as verified by inductively coupled plasma atomic emission 
spectrometry (ICP-AES) tests [Supplementary Figure 6]. The powder X-ray diffraction (PXRD) patterns in 
Supplementary Figure 7 and Figure 2A present that ZIF-8-(IM4NiPc) displays similar characteristic patterns 
with pristine ZIF-8, indicating the introduction of the IM4NiPc molecules does not disturb the ZIF-8 
framework. Subsequently, the designed two catalysts have been successfully derived from the parent 
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Figure 1. Synthesis illustration of (A) IM4NiPc, ZIF-8-(IM4NiPc), Ni-N-C-l and Ni-N-C-a, (B) optical photograph of IM4NiPc in methanol, 
and (C) high-resolution mass spectrum of IM4NiPc.

materials, exhibiting similar carbon characteristics but without any diffraction peaks associated with Ni 
nanoparticles. This indicates the highly dispersed configuration of Ni species. Furthermore, the Raman 
spectra of two catalysts reveal low-intensity ratios of the D band to G band [Figure 2B]. Particularly, the 
designed Ni-N-C-l exhibits a lower ratio value, indicating a higher degree of graphitization due to the 
participation of IM4NiPc. It is well-known that pore engineering in catalysts is closely related to the 
exposure of active sites and continuous mass transfer. Accordingly, representative N2 sorption isotherms 
disclose the specific surface areas and pore size distribution of the selected catalysts [Figure 2C and D]. 
Interestingly, compared to Ni-N-C-a catalyst, the Ni-N-C-l reveals a higher specific surface area of 
1,342 m2 g-1, indicating that designing a metallomacrocycle-assisted route is an efficient tactic to construct 
the accessible single-atom sites. Moreover, the surface compositions and chemical states of the Ni-N-C-l/a 
were further investigated by X-ray photoelectron spectroscopy (XPS)[47], as depicted in Figure 2E and F. 
Generally, the N 1s spectra of the selected catalysts can be fitted into five typical peaks corresponding to 
pyridinic N, metal-N species, pyrrolic N, graphitic N, and oxidized N, respectively[48-50]. Meanwhile, we 
prudently assigned N species of IM4NiPc molecules in the N 1s spectrum of the Ni-N-C-a catalyst. In fact, 
the peak area of graphite N in Ni-N-C-l is larger than that of Ni-N-C-a, which is in agreement with the 
outcomes of Raman spectra, illustrating the potential higher conductivity of Ni-N-C-l. Impressively, in 
comparison with Ni2+ (855.8 eV) in Ni-N-C-a, the Ni 2p spectrum of pyrolytic Ni-N-C-l indicates the 
oxidation state of Ni to be between Ni0 and Ni2+. This finding is in line with previous studies[51-53], further 
supporting the existence of single Ni atoms.
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Figure 2. (A) PXRD patterns, (B) Raman spectra, (C) N2 sorption isotherms, (D) pore size distributions, (E) XPS N 1s and (F) Ni 2p 
spectra of the designed catalysts.

We next used scanning electron microscopy (SEM) to identify the morphologies of the designed catalysts. 
Compared with protogenetic ZIF-8, the particle size of ZIF-8-(IM4NiPc) was significantly reduced after 
introducing molecular nickel source [Supplementary Figure 8]. After pyrolysis, the Ni-N-C-l material 
exhibits a shrunk morphology as compared to ZIF-8-(IM4NiPc) [Supplementary Figure 9]. To further 
visualize morphologies of the Ni-N-C-l/a, we employed transmission electron microscopy (TEM). As can 
be observed in Figure 3, Ni-N-C-l displays a fluffed nanoparticle feature consistent with the SEM result, 
with an absence of metal particles or clusters. Furthermore, the energy-dispersive X-ray (EDX) element 
mapping images show that Ni, N, and C are uniformly dispersed throughout the sample of Ni-N-C-l 
[Figure 3B]. This is also observed in the Ni-N-C-a sample [Supplementary Figure 10], which likewise 
suggests the high dispersity of nickel species at the same scale. More importantly, the aberration-corrected 
high-angle annular dark-field scanning TEM (AC-HAADF-STEM) image clearly shows that Ni-N-C-l 
consists of atomically dispersed Ni sites, as evidenced by the distinct white dots in Figure 3C. The X-ray 
absorption near-edge structure (XANES) spectrum of Ni-N-C-l [Figure 3D], obtained from the Ni K-edge, 
displays the Ni edge energy of Ni-N-C-l that lies between those of metal foil and NiPc references. This 
observation suggests that the Ni species in Ni-N-C-l may exist within the valence state of 0 to +2, which 
agrees with the XPS results. Moreover, the signal of the D4h symmetry structure with 1s to 4pz transition in 
Ni-N-C-l is lower than that of NiPc, indicating that the symmetric structure of square-planar Ni-N4 was 
modulated during pyrolysis. Additionally, the analysis of the Fourier transformed extended X-ray 
absorption fine structure (EXAFS) supports the existence of atomically dispersed Ni sites with Ni-N 
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Figure 3. (A) TEM, (B) EDX elemental mapping and (C) AC-HAADF-STEM images of Ni-N-C-l, (D) Ni k-edge XANES and (E) Fourier 
transformed EXAFS spectra of Ni foil, NiO, NiPc and Ni-N-C-l, (F) EXAFS R-space fitting curve of Ni-N-C-l.

coordination in Ni-N-C-l [Figure 3E], in accordance with the reported works[54-56]. In particular, the fitting 
analysis is carried out to verify the atomic configuration of Ni-N-C-l; that is, the single Ni atom is 
coordinated with four N atoms [Figure 3F, Supplementary Figure 11 and Supplementary Table 1].

eCO2RR performance
Based on the analysis of structures and morphologies mentioned above, the electrocatalytic activities of CO2 
conversion over the comparable catalysts have been evaluated in a typical H-type cell with CO2-saturated 
0.5 M KHCO3 solution. Linear sweep voltammetry (LSV) curves indicate that Ni-N-C-l exhibits an 
exceptional current density of nearly 70 mA cm-2 at -1.1 V, greatly surpassing that of Ni-N-C-a [Figure 4A]. 
Intriguingly, the LSV curves in Ar-saturated solutions further indicate the contribution of CO2 
electroconversion to current densities [Supplementary Figure 12]. Generally, the reduction products from 
electrochemical CO2 conversion were analyzed by off-line 1H nuclear magnetic resonance (NMR) 
spectrometer and online gas chromatograph (GC), respectively. By combining the obtained 1H NMR and 
GC spectra of Ni-N-C-l operating at -0.78 V [Supplementary Figures 13 and 14], indeed, the only reduction 
product of CO2 electroconversion is CO. As shown in Figure 4B and Supplementary Figures 15 and 16, the 
Ni-N-C-l catalyst exhibits higher Faradic efficiencies of CO (FECO) within a wider potential window 
compared to other counterparts. Concretely, the FECO and current densities of Ni-N-C-l were optimized by 
controlling the amount of IM4NiPc (related to active sites) and the carbonization temperature (related to 
conductivity). Moreover, as observed in Figure 4C and Supplementary Figure 17, the CO partial current 
densities (jCO) of Ni-N-C-l are better than those of Ni-N-C-a, reaching a jCO of 57.5 mA cm-2 at -0.98 V, 
which is 4.75 times higher than that of Ni-N-C-a. To further emphasize the superiority of Ni-N-C-l in CO2 
electroreduction, it is evident that it exhibits higher turnover frequency (TOF) values [Figure 4D]. 
Undeniably, the stability is another essential reference for the practical application of catalysts. Figure 4E 
demonstrates the exceptional long-time durability of Ni-N-C-l, as both j and FECO almost remain 
unchanged for continuous electrolysis of 20 h at -0.78 V. This stands in sharp contrast to the Ni-N-C-a 
counterpart and reported catalysts [Supplementary Table 2], showcasing the outstanding eCO2RR 
performance of structure-endowed Ni-N-C-l from multiple perspectives.
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Figure 4. (A) LSV curves, (B) FE CO, (C) j CO, (D) TOFs and (E) long-time durability of Ni-N-C-a and Ni-N-C-l.

To gain a deep understanding of the eCO2RR kinetics of the investigated catalysts in this system, a fitted 
Tafel slope of Ni-N-C-l in Supplementary Figure 18 indicates that the first electron transfer to form site-
adsorbed intermediates may be the rate-determining step[24,57]. Meanwhile, the electrochemical active areas 
of the two catalysts were compared by evaluating the electrochemical double-layer capacitances, and the 
results show that Ni-N-C-l has a larger active surface area [Supplementary Figure 19][58]. In addition, the fast 
interfacial charge-transfer capacity of Ni-N-C-l during the eCO2RR is verified by the Nyquist plot in 
Supplementary Figure 20, as compared to Ni-N-C-a. These findings undeniably demonstrate the inherent 
high activity of Ni-N-C-l towards CO2 electroconversion, with a traceable mechanism 
[Supplementary Figure 21].

Integrated CO2 electroreduction to polymer engineering
To tackle the issue of economic and efficient product purification, we proposed, for the first time, the direct 
downstream conversion protocol of CO through polymer engineering. As can be seen in 
Supplementary Figure 22, we constructed the cascade design by integrating electrocatalysis and 
thermocatalysis. Interestingly, the two proof-of-concept covalent organic polymers with different functional 
groups (simplified as COP and COP-Me) were correspondingly obtained by carbonyl insertion under vent 
gas from CO2 electroreduction [Figure 5A]. By analyzing XRD patterns and SEM images, we can 
preliminarily determine the synthesis of amorphous polymers with irregular morphologies 
[Supplementary Figures 23 and 24]. In order to further confirm the synthesis of target materials, infrared 
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Figure 5. (A) Schematic diagram of designed COP and COP-Me based on CO2-to-CO steered carbonyl insertion, (B) IR and (C) UV 
spectra of COP, COP-Me and TIA, (D) TG curves of COP and COP-Me, (E) application diagram of polymer materials from CO2 
conversion.

(IR), ultraviolet (UV) and 1H NMR characterization were performed. As shown in Figure 5B, we can 
obviously observe the vibration peaks of amide groups at 1,600~1,700 cm-1 in the COP and COP-Me, in 
comparison with tris(4-iodophenyl)amine (TIA). UV-Vis spectra clearly indicate the generation of new 
skeleton structures with differentiated absorption [Figure 5C]. 1H NMR spectra in Supplementary Figure 25 
further reveal the anisotropic C-H environments of polymers compared to the monomer. In addition, 
thermogravimetric (TG) analysis shows that COP and COP-Me have similar thermal stability [Figure 5D]. 
In prospect, these industrial CO2-derived polymer materials may be used in wastewater treatment, precious 
metal recovery, and other fields [Figure 5E][59,60]. By means of this cascade strategy, the integration of 
electrochemical CO2-to-polymer engineering is achieved, meaningfully, offering a potential avenue for 
future operation.

CONCLUSIONS
In summary, we successfully demonstrated the fabrication of the single-atomic-site catalyst from the 
phthalocyanine-modified MOF and the novel manufacturing of polymer materials from CO2 through 
electro/thermocatalytic cascade processes steered by the designed catalyst. Importantly, the derived 
Ni-N-C-l catalyst with traceable Ni-N4 configuration can effectively realize the CO2-to-CO 
electroconversion with approximately 100% FECO and long-term stability, thus guaranteeing the direct 
intellectual utilization of the unpurified CO generated by eCO2RR. Particularly, our exotic electro/
thermocatalytic cascade system for extending chemical valorization of CO2 not only highlights the need of 
the rational design of electrocatalysts but also offers a sustainable and cost-effective strategy for synthesizing 
valuable amide polymer materials.
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