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Abstract
This paper focuses on the high-level specification and generation of 3D models for operational environments using
the idea of active queries as a basis for specifying and generating multi-agent plans for acquiring such models. As-
suming an underlying multi-agent system, an operator can specify a request for a particular type of model from a
specific region by specifying an active query. This declarative query is then interpreted and executed by collecting
already existing data/information in agent systems or, in the active case, by automatically generating high-level mis-
sion plans for agents to retrieve and generate parts of the model that do not already exist. The purpose of an active
query is to hide the complexity of multi-agent mission plan generation, data transformations, and distributed collec-
tion of data/information in underlying multi-agent systems. A description of an active query system, its integration
with an existing multi-agent system and validation of the active query system in field robotics experimentation using
Unmanned Aerial Vehicles and simulations are provided.

Keywords: Autonomous robots, active queries, automated planning, situational awareness, 3D reconstruction, un-
manned aerial vehicles

1. INTRODUCTION
Collaborative robotic scenarios often involve teams of heterogeneous robotic systems collaborating among
themselves and with human agents to achieve complex goals. Mission planning in this context has a high
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degree of complexity due to a number of factors:

• Teams of robotic and human agents are highly dynamic, where teams often reconfigure themselves during
ongoing missions based on their accessibility, scheduling, and energy limitations;

• Due to the heterogeneity of the robotic systems, appropriate suites of sensors must be chosen for particular
missions;

• Missions are highly distributive due to the nature of collaboration, the complexity of the operational envi-
ronment, and the use of multiple agents;

• No single agent has a real understanding of the collective situation awareness of a participating team due
to the distribution of data, information, and knowledge among team members;

• And due to the above considerations, human operators responsible for planning missions can be over-
whelmed by the different degrees of complexity involved and would seem to operate more efficiently by
abstracting away from the details of mission execution.

The motivation for this paper is to propose an interaction tool for assisting in planning collaborative robotic
missions based on the use of “active queries”. The intent is to deal with the list of complexities specified above
by automating much of the process of certain types of mission planning through the use of active queries.

In this context, a human operator can specify an active query that, from the perspective of the operator, states
high-level goals that need to be achieved. Such goals are often informational and are intended to acquire
additional situational awareness of a specific operating environment, but the approach is much broader than
that.

An active query can automatically initiate many different agent processes in order to answer a query such as
finding and delegating tasks to robotic team members required to achieve the specific goals implicit in the
query. These processes make up the “active” part of the query, making it distinct from a standard query to a
database system. Since each agent on a collaborative team has its own knowledge base, an active query would
consist of a combination of both standard queries in a distributed context, in addition to the use of active
processes invoked to achieve overarching goals implicit in the original active query.

More specifically, in this paper, we consider information gathering missions that increase the degree of sit-
uation awareness human and robotic agents have in emergency rescue operations, where knowledge of the
physical environment is essential in ensuing rescue operations. Situational awareness is dynamic and one has
to continually acquire and re-acquire such awareness, often actively through interaction with the operational
environment.

In the system proposed, team agents can collect, process, store, and exchange data, information, and knowl-
edge in a distributed manner. Agents can also delegate tasks to each other and execute them to achieve goals.
Information acquisition and task allocation among team agents will be determined in part using active queries
that assume the use of an underlying distributed task- and information-based system [1,2]. The underlying sys-
tem has been developed in previous work and deployed in field robotic experimentation. The active query
functionality is part of an interactive system intended to be used by human operators in mission planning and
leverages this complex system.

Figure 1 provides an overview of the active query system and its intended use in the context of a broader multi-
agent system. Assume the multi-agent system consists of a team of agents, where each agent has its own local
knowledge base and data repositories, and as a member of a team, an agent has the ability to delegate tasks to
other agents on the team to achieve more complex goals. Such goals can include joint information gathering
tasks, which are the focus of this paper, in particular, the generation of 3D models for parts of the operational
environment. In this context, a typical active query might ask for a 3D model of a specific type and resolution,
for a specified region of the operational environment.

http://dx.doi.org/10.20517/ir.2024.06
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Figure 1. High-level overview of the proposed active query system. Colored boxes (non-gray) visualize system components actively used
during three different types of mechanisms the system utilizes to generate a query result.

An active query is parsed and interpreted by an active query engine and then executed based on its interpreta-
tion. The execution process is recursive in nature since it may generate new active queries in order to satisfy
the activities implicit in the original active query. During the interpretation process, an active query may be
directed to execute one of three processes or a combination of these processes [Figure 1]:

• Retrieve existing data/information – This is the most straightforward process. Each team agent member
is assumed to have a knowledge base and data repositories. If the data/information required already exists
in one or more agent knowledge bases or repositories, then this information can be retrieved in a standard
manner using a specific query mechanism such as SQL or SPARQL. Note that the query may be required
to fuse distributed data/information from several agents [Figure 1, left].

• Transform data - Agent systems may use various data types or resolutions in collecting data/information.
An active query may ask for data/information in a specific format or resolution. Transform processes are
built into the execution mechanism that may first retrieve data/information from one or more agents in a
specific format or resolution and then transform it to the desired format or resolution.

http://dx.doi.org/10.20517/ir.2024.06
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For example, agents may have raw Light Detection and Ranging (LIDAR) scans but the active query asks
for a point cloud of a specific region. In this case, the LIDAR scans must be fused and transformed into a
specific point cloud format of a specific resolution [Figure 1, center].

• Acquire new data - This is the most complex process, and it is the main reason why an active query is, in
fact, called “active”. An active query may include a request for data/information that is not part of any of
the team agent knowledge bases or data repositories or only exists partially. In this case, the active query
engine has to determine what part of the desired query result already exists and what part needs to be ac-
tively acquired. The part that already exists can be retrieved through the retrieval processes and possibly
transformed using the mechanisms previously considered. The missing data/information has to then be
acquired by generating a mission that may include using several agent systems on the team to collect the
missing data/information.

For example, an active query may ask for a 3Dmodel for a specific region where some portion of the model
can already be provided by different agents on the team. The rest of the 3D model has to then be generated
through an agent mission where one or more agents with appropriate sensors go out and collect the missing
part of the 3D model. This has to then be fused with the existing part of the model [Figure 1, right].

It should be noted that the active query mechanism described herein is an independent module that can be
integrated with any type of single- or multi-agent system based on specification of a particular underlying data
model and the use of underlying distributed delegation and planning systems. In this particular case, we use an
underlying system, the SymbiCloud Framework [1], to do this, but it is not a pre-requisite for using the active
query mechanisms in other systems or contexts.

1.1. Contributions
The main contributions of this paper are:

• A specification of an “active query language” and engine tailored to the automatic acquisition of situation
awareness by a multi-agent system. In this context, situation awareness will be associated with the acquisi-
tion of 3D models for an operational environment.

• An “evaluation strategy“ (as a set of rules for evaluating expressions in programming languages [3]) and
associated algorithms for the active query language which permits the interpretation and execution of active
queries.

• Description of a larger prototype system that utilizes the proposed active query language and engine and
leverages an existing multi-agent system used primarily for generating and executing collaborative plans.

• Experimental validation of the prototype system in multi-agent “field-test experiments” using unmanned
aerial vehicles (UAVs) and in simulation experiments.

The paper is organized as follows. In Section 2, the query language and the algorithms for its evaluation
strategy are presented. Section 3 showcases the results of field-test experiments. Related work and conclusions
are described in Sections 4 and 5, respectively.

2. ACTIVE QUERIES
This section presents a specification of an Active Query (AQ) language and a framework for AQ evaluation and
execution. The proposed systemmodule, the Active Query Engine (AQE), allows users and agents to generate
and execute AQs that acquire information from a team of collaborating autonomous agents operating in a
shared operational environment. The AQ language, scQL (scQL stands for SymbiCloud Query Language, as it
is an extension of the SymbiCloud Framework [1] which is integratedwith and leveraged by the AQE), is a query
language tailored for asking questions about situation awareness, with syntax inspired by SPARQL [4]. User
queries in text format are processed by the AQE which consists of three components: a “parser”, a “compiler”,
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and an “executor”. The “parser” extracts a symbolic representation of the query. The “compiler” instantiates,
implements and prioritizes data source operators for each of the relevant data sources associated with the active
query. The “executor” uses the instantiated data source operators and its access to the relevant “data sources”,
instances of which are distributed among team agents, to generate an answer to the AQ by reasoning about (1)
existing data; (2) existing data that can be transformed or fused; and (3) missing data that needs to be acquired
or generated by executing new exploration missions [Figure 1]. The AQE is generic in nature, where the AQ
types that can be evaluated depend on the underlying data model used within the team of collaborating agents.
The underlying data model used in this work is found in existing work with distributed knowledge-based
systems [1], where agents store data, information, knowledge, and metadata about collected raw sensor data in
the form of RDF Graphs [5] that are automatically synchronized among all team members. The AQE executes
queries using this metadata model.

An overview of the AQE is shown in Figure 2. The engine has three main functional components, namely,
parsing the AQ, query compilation, and its execution. Data source operators are associated with each of the
AQ data sources which allow the query engine to retrieve data from a data source, transform its data, or acquire
data actively from the environment. When data sources require acquisition of new data (e.g., to transform
or acquire), new active sub-queries are generated and processed recursively by the AQE. Execution of new
exploration missions is coordinated by underlying task execution frameworks such as the delegation system
presented in ref [2].

The syntax of the proposed scQL language is specified in Section 2.1, while its semantics is defined by the
underlying datamodel associated with AQdata sources (Section 2.2) and the scQL evaluation strategy (Section
2.3).

2.1. AQ Syntax
The proposed “scQL query” language uses the following syntax:

1 SELECT <type> AS name WHERE conditions

where <type> is a URI identifying the requested type of data (e.g., <lidar_scan>, <image>). The
name is an identifier used in conditions to specify constraints the returned data should satisfy. The
conditions take a form similar to SQL [6] and SPARQL [4] queries:

1 name.parameter_0 op value_0 [AND name.parameter_1 op value_1] ...

where parameter_i is a named parameter specific to the type of data (e.g., point_density for a point
cloud). The op is an operator, such as (in)equality, set (inclusion), etc. The value_i is a value defining a
constraint.

Parameter names and their datatypes are dependent on the model of data that is queried (<type>). For
instance, in the case of a point cloud type (<http://askco.re/scql/types#point_cloud>), the
parameters include a timestamp of when the data was acquired, a point_density of the point cloud,
and the geometry condition describing a bounding polygon of the point cloud. The query result is a list of
objects.

http://dx.doi.org/10.20517/ir.2024.06
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Figure 2. Overview of the AQE. The input AQ in text form is parsed and executed by the query execution algorithm to generate results by
combining outputs of different data sources, which contain pre-existing, acquired, or transformed datasets. AQE: Active Query Engine; AQ:
Active Query.

1 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
2 SELECT <http://askco.re/scql/types#point_cloud> AS pc
3 WHERE pc.geometry = "POLYGON(...)"^geo:wktLiteral
4 AND pc.point_density >= 20 point/m^2

Query 1 shows an example query where data for a point cloud is requested with a point density superior
or equal to 20 point/m2 covering the "POLYGON(...)"^geo:wktLiteral. The compact URI geo:
wktLiteral (line 3) is expanded into a full URIwith thePREFIX definition to<http://www.opengis.
net/ont/geosparql#wktLiteral>, and it indicates that the string "POLYGON(...)" should be
interpreted as a Well-Known Text (WKT) representation [7], a standard used for representing geometric and
geographical features. The result of the query would be a list of point clouds.

2.2. AQ data sources and operators
Integrating the AQE in a practical system is done by configuring a list of available “data sources” associated
with team agents and then implementing “data source operators” associated with each data source. These data
source operators are instantiated relative to the data type during the active query compilation process. Data
sources provide the origins encompassing the agent teams in question and are used collectively to answer active
queries. Examples include databases, sensors, repositories, etc. For the purpose of this paper, data sources are
databases associated with each team member. These databases contain pre-existing, acquired, or transformed
datasets, among other entities.

“Data Source Operators” (DSOs) are functional units used to access or transform data from data sources or
acquire new data. Figure 2 shows a detailed schematic of the processes associated with the AQE that leverage
data sources and operators to answer complex active queries. A DSO implements an interface for each data
source in the form of three functions: (1) a cost function; (2) a data-producing function; and (3) a condition
update function. The cost function, in the form 𝑐𝑜𝑠𝑡 (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠), returns a cost value for providing data
from each DSO associated with a data source given a set of conditions. Typically, a cost can be associated
with the time it takes to provide an answer. The output of the cost functions is used to sort the relevant DSOs
during query compilation. The data-producing function, in the form 𝑝𝑟𝑜𝑑𝑢𝑐𝑒(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠), returns data from
a data source using a DSO and a given set of conditions applied during query execution. The condition update
function, in the form 𝑢𝑝𝑑𝑎𝑡𝑒(𝑟𝑒𝑠𝑢𝑙𝑡, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠), updates the current set of conditions. For example, the
update may be used to exclude partial data that has already been added to the final result of a query in the
recursive processing of the algorithm to exclude overlapping areas.

Query 1: An example query for point cloud data of density superior to 20 point/m2.

http://dx.doi.org/10.20517/ir.2024.06
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The current version of the proposed AQE supports three types of DSOs:

• 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 - a data source operator that can query a local or federated database for data of a given 𝑡𝑦𝑝𝑒. We
denote it as 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒(𝑡𝑦𝑝𝑒) for the instantiation of a retrieve operation for 𝑡𝑦𝑝𝑒.

• 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚 - a data source operator that can transform source types (𝑠𝑜𝑢𝑟𝑐𝑒_𝑡𝑦𝑝𝑒𝑠) to another data type
(𝑡𝑦𝑝𝑒). We denote it as 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑠𝑜𝑢𝑟𝑐𝑒_𝑡𝑦𝑝𝑒𝑠..., 𝑡𝑦𝑝𝑒) for the instantiation of a transform operation
specific from 𝑠𝑜𝑢𝑟𝑐𝑒_𝑡𝑦𝑝𝑒𝑠... to 𝑡𝑦𝑝𝑒. An example would be fusing raw LIDAR scans into a point cloud.

• 𝑎𝑐𝑞𝑢𝑖𝑟𝑒 - a data source operator that can acquire data of a particular 𝑡𝑦𝑝𝑒, for example, by executing
an exploration mission using a robotic system equipped with an appropriate sensor. We denote it as
𝑎𝑐𝑞𝑢𝑖𝑟𝑒(𝑡𝑦𝑝𝑒) for the instantiation of an exploration operation specific to acquiring data of the given 𝑡𝑦𝑝𝑒.

The AQE can use multiple instances of each data source operator. This feature provides the flexibility to access
and retrieve data from different databases and allows for the inclusion of various transforming methods (e.g.,
generating point clouds based on LIDAR scans or image data).

The AQE relies on 𝑐𝑜𝑠𝑡 functions to prioritize the use of data source operators, allowing the system to adapt
to diverse operational conditions (Figure 2 - Query Compilation). A practical example includes accounting
for typical distances between robotic agents. In some scenarios, agents may need to be nearby to reliably
exchange large amounts of data due to limitations of communication links. Thus, the cost functions can be
adjusted to prioritize the execution of new exploration missions over exchanging large amounts of existing
data, potentially involving commanding the agents to move closer to each other. In the most common case,
however, when agents operate in environments with reliable communication links, the 𝑐𝑜𝑠𝑡 functions generally
follow a generic order:

𝑐𝑜𝑠𝑡 (𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒) < 𝑐𝑜𝑠𝑡 (𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚) < 𝑐𝑜𝑠𝑡 (𝑎𝑐𝑞𝑢𝑖𝑟𝑒) (1)

2.3. AQE
The AQE execution algorithm is presented in Algorithm 1. The input to the algorithm is an AQ in text form
and a configuration. The configuration includes, among other information, a list of accessible data sources
associated with the team of agents. The first step of the algorithm involves parsing the input query and extract-
ing 𝑡𝑦𝑝𝑒, 𝑛𝑎𝑚𝑒, and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 (line 1) from it. The 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 are a list of tuples (𝑛𝑎𝑚𝑒.𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖 , 𝑜𝑝𝑖 ,

𝑣𝑎𝑙𝑢𝑒𝑖). The result of parsingQuery 1, previously considered, would result in 𝑡𝑦𝑝𝑒 equal tohttp://askco.
re/scql/types#point_ ⌋cloud, 𝑛𝑎𝑚𝑒 equal to pc and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 equal to {(𝑝𝑐.𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦, =, 𝑃𝑂𝐿

𝑌𝐺𝑂𝑁 (...)), (𝑝𝑐.𝑝𝑜𝑖𝑛𝑡_𝑑𝑒𝑛𝑠𝑖𝑡𝑦, ≥, 20 point/m2)}.

In the next step, the 𝐹𝑖𝑙𝑡𝑒𝑟𝐷𝑎𝑡𝑎𝑆𝑜𝑢𝑟𝑐𝑒𝑠 function (line 2) returns a list of possible 𝑑𝑎𝑡𝑎𝑠𝑜𝑢𝑟𝑐𝑒𝑠 that can be
used to produce data for the given 𝑡𝑦𝑝𝑒 and AQE 𝑐𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛. On line 3, the data source operators are
instantiated for each data source. The 𝑆𝑜𝑟𝑡 function (line 4) uses the 𝑐𝑜𝑠𝑡 function of each operator to sort
the operators. The algorithm’s main loop (lines 6-9) updates the query 𝑟𝑒𝑠𝑢𝑙𝑡 by retrieving relevant data us-
ing the different data source operators associated with the data sources. Simultaneously, the 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 are
updated by the 𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 function (line 8). The condition update is necessary to prevent retrieving
unnecessary data from several sources if the associated data in the data sources overlap. The 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 con-
dition is also updated to exclude the area already covered by the current data source. The 𝐴𝑑𝑑𝑇𝑜𝑅𝑒𝑠𝑢𝑙𝑡 and
𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 functions (lines 7 and 8) internally utilize the 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 and 𝑢𝑝𝑑𝑎𝑡𝑒 functions of each data
source (Section 2.2).

Figure 3 depicts the AQE execution flow, assuming the system uses the cost function order defined in Equa-
tion (1). First, the AQE attempts to reuse existing data from a database (step 1 in the figure), whichmay require
downloading the data from a different agent’s database (step 2). Next, the executor checks if it is possible to
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Figure 3. The AQE execution flow, assuming the cost of retrieving data is lower than performing data transformation.

transform existing data (step 3). If this is the case, the AQE will generate a new active sub-query (step 4) to
access any data needed for the transformation. The generated sub-query is then evaluated by a recursive call
to the ExecuteQuery algorithm (Algorithm 1). Finally, if data is still missing, the AQE generates and executes
an exploration mission (step 5), which results in the acquisition of the missing data.

The behavior of the ExecuteQuery algorithm can be illustrated by studying the evaluation of Query 1 based on
the example scenario depicted in Figure 4, where the user requests point cloud data with at least 20 point/m2

density. At the start of the evaluation, three existing datasets (A, B, and C) that overlap with the geometric
area defined in the query are available. These datasets may exist locally on different agent systems. A federated
database that can access all datasets residing in different agent databases may be viewed as a data source in this
example. We denote this data source as DS-Fed. Datasets A and B contain point cloud data, with densities of
30 and 10 point/m2, respectively. Dataset C includes raw LIDAR sensor data scans with a 20 point/m2 density.
Thus, data included in dataset A can be used directly, while data from dataset B lacks density. Dataset C con-
tains data that can be transformed into a point cloud with sufficient density. Assuming the cost function order
defined in Equation (1), the algorithm will prefer reusing existing data (retrieve) over performing transforma-
tion or acquiring new data. Consequently, retrieving the requested data type directly from a database (using

Algorithm 1 ExecuteQuery(𝑞𝑢𝑒𝑟𝑦)
Require: 𝑞𝑢𝑒𝑟𝑦 a valid text query, 𝑐𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 the AQE configuration

1: 𝑡𝑦𝑝𝑒, 𝑛𝑎𝑚𝑒, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠← 𝑃𝑎𝑟𝑠𝑒(𝑞𝑢𝑒𝑟𝑦)
2: 𝑑𝑎𝑡𝑎𝑠𝑜𝑢𝑟𝑐𝑒𝑠← 𝐹𝑖𝑙𝑡𝑒𝑟𝐷𝑎𝑡𝑎𝑆𝑜𝑢𝑟𝑐𝑒𝑠(𝑡𝑦𝑝𝑒, 𝑐𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛)
3: 𝑑𝑎𝑡𝑎𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠← 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒(𝑑𝑎𝑡𝑎𝑠𝑜𝑢𝑟𝑐𝑒𝑠)
4: 𝑑𝑎𝑡𝑎𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠← 𝑆𝑜𝑟𝑡 (𝑑𝑎𝑡𝑎𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)
5: 𝑟𝑒𝑠𝑢𝑙𝑡 ← ∅
6: for all 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ∈ 𝑑𝑎𝑡𝑎𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 do
7: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝐴𝑑𝑑𝑇𝑜𝑅𝑒𝑠𝑢𝑙𝑡 (𝑟𝑒𝑠𝑢𝑙𝑡, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝑛𝑎𝑚𝑒, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)
8: 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠← 𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠(𝑟𝑒𝑠𝑢𝑙𝑡, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝑛𝑎𝑚𝑒, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)
9: end for
10: return 𝑟𝑒𝑠𝑢𝑙𝑡
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point cloud
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lidar scan
density = 20pt/m2

point cloud
density = 10pt/m2

query

A

C

B

Figure 4. Example scenario for Query 1 evaluation. The yellow area represents the geographic area defined in the query. The blue (A) and
purple (B) datasets are existing point clouds with respective densities of 30 and 10 point/m2, while the green (C) dataset is raw LIDAR sensor
data that can be transformed into a point cloud with a density of 20 point/m2. Datasets A, B, and C are part of the data source associated with
the federated database accessible by all agents.

A

(a) (b)

C

(c) (d)

Figure 5. Evolution of the geometry condition during evaluation of the example query presented in Figure 4. (a) depicts the intersection of
the query geometry with region A; (b) shows geometry condition after retrieving data from region A; (c) demonstrates the intersection of
remaining geometry condition with region C, since that data can be used for generating a point cloud; (d) indicates the remaining region
that will be used to execute an exploration mission to acquire data that is not present in existing databases.

dataset A) will be prioritized over transforming (using dataset C) or acquiring new data. In the following, we
denote a point cloud type as 𝑝𝑐 and a LIDAR scan type as 𝑙𝑠. The function 𝐹𝑖𝑙𝑡𝑒𝑟𝐷𝑎𝑡𝑎𝑆𝑜𝑢𝑟𝑐𝑒𝑠 will return
two data source operators associated with the data source DS-Fed, 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒(𝑝𝑐) and 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑙𝑠, 𝑝𝑐); the
latter transforms LIDAR scans to point clouds. Note that the point cloud data required cannot be acquired
directly by executing an exploration mission. Thus, an 𝑎𝑐𝑞𝑢𝑖𝑟𝑒(𝑝𝑐) data source operator for DS-Fed does not
exist and is not generated in this case.

Given the twopreviously instantiated data source operators 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒(𝑝𝑐) and 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑙𝑠, 𝑝𝑐), the ExecuteQuery
algorithm will first consider 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒(𝑝𝑐) and reuse part of dataset A and discard dataset B, as it does not
satisfy the point cloud density constraints. After retrieving the data from the data source DS-Fed using the
operator 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒(𝑝𝑐), the algorithm updates the geometry condition [Figure 5]. Figure 5A depicts the
initial overlap of dataset A with the query region, and Figure 5B represents the updated geometry condition
after the reuse of dataset A. Next, the ExecuteQuery algorithm will consider the second data source operator,
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑙𝑠, 𝑝𝑐), associated with the data source DS-Fed. To perform the transformation, the data source
operator first needs to retrieve LIDAR scans (<http://askco.re/scql/types#lidar_scan>).
Hence, the algorithm generates a new active sub-query (Query 2) that is evaluated in a direct recursive call to
the ExecuteQuery algorithm.

Query 2: New sub-query for LIDAR scans with point density superior to 20 point/m2.

1 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
2 SELECT <http://askco.re/scql/types#lidar_scan> AS scan WHERE
3 scan.pose in "POLYGON(...)"^geo:wktLiteral
4 AND scan.fuse_to_point_density >= 20 point/m^2
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Figure 6. Experimental platforms: DJI Matrice 100 equipped with an Ouster OS1 sensor (left), DJI Matrice 600 Pro equipped with a
Velodyne Puck sensor (right).

The ExecuteQuery algorithm will consider two new data source operators associated with the data source, DS-
Fed, during evaluating the generated sub-query: 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒(𝑙𝑠) and 𝑎𝑐𝑞𝑢𝑖𝑟𝑒(𝑙𝑠) operators. The 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒(𝑙𝑠)
operator will be considered first based on the cost function order, as accessing existing data is deemed faster
than acquiring new sensor data. Consequently, after retrieval of overlapping data from dataset C, the algorithm
updates thegeometry condition. Figure 5C exhibits the initial overlap of dataset C with the remaining query
region before the sub-query evaluation, and Figure 5D represents the updated geometry condition after the
reuse of dataset C. Data for the remaining area needs to be acquired by executing an explorationmission which
will result from the evaluation of the second data source operator, 𝑎𝑐𝑞𝑢𝑖𝑟𝑒(𝑙𝑠). The sub-query result will be
returned once the remaining data is acquired, ending the recursive call. The algorithm continues with the
execution of the LIDAR scan fusion using the operator 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑙𝑠, 𝑝𝑐), after which the final result to the
original query is returned.

3. EXPERIMENTAL EVALUATION
3.1. Evaluation with deployed robotic systems
In this section, an example use of the AQE in a field-test experiment is presented. The mission is similar
in type to the example presented in Section 2.3. The mission has been performed using actual robotic plat-
forms operating in an outdoor operational environment. It includes three agents: a ground operator and
two UAVs [Figure 6]. One UAV is a DJI Matrice 600 (https://www.dji.com/se/matrice600-pro) equipped
with a 3D LIDAR sensor from Velodyne (https://velodynelidar.com/products/puck/). The other is a DJI Ma-
trice 100 (https://www.dji.com/se/matrice100) equipped with a 3D LIDAR sensor from Ouster (https://oust
er.com/products/scanning-lidar/os1-sensor/). Both UAVs are equipped with Intel NUC computers (https:
//en.wikipedia.org/wiki/Next_Unit_of_Computing#Tenth_generation) that host the software. The communi-
cation between agents and software modules is handled using ROS [8] middleware. Each agent system runs
several software modules that include the proposed AQE, a “Knowledge DataBase” (KDB) associated with the
underlying “SymbicCloud System” [1], and a “Delegation System” [2] responsible for the generation and execu-
tion of multi-agent tasks. The latter two are existing frameworks available on our robotic systems and operate
independently of the AQE.

The AQE presented in this paper is generic and stand-alone in the sense that it could be interfaced to any un-
derlying multi-agent system architecture. A minimal constraint for the underlying multi-agent system would
be that each agent has a database that can contain one or more datasets and that the system has the ability to
generate multi-agent task plans.

The KDB is a distributed knowledge database system used for multi-agent teams, which allows agents to gen-
erate, retrieve, and synchronize RDF Graphs contained in databases and exchange sensory and other datasets
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Figure 7. Execution flow for AQ 1 (similar to Query 1) where a ground operator requests a point cloud for a selected (blue) region. The
numbers highlight the important steps. The pink numbered circles indicate the execution flow for the original point cloud query. The blue
numbered circles indicate the execution flow for the generated sub-query for the LIDAR scans required to obtain the originally requested
point cloud. The resulting flight paths for the executed exploration mission are shown in yellow. AQ: Active Query; LIDAR: Light Detection
and Ranging.

also contained in databases. The system enables agents to synchronize metadata information regarding avail-
able datasets and their properties. For example, this enables every agent to be aware of the existence and
attributes of datasets A, B, and C in the example scenario presented in Figure 4, regardless of whether the data
is stored locally in different agent systems. Each agent can use the “KDBManager” to request a dataset transfer,
allowing them to get a local copy of datasets A, B, or C.The “Delegation System” handles task execution for an
agent and enables task distribution among multiple agents when required. For example, an exploration task
can be delegated to a single agent or distributed among many agents.

The AQE uses both the “KDB Manager” and “Delegation System” to produce answers to active queries. The
“KDBManager” is used for accessing existing knowledge shared among agents [𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒(𝑡𝑦𝑝𝑒) data source op-
erator], while the “Delegation System” is used for executing data transformations [𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑠𝑜𝑢𝑟𝑐𝑒_𝑡𝑦𝑝𝑒𝑠..., 𝑡𝑦𝑝𝑒]
data source operator) and exploration missions [𝑎𝑐𝑞𝑢𝑖𝑟𝑒(𝑡𝑦𝑝𝑒) data source operator]. Conceptually, integra-
tion between the AQE and the KDB is made by assuming each agent on a team has a database, that database
is a data source, and each database consists of one or more datasets.

In the field robotics experiment presented in this section, a ground operator agent first generates two AQs
requesting 3D models in the form of point clouds for two overlapping areas in the environment. This requires
the exploration of two regions and the fusion of the acquired LIDAR data into a single point cloud per query.
As a result, the AQE automatically generates and coordinates the executions of two exploration missions using
the two UAVs on the team. An overview of the two generated missions is presented in Figures 7 and 8. Recall
that these query types have been previously specified and discussed in the example presented in Section 2.3,
although for the field experiment, different parameterizations of queries are used. In this experiment, data
sources used by the AQE include databases associated with each individual UAV agent and the ground operator
agent. Each database contains pre-existing, acquired, or transformed datasets.

Figure 7 shows the execution process of the first AQ and highlights the important steps. The ground operator
selects a region in a user interface (the blue area in the figure) and executes a data request query (similar to
Query 1 in Section 2.1) for a point cloud data type (step 1). The system checks for existing data in the database
associated with the ground operator (step 2). Since no existing data is available to answer the operator’s re-
quest, the system checks if it is possible to transform other existing sensor data into a point cloud (step 3).
To generate a point cloud, the system needs to fuse LIDAR scans. Consequently, to access LIDAR scans, the
system generates an active sub-query (step 4) for these scans (similar to Query 2 in Section 2.3) which will be
delegated to the UAV agents.
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Figure 8. Execution flow for AQ 2 (similar to Query 1), where a ground operator requests a point cloud for a selected (red) region. The
numbers highlight the important steps. The pink numbered circles indicate the execution flow for the original point cloud query. The
blue numbered circles demonstrate the execution flow for the generated sub-query for the LIDAR scans required to obtain the originally
requested point cloud. The resulting flight paths for the executed exploration mission are shown in yellow. AQ: Active Query; LIDAR: laser
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The sub-query execution starts with a check for existing LIDAR scans in the database associated with the
ground operator (step 5). Since the data does not exist, and LIDAR scans cannot be generated from other
data types, the data must be acquired directly from sensing (step 6). An exploration mission for the region is
automatically generated and delegated to a UAVMatrice 100 to acquire raw LIDAR data (𝑎𝑐𝑞𝑢𝑖𝑟𝑒(𝑡𝑦𝑝𝑒) data
source operator). The acquired data is saved in the database associated with the UAVMatrice 100, ending the
execution of the sub-query (step 7).

To complete the interpretation and execution of the original point cloud active query (AQ 1, similar to Query 1
in Section 2.1), the LIDAR scans need to be fused into a point cloud (step 8). For this purpose, a computation
task (a transform() data source operator associated with the Matrice 100 database) is delegated to the Matrice
100, resulting in the generation of a point cloud covering the blue area. The data is then synchronized between
theMatrice 100 and the ground operator using the SymbiCloud andDelegation systems, and it is then displayed
in the user interface (step 9).

Figure 8 shows the process of executing the second active query (AQ 2) and highlights the important steps. In
this case, the ground operator selects a region in the user interface (the red area in the figure) and executes a
data request query for a point cloud data type (step 1, similar to Query 1 in Section 2.1). The system checks
for existing data in the database associated with the ground operator (step 2). Since the query area (red)
overlaps with the area requested in the previous AQ (blue), existing data can be reused. The data for the point
cloud of the previous AQ is available in the Matrice 100 database and needs to be downloaded to the ground
operator’s database. The point cloud can be shown directly to the user after the data is downloaded (step 3).
The remaining steps required to complete the execution of the AQ are similar to the first query from the ground
operator. To generate the remaining point cloud data (step 4), it is necessary to transform LIDAR scans using a
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑙𝑠, 𝑝𝑐) data source operator, which results in an execution of a sub-query (step 5). The sub-query
(similar to Query 2 in Section 2.3) execution triggers an exploration mission for part of the query area (the red
area, excluding the overlap between the red and blue regions). The mission is delegated to the UAV Matrice
600, and the acquired LIDAR scans are combined in a point cloud (step 6). Finally, the two point clouds are
combined for visualization (step 7). The resulting point cloud data is shown in Figure 9.
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Figure 9. Final results of the field-test experiment generated by executing two active queries.

3.2. Comparison with other approaches and scalability evaluation
Related research with sophisticated multi-agent systems consisting of operational, heterogeneous autonomous
systems interacting with multiple ground operators is sparse. The state-of-art in this respect still involves a
great deal of manual steps at the task level needing to be specified for each individual agent system in a larger
mission. Progress at the automated multi-agent path planning level is somewhat more developed [9], although
a broader solution to robust and useful in-field multi-agent systems requires development at both the multi-
agent task planning and path planning levels.

This paper focuses on suitable query interfaces for mission task planning for multi-agent systems, in particular,
generation of 3D models, where existing approaches for solving multi-agent exploration and distributed situ-
ation awareness usually involve many manual steps. Current state-of-the-art puts a heavy burden on human
operators tasked to use teams of autonomous systems. Human operators need to explicitly check for existing
information in a database, set up exploration missions often specifying each step, and then manually combine
newly acquired data with existing information or manually use systems that would do such types of fusion.

The novelty and use of active queries and the AQE focuses on reducing the amount of manual work required
from human operators when specifying multi-agent task planning for teams of agents in this context. The
goal is to reduce cognitive load and make the process more efficient and automated, allowing the operators
to focus on other important tasks and reduce operator errors. The human operators specify the what that is
required using active queries, and the AQE system generates the how through the combined use of retrieval,
transformation, and acquisition through multi-agent plans.

To summarize the intent and value of the approach to mission planning that uses active queries, a generic
comparison can be made between most existing approaches to the problem and an approach using active
queries. Table 1 shows how a single active query can automate many of the manual processes human operators
currently use in generating multi-agent mapping missions. The active query technique can be generalized to
other application areas in a straightforward manner.

http://dx.doi.org/10.20517/ir.2024.06


Page 100 Berger et al. Intell Robot 2024;4(1):87-106 I http://dx.doi.org/10.20517/ir.2024.06

Table 1. List of actions performed by an operator when using and not using the AQE approach

Using the AQE Not using the AQE

Operator Select a region in the environment Query the database for existing information
Actions Set up scanning missions for missing information

Download raw sensor data from UAVs
Process the raw sensor data
Fuse acquired data with existing information

AQE: Active Query Engine; UAVs: unmanned aerial vehicles.
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Figure 10. Evolution of the execution time for the active query scalability evaluation (timings do not include performing explorations nor
data processing). The blue line shows the timing of individual queries. The red line represents the average over the queries since the origin.
The yellow line is an average over the last 100 queries.

In order to evaluate the scalability of the AQE, an experiment was performed where 2,500 queries were exe-
cuted. The number of queries for the experiment was chosen to be large enough to draw conclusions about the
time complexity of the system. To that end, a timing measurement for each query was recovered and analyzed.
Additionally, to show how much the AQE system reuses already acquired data, an exploration rate metric was
introduced, recorded, and analyzed for each query. The queries were randomly generated and could result
in either directly returning a set of LIDAR scans or point clouds. To exclude the influence of actual explo-
ration and data processing times, these steps were not performed. For each query, its execution time and the
exploration rate were measured. The exploration rate 𝜏𝑖𝑒𝑥𝑝 for query 𝑖 is defined as follows:

𝜏𝑖𝑒𝑥𝑝 =
A𝑖

𝑒𝑥𝑝

A𝑖
𝑟𝑒𝑞

(2)

where A𝑖
𝑒𝑥𝑝 is the area of a polygon that needs to be explored to answer a query, while A𝑖

𝑟𝑒𝑞 is the area of the
polygon that was requested in the query 𝑖. In other words, if no data is available to answer a query the rate
equals 1, and if all data is already available the rate is equal to 0 meaning no additional exploration missions
are required.

The timing results are shown in Figure 10. The results show a linear increase of the execution time with the
number of queries performed. This is because as more queries are executed, more data is added to the database.
In practice, theAQE is as scalable as the underlying data storage. Additionally, we can see a timing jump around
the execution of the 1,200th query, caused by hitting the limits of database index caches. After this jump, the
timing reverts again to a linear increase. The exploration rate results are shown in Figure 11. The figure shows
that the number of required explorations decreases as consecutive missions are performed. This is caused by
the fact that the environment has already been increasingly explored.
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Figure 11. Evolution of the exploration rate for the active query scalability evaluation. The rate represents the ratio between the explored
and the total areas requested in a query. The ratio starts at 1.0 when the database is empty and decreases over time. Exploration rates
of individual queries are drawn with blue lines. The red line represents the average over the queries since the origin. The yellow line is an
average over the last 100 queries.

4. RELATED WORK
Concepts related to active queries have been previously studied in multiple research areas. However, to the
best of the authors’ knowledge, they have never been considered in the context of actively acquiring situational
awareness by teams of collaborative robotic systems. The research relevant to the ideas described in this paper
is presented in this section.

ActiveSensorNetworks. Work presented in this paper is closely related toWireless SensorNetworks (WSNs) [10],
in particular regarding the concept of distributed information gathering for situational awareness. The early
methods used in WSNs involved a sense-push approach where a sensor collects data and sends it to a central
database, which a user can query. In ref [11], the authors propose a mechanism that allows for reconfiguring a
WSN depending on the user’s query. Instead of collecting all possible data types, the main aim is to decrease
power usage by optimizing the network to collect only relevant information. The key principle of this work is
conceptually similar to the approach proposed in this paper in the sense that the system adapts itself to answer
a question.

Active vision [12] is a sub-field of active sensor networks, where planning algorithms are used to decide the
best position for a camera to make an observation. The algorithms used for active vision are very relevant to
implementing 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 functionality for the proposed AQE.

Sensing Using Multi-Agent Systems. Conceptually, Multi-Agent Systems (MASs) are similar to WSNs as they
include systems equipped with sensors and computing capabilities. However, they typically have more capa-
bilities and can move and act in the environment. In ref [13], a system for acquiring satellite images with an
adequate resolution is presented. Low-resolution images obtained by the satellites are sent to a ground sta-
tion for point-of-interest detection. If high-resolution images are required, based on the user’s request, the
system uses an automated planner to schedule and select the best satellite to acquire the requested image. The
approach has been extended to handle more complex satellite constellations and requests in ref [14]. The idea
of choosing the most suitable system to perform observations bears similarities to the work presented in this
paper.

Previous work presented in ref [15] focused on using a team ofUAVs to build 3Dmodels of the environment and
a data/knowledge management infrastructure intended to support distributed, collaborative collection of data
and knowledge and its shared use in multi-agent systems [1]. The work presented in this paper extends these
distributed exploration frameworks by providing a novel way to represent and execute exploration tasks. Ex-
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ploration missions in ref [15] are created manually. In ref [1], the system uses static scripts to check the database
for existing data and trigger exploration tasks when required. This paper explores a new general approach to
replace manual or static script-based mission generation. This novel technique opens the way to more flexi-
bility in the automatic generation of exploration tasks when necessary, where data queries can include both
symbolic and non-symbolic values - for example, querying for the 3D model of buildings in an area.

Query of Sensor Streams. Database query languages have been extended to work on sensor data streams. For
example, the SPARQL was extended in ref [16] to query sensor data from a stream using virtual RDF triples.
There are similarities between stream querying and our work, where the resulting data may or may not be in a
database. Stream querying involves querying continuously produced data, while our work involves reconfig-
uring the system to produce the desired result.

Active Queries. In ref [17](ACQUIRE), AQs were introduced to minimize the energy cost of executing queries
within a sensor network. The typical approach was to broadcast the query causing overloading of the net-
work. ACQUIRE defines a novel strategy to optimize which node to query. The AQ presented in this paper
indirectly follows some principles used in ACQUIRE. It uses the hastily formed knowledge network (HFKN)
framework [1] to store metadata about collected raw sensor data in the form of RDF Graphs [5] automatically
synchronized among all team members. This method allows us to limit the number of queries to agents to
those relevant to AQ execution. AQs are often used in the context of systems that require user inputs. These
can range from simple suggestions of data to acquire to making requests for help from the user. In ref [18], AQs
are used to answer a query about the location of a mobile phone. Automatic calculation of locations based
on user-submitted pictures leads to incorrect results in half the cases. The authors propose a mechanism that
suggests to the user where to take an additional picture to increase the calculated location certainty.

Another example of AQs was proposed in ref [19] where the system helps a user refine an incomplete query to
an image database. AQs are also used in machine learning, where training algorithms can request labels of
interesting data points [20]. Similar active strategies have been used in remote sensing to improve the accuracy
of image segmentation [21]. When the algorithm is uncertain about a query, it can ask the user to label the
data. The AQs presented in this paper do not necessarily involve human-agent interaction other than what the
multi-agent system may need for operation in the context of mixed-initiative interactions [22].

Knowledge Generative Queries. In this area, researchers examine using “intentional information” (e.g., meta-
data, relationships, inference rules) to enhance query outcomes over “extensional information” (actual data
in a database). The most common methods consist of algorithms for converting extensional data to gener-
ate “intentional answers” [23]. Several techniques have been further developed for “cooperative answering” in
databases, including a dialog with the user in case no answer to the query can be provided. Typically, these sys-
tems modify the original query and present several alternative answers that users may find satisfactory [24]. All
these systems involve some form of knowledge processing and are relevant to this paper, as these approaches
can be used to implement 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚() data sources in the proposed AQE.

In the area of automated planning, executing a plan can generate knowledge useful to its completion. This is
referred to as the concept of the “knowledge producing actions” [25]. The challenge for the planning algorithms
is to reason about available knowledge and the knowledge that can be acquired during the plan execution.
The “knowledge producing actions” are a means to an end of accomplishing the goal, i.e., what knowledge is
needed to reach a goal. In contrast, the AQs presented in this paper focus on producing requested knowledge.
Consequently, our work can be integrated as a “knowledge-producing action” executor.

Query Language Syntax. Several existing database query languages offer features similar to those of the scQL
language. The most prominent language is SQL [6]. As shown in ref [11] SQL can be used for sensors instead of
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databases. Query types presented in this study can be expressed with an SQL syntax, as shown in Query 3.

Query 3: General form of an SQL equivalent to the scQL query.

1 SELECT name FROM type WHERE conditions

Consequently, the example query for point clouds (Query 1) could be rewritten as Query 4.

Query 4: Example of an SQL query for a point cloud.

1 SELECT pc FROM pointcloud WHERE
2 convert(density, density_unit, "point/m^2")> 20
3 AND intersects(area, from_wkt("POLYGON(...)"))

where density, density_unit and area are fields of a virtual table called pointcloud. In situa-
tional awareness applications, however, one may require combining different data sources – for example, a
query for the point cloud of a set of buildings in an area. Using SQL to represent such queries requires the use
of join statements, which makes both the interpreter and the writing of the query more difficult. scQL can be
easily extended to support such queries without introducing these additional challenges.

Another database query language alternative feasible for representing queries for semantic data is SPARQL [4],
along with the use of virtual graphs [16]. The example point cloud query (Query 1) can be rewritten using
SPARQL as Query 5.

Query 5: Example of SPARQL for point cloud.

1 PREFIX scql_properties: <http://askco.re/scql/properties#>
2 PREFIX scql_func: <http://askco.re/scql/functions#>
3 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
4 SELECT ?pc_data WHERE {
5 :object a <http://askco.re/scql/types#point_cloud> ;
6 scql_properties:geometry ?pc_geometry ;
7 scql_properties:density ?pc_density ;
8 scql_properties:density_unit ?pc_density_unit .
9 FILTER (scql_func:intersects(?pc_geometry,
10 "POLYGON(...)"^geo:wktLiteral)
11 && scql_func:convert(?pc_density, ?pc_density_unit,
12 <http://askco.re/scql/units#pt_per_m_2>)> 20 ) }

SPARQL is designed for querying RDF triples. However, the AQ system presented in this paper requires a
more general mechanism that includes queries for objects. A detailed specification of the relationship between
the proposed scQL and SPARQL will be presented in future work.

An important point to emphasize is that the scQL language is tailored to situational awareness applications
where applying SQL or SPARQL directly is challenging. scQL follows a mix of SQL and SPARQL conventions.
It is defined as an “object” language, similar to SQL, where the properties and data types are defined using
URI, similar to SPARQL. Using “object” is natural in situation awareness applications, where answers often
refer to a specific object, for example, a point cloud or a building. Using URI allows for the grounding of
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the query language in RDF ontologies. Additionally, scQL allows for adding mechanisms for reasoning about
the relationship between querying for data and the execution of the exploration missions. For example, in
future work, we plan on introducing time limits on query response times. Such a mechanism would allow
for executions of queries that return the highest quality point cloud within specified time limits rather than
defining a specific condition on the density.

5. CONCLUSIONS
In many applications, such as emergency rescue, human operators interface with teams of heterogeneous
robotic agents to get things done in highly complex and uncertain situations. In particular, the first response
in a disaster requires rapid construction of situation awareness about unfolding events. One of the first tasks
is reconstruction of the operational environment by generating 3D models which can then be used for mis-
sion planning. This paper has proposed the use of an active query interface to complex multi-agent systems
consisting of teams of heterogeneous robotic systems. Rather than manually and tediously setting up detailed
missions, human operators can instead query a system, where the query is a higher-level declarative descrip-
tion of what is required to enhance situation awareness.

The active query system includes a rich language for specifying requirements, where the details as to how
to meet those requirements are constructed through the interpretation and execution of the original active
query, thus relieving human operators of this burden. In this process, it is often the case that additional multi-
agent missions are generated to meet the original requirements. Descriptions of an active query language and
engine for interpretation and execution of such queries have been provided together with associated algorithms.
Additionally, it has been shown how to integrate the stand-alone active query mechanism with a complex
underlying multi-agent system. It is important to emphasize that the active query system is independent of
any particular multi-agent system or application. The paper has focused on using active queries to retrieve
and generate 3D models of operational environments, although the mechanism is much more general than
this specific use. This application has been used to field test the active query system using teams of human and
UAV agents to validate the idea. Many experiments have been successfully completed and one representative
scenario is described in this paper. Empirical evaluation of the scalability of the active query system is also
provided.

The proposed AQ system assumes that only one variable is used per query. Hence, the query result is restricted
to one data type and does not allow executing operations (“join”) between multiple variables. However, use
cases exist in situational awareness applications where querying information using multiple variables is desir-
able. The AQ system will be extended in future work to support “join” operations at the scQL language and
the executor levels. This will involve extending the syntax of the scQL and the AQE algorithm.

In summary, we believe this is a very powerful and useful mechanism to relieve human operators of the need
to manually program detailed instructions for the use of teams of robots and their associated sensors and
capabilities. In the future, we will focus on graphical interfaces to describe active queries and extend their use
to other application areas. Additionally, human factors studies would be useful for additional validation of the
approach and demonstrating additional efficacy in the field.
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