
Huang et al. Complex Eng Syst 2022;2:11
DOI: 10.20517/ces.2022.12

Complex Engineering
Systems

Research Article Open Access

An improved A star algorithm for wheeled robots path
planningwith jumppoints search and pruningmethod
Hongqian Huang, Yanzhou Li, Qing Bai

School of Automation, Guangdong University of Technology, Guangdong 510006, Guangzhou, China.

Correspondence to: Dr. Yanzhou Li, School of Automation, Guangdong University of Technology, No.100, Waihuan Xi Road,
Guangzhou 510006, Guangdong, China. E-mail: lyz19921207@163.com

How to cite this article: Huang H, Li Y, Bai Q. An improved A star algorithm for wheeled robots path planning with jump points
search and pruning method. Complex Eng Syst 2022;2:11. http://dx.doi.org/10.20517/ces.2022.12

Received: 24 Apr 2022 First Decision: 13 May 2022 Revised: 24 May 2022 Accepted: 1 Jul 2022 Published: 19 Jul 2022

Academic Editor: Hamid Reza Karimi Copy Editor: Fanglin Lan Production Editor: Fanglin Lan

Abstract
Wheeled robots enjoy popularity in extensive areas such as food delivery and room disinfection. They can lower labor
costs, protect human health from infection, and so on. Given the need to avoid obstacles, the path planning of robots
is an elementary module. The A* algorithm has been widely used thus far, but it suffers much memory overhead and
provides a suboptimal path. Therefore, we propose an improved A* algorithmwith the jump point searchmethod and
pruning idea. Specifically, the jump point search method reduces the occupancy rate of the open list. The shorter
length of the path can be achieved by pruning. Simulation experiments proved that the improvement was effective
and practical.

Keywords: Wheeled robot, A* algorithm, occupancy rate, pruning

1. INTRODUCTION
In recent years, wheeled robots have gained more and more popularity and have been applied to extensive
scenarios [1–3]. They can deliver food [4,5], provide security guards [6,7], and offer services [8,9] for people. Path
planning for wheeled robots [10–12] is one of the hottest and most difficult spots in robot research. The existing
path planning methods are mainly divided into three categories: graph-based, sampling-based, and intelligent
methods. Traditional graph-based search methods include A* [13,14], LPA* [15,16], ARA* [17,18], etc. Sampling-
based search methods include RRT [11,19], RRT* [20,21], RRT-Connect [22,23], etc. Intelligent methods include

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.comengsys.com

https://creativecommons.org/licenses/by/4.0/
www.comengsys.com
a
图章



Page 2 of 12 Huang et al. Complex Eng Syst 2022;2:11 I http://dx.doi.org/10.20517/ces.2022.12

particle swarm algorithm [24], genetic algorithm [25], ant colony algorithm [26], etc. The A* algorithm is a global
path planning method based on known environmental information, with a real-time and better suboptimal
solution, thus it has been widely employed.

However, the classical algorithm has the disadvantages of much memory overhead and providing a subopti-
mal solution. Therefore, some researchers have proposed to improve the A* algorithm. For the purpose of
stability and effectiveness, Wang et al. [27] presented the improvedmethod from the view of expansion distance,
bidirectional search, heuristic function optimization, and smoothing. Song et al. [28] considered the cost func-
tion with an additional parameter, with the result of fewer nodes and lower memory overhead. Specifically,
the parameter is a cost from the previous point to the final one. Zhang et al. [29] achieved a high success rate
and short length through applying an early-stop method, in which the local path is used directly if it is safe
and collision-free. In addition, they also introduced a post-processing stage to shorten the resulting path by
straightening the local path.

Under the environmental model, gridmap, this paper proposes an effective method of global path planning for
wheeled robots. First, we analyze the shortcomings of theA* algorithm and find a correspondingmeasurement.
To solve the problem of excessively high node occupancy rate of open list, a jump point search method is
adopted [30,31]. Only the nodes with special properties are added to the open list during the process of node
expansion. Considering the suboptimal solution of the path, a pruning method is proposed based on the
axiom that the shortest path between two points is a straight line [32]. The polyline with an inflection point is
replaced by a straight line. Lastly, a C++ simulation was designed and performed to verify that the improved
A* algorithm can improve the traditional one.

The rest of this paper is structured as follows. In Section 2, we review the traditional A* algorithm for path plan-
ning. In Section 3, we propose the idea of combining jump search and pruning to improve the A* algorithm.
Experimental results are shown in Section 4. Finally, this paper is summarized in Section 5.

2. TRADITIONAL A* ALGORITHM
2.1. Grid map
In this paper, the map used in path planning is the grid map [33], which is a common map representation. The
basic idea is to decompose the environment into local units, i.e., grid, and assign the state of occupancy to
each grid. If there is an obstacle located in the grid, then it is a non-free grid, which is inaccessible to the robot.
Otherwise, it is reachable, called a free grid. To simplify the path planning process of wheeled robots, we set
up the following assumptions:

Assumption 1: In the process of planning a feasible path, the size and position of the obstacles remain static.

Assumptions 2: In the process of planning a feasible path, the obstacle can occupy the grid completely.

In this work, we use the evenly spaced grids and assume 1 denotes the non-free grid and 0 denotes the free
grid, as shown in Figure 1.

2.2. A* algorithm
Based on the known grid, the A* algorithm mainly plans the path and applies an evaluation function to deter-
mine its expansion direction. The function represents the distance between the initial node and target node
by the expansion one. The equation of the evaluation function is defined as follows:

f (n) = g(n) + h(n) (1)

http://dx.doi.org/10.20517/ces.2022.12


Huang et al. Complex Eng Syst 2022;2:11 I http://dx.doi.org/10.20517/ces.2022.12 Page 3 of 12

1

0

Figure 1. Occupancy state of the grid map.

where g(n) represents the actual distance from the initial node to the current node in the grid map, and h(n)
represents the Manhattan distance of the optimal path from the current node to the target node. The closer
the Manhattan distance is, the more optimal the feasible path is. A* algorithm starts the searching from the
initial node to eight neighbor nodes and expands successively with equal probability, as shown in Figure 2

Then, a node expansion or searching process based on the minimum value continues. First, the values of each
node of the surrounding eight neighbor points are estimated. Second, the node with free grid with the lowest
estimated value is selected, which is set as the starting node in the next expansion process. Third, the chosen
node is added to the open list and the node with the minimum value in the open list is chosen for the closed
list. The expansion terminates when the target node is visited. During the process above, the distance between
two nodes is obtained by the Manhattan distance:

d = |x1 − x2| + |y1 − y2| (2)

where (x1, y1) and (x2, y2) represent the coordinates of the two nodesn1 andn2, respectively, andd represents
the estimated distance between the two nodes.

If g(n) is equal to zero, the A* algorithm becomes the best optimal search with a greedy strategy for the expan-
sion of nodes. The search time is shortened but at the cost of a suboptimal solution. If h(n) is equal to zero,
the A* algorithm becomes Dijkstra’s algorithm with the requirements of exploring all directions. Although
it results in the optimal solution, it uses a lot of computation resources. When terms of g(n) and h(n) are
non-zero, relatively optimal solution and real-time performance are both guaranteed.

Besides, we note that two node containers, named open list and closed list, respectively, are built. The generated
nodes in the expansion are stored in the open list and the nodes withminimum value in the open list are stored
in the closed list. After the planning process, a suboptimal path is generated. The flow chart of A* is shown in
Figure 3.

The specific steps of the A* algorithm are as follows.

Step 1: Initialize the grid map and define the search method of nodes to expand neighbor nodes in sequence
with equal probability.

Step 2: Add the initial node to the open list.

Step 3: Determine whether the open list is empty. If it is true, the pathfinding fails. Otherwise, continue to
Step 4.

Step 4: Find the node with the smallest value in the open list and move it to the closed list.

http://dx.doi.org/10.20517/ces.2022.12


Page 4 of 12 Huang et al. Complex Eng Syst 2022;2:11 I http://dx.doi.org/10.20517/ces.2022.12

Figure 2. Node expansion in equal probability.

Start

Add the start node to the open list

Is open list

empty?

Find the node with the smallest value in 

open list and move it to close list

Is the current

node the target

node?

See the current node as the parent node and starting 

point of the search for neighbor nodes, and add the

minimumnode offree grid to the open list.

No

No

End
Pathfinding failed

End
Pathfinding succeeded

Figure 3. Flow chart of traditional A* algorithm.

Step 5: Determine whether the current node is the target node. If it is true, the pathfinding is successful.
Otherwise, continue to Step 6.

Step 6: Consider the current node as the parent node and starting point of the search for neighbor nodes and
add the minimum node of the free grid to the open list. Continue to Step 4.

In the next section, we discuss how to improve the A* algorithm.

3. IMPROVED A* ALGORITHM
Given the high node occupancy rate and suboptimal solution, the jump points search and pruning methods
are used to improve the A* algorithm.

http://dx.doi.org/10.20517/ces.2022.12


Huang et al. Complex Eng Syst 2022;2:11 I http://dx.doi.org/10.20517/ces.2022.12 Page 5 of 12

par(x) x y

z

Figure 4. Selective strategy.

Figure 5. Node expansion of improved A* algorithm.

3.1. Selective strategy
In this section, a selective node search strategy is developed. Only the node with specific properties can be
chosen. An example of selective strategy is shown in Figure 4. Specifically, there is a neighbor node of the node
par(x) with the direction from left to right. It is valueless to further search along the direction for the least
cost of the distance between par(x) and x. In other words, there is no need to add these corresponding nodes
to the open list. This operation does not traverse all the neighbors, which is the difference from the classical
A* algorithm. When an expansion meets the y node, whose neighbor is accessible, e.g., the z node, we regard
the y node as a special one. Meanwhile, it is the destination of expansion from node x along the straight-line
direction. Then, its heuristic distance value h, namely the cost of reaching y from x, can be formulated as
follows:

h(y) = h(x) + D(x, y) (3)

D(x, y) =
√

(x1 − x2)2 + (y1 − y2)2 (4)

where (x1, y1) and (x2, y2), respectively, represent the coordinates of two nodes x and y and h(x) represents
the distance between child node and parent node.

3.2. Rules for improvement
In this section, we introduce some rules to reduce the number of nodes in the open list.

3.2.1. Rules of node expansion
The expansion direction is shown in Figure 5. For example, the direction from A to B is the right one. The
directions of front, rear, left, and right are collectively referred to as the straight-line direction and others are

http://dx.doi.org/10.20517/ces.2022.12


Page 6 of 12 Huang et al. Complex Eng Syst 2022;2:11 I http://dx.doi.org/10.20517/ces.2022.12

X

A

B

C

(a) Regular environment

X

A

B

C

(b) Irregular environment

Figure 6. Force neighbors under two conditions.

X E F

G

Start

Figure 7. Example of jump points.

the diagonal direction. It is noted that the expansion along the diagonal direction contains the expansion in
the straight one.

3.2.2. Rules of forced neighbor
Assume X is the current node, A is the neighbor node of X in the diagonal direction, B is the parent node of
X, andC is the non-free neighbor node. If Ameets the equation h(B, X) +h(X, A) <= h(B, X) +h(X,C) +
h(C, A), thenA is the forced neighbor. Figure 6a describes the case of equationh(B, X)+h(X, A) = h(B, X)+
h(X,C)+h(C, A). Figure 6b describes the case of equationh(B, X)+h(X, A) < h(B, X)+h(X,C)+h(C, A)

3.2.3. Rules of jump points
The nodes selectively chosen to expand are termed jump points. The rules are as follows. First, a node is re-
garded as a jump point when the node is surrounded by the forced neighbor in the diagonal direction. Second,
if a node has a parent node in the diagonal direction and a reachable path in the straight direction to a jump
point, then it is a jump point. Third, the starting node and the target node are stipulated as jump points. An
example of finding a jump point during node expansion is shown in Figure 7.

It is obvious that F node, G node, and the start node are jump points because they satisfy the first, second,
and third rules, respectively.

3.2.4. Rules of nodes
First, we demonstrate a rule of the search order. The jump points are primarily searched in the straight-line
direction and then in the diagonal direction. Second, the open list only adds the jump points. The search
nodes with the lowest cost are added to the closed list. The planning path is formed by the subsets of these
jump points.

http://dx.doi.org/10.20517/ces.2022.12


Huang et al. Complex Eng Syst 2022;2:11 I http://dx.doi.org/10.20517/ces.2022.12 Page 7 of 12

D

C

A

B

Figure 8. Rules of path.

3.2.5. Rules of path
Inspired by the theorem that any side of a triangle must be shorter than the other two sides added together,
a pruning method can be applied. In Figure 8, there are three consecutive nodes, i.e., A, B, and C, from the
global path, and they constitute a triangle. When D is a free grid, the path from A to C by B is improved by
the path from A directly to C.

3.3. Improved algorithm
Based on the strategy above, the improved A* algorithm is shown in Algorithm 1. The algorithm takes the
grid map and initial node as inputs and outputs a feasible global path. First, the grid map is initialized and the
search method of nodes is defined to expand neighbor nodes in sequence with equal probability. Then, the
initial node is added to the open list (Line 3). Second, it is determined whether the open list is empty or not.
If it is true, the pathfinding fails. Otherwise, the pathfinding continues (Line 5). Thirdly, the node with the
smallest value in the open list will be moved to the closed list (Lines 7–9). Then, it is discovered whether the
current node is the target node or not. If it is the target, the pathfinding is successful and the solution of the
path is returned (Line 11). Otherwise, the jump points are found and added to the open list. Specifically, the
jump points are searched along the straight direction from the parent node. When no free grid is found, the
diagonal direction is considered (Lines 13–15).

In summary, the differences between the traditional A* and improved A* depend on the rules of constraint.
The constraint successfully provides traditional A* various ways of node expansion and reduces the time of
planning in the pathfinding process. Besides, the occupancy rate drops due to the decreasing nodes in the
open list. In the end, the path length is trimmed because the polyline is replaced by the straight line at the
inflection point of the path.

4. EXPERIMENT
To prove the effectiveness of the improved A* algorithm, simulation experiments in C++ were carried out. At
first, four grid maps with obstacles were constructed, and a simulation of the traditional A* algorithm was
designed and performed. In detail, 1% of grid points were randomly regarded as the center points of the
obstacle and the size of the obstacle was 5 × 5.

We noticed that many expansion nodes were stored in the open list, causing a high occupancy rate and con-
suming too many memory resources. Moreover, the feasible planning path was relatively optimal and the
inflection point of the path could be pruned.

The gridmap required for the experiment is shown in Figure 9, where the sizes of the gridmaps are, respectively,
50 × 50 and 100 × 100 and the resolution is 0.5 m per pixel. The black grid represents the occupancy of the
grid which is inaccessible. We set the starting point of the navigation task at the bottom left of the grid map
and the target at the upper right.

The simulation on 50 × 50 grid maps is shown in Figure 10, where the blue polyline represents the path

http://dx.doi.org/10.20517/ces.2022.12


Page 8 of 12 Huang et al. Complex Eng Syst 2022;2:11 I http://dx.doi.org/10.20517/ces.2022.12

Algorithm 1 Improved A* algorithm.

1: input: grid_map, initial_node
2: output: global_path
3: openlist.push_back(initial_node)
4: while True do
5: if openlist.isEmpty() then return NULL
6: else
7: node← FindSmallestValue(openlist)
8: openlist.erase(node)
9: closelist.push_back(node)
10: end if
11: if isTarget(node) then return GetGlobalPath(node)
12: else
13: jump_point← FindJumpPoint()
14: openlist.push_back(jump_point)
15: end if
16: end while

(a) 50 × 50 grid maps (b) 100 × 100 grid maps

Figure 9. Randomly generated grid maps of different size.

(a) (b)

Figure 10. Path planning on 50 × 50 grid maps.

planned by the traditional A* algorithm. The green one represents the path planned by our method. The
simulation on 100 × 100 grid maps is shown in Figure 11,

http://dx.doi.org/10.20517/ces.2022.12


Huang et al. Complex Eng Syst 2022;2:11 I http://dx.doi.org/10.20517/ces.2022.12 Page 9 of 12

(a) (b)

Figure 11. Path planning on 100 × 100 grid maps.

Table 1. Average Performance results on randomized 50 × 50 maps

A* Improved A*

Node numbers of open list 372 89

Occupancy rate of open list 14.88 3.56

Path length without pruning 3.41 -

Path length with pruning - 3.31

Table 2. Average performance results on randomized 100 × 100 maps

A* Improved A*

Node numbers of open list 1508 272

Occupancy rate of open list 15.08 2.72

Path length without pruning 7.01 -

Path length with pruning - 6.83

The experimental data are shown in Tables 1 and 2. The occupancy rate is the ratio of the number of open-
list nodes to the number of nodes on the grid map. In Table 1, based on the 50 × 50 map, the number
of generated open-list nodes is 372 and the occupancy rate is 14.88% before improvement. Through the
improved algorithm, the number of nodes is decreased to 89 and the rate is 3.56%. In addition, the planning
path is shortened from 3.41 to 3.31.

In Table 2, based on the 100 × 100 map, the count of generated open list nodes is 1508 and the occupancy
rate is 15.08% before improvement. By the improved algorithm, the number of nodes is decreased to 272 and
the rate is 2.72%. In addition, the planning path is shortened from 7.01 to 6.83.

Comprehensive experimental results show that the improved A* algorithm can improve the node occupancy
rate and shorten the path length. In other words, it provides the traditional A* method with the capabilities of
higher efficiency and lower consumption of memory.

5. CONCLUSION
Although the solution of the traditional A* algorithm is relatively optimal, it can be further improved in two
aspects. On the one hand, too much memory resource is consumed by the large number of nodes stored in

http://dx.doi.org/10.20517/ces.2022.12


Page 10 of 12 Huang et al. Complex Eng Syst 2022;2:11 I http://dx.doi.org/10.20517/ces.2022.12

Issue1: High 

occupancy of

redundant nodes

Issue2: The length of 

feasible path at the

inflection point

Improved A* 

algorithm

Method1: Jump 

points search

Method2: 

pruning

A* algorithm

Figure 12. Conclusion.

the open list. On the other hand, at the inflection point of the planning path, there is a possibility to prune
based on the free grid. Thus, this article proposes the following methods, as shown in Figure 12:

1. Incorporate jump point search methods to selectively add specific properties of nodes to the open list and
reduce the number of nodes.

2. Merge the pruning idea with the classical A* algorithm. A straight path is used to replace the polyline path,
and the length of the path is shortened.

The simulation experiments verified the practical effect of our improved A* algorithm. In the future, we will
study how to reduce the time of node traversal to improve the real-time performance of path planning.

DECLARATIONS
Authors’ contributions
Writing-original draft and conceptualization: Huang H
Validation and supervision: Li Y
Investigation: Bai Q

Availability of data and materials
Not applicable.

Financial support and sponsorship
None.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

http://dx.doi.org/10.20517/ces.2022.12


Huang et al. Complex Eng Syst 2022;2:11 I http://dx.doi.org/10.20517/ces.2022.12 Page 11 of 12

Copyright
©The Author(s) 2022.

REFERENCES
1. Lapierre L, Zapata R, Lepinay P. Combined pathfollowing and obstacle avoidance control of a wheeled robot. Int J Rob Res 2007;26:361–

75. DOI
2. Diveev A, Konstantinov S. Study of the practical convergence of evolutionary algorithms for the optimal program control of a wheeled

robot. J Comput Syst Sci Int 2018;57:561–80. DOI
3. Kashyap AK, Pandey A. Different natureinspired techniques applied for motion planning of wheeled robot: a critical review. Int J Adv

Robot Autom 2018;3:1–10. DOI
4. Li Y. Business plan for autonomous delivery robot. ICA 2020;11:33. DOI
5. Bontikous S, Guérin A, Postaire M, et al. A drug storage delivery robot in a cold room: a new feature to consider. J Pharm Clin

2019;38:24–26. DOI
6. Luo RC, Lin TY, Su KL. Multisensor based security robot system for intelligent building. Robotics and Autonomous Systems 2009;57:330–

38. DOI
7. Dong F, Fang S, Xu Y. Design and implementation of security robot for public safety. In: 2018 International Conference on Virtual Reality

and Intelligent Systems (ICVRIS). IEEE; 2018. pp. 446–49. DOI
8. Belanche D, Casaló LV, Flavián C, Schepers J. Service robot implementation: a theoretical framework and research agenda. The Service

Industries Journal 2020;40:203–25. DOI
9. Baraka K, Veloso MM. Mobile service robot state revealing through expressive lights: formalism, design, and evaluation. Int J of Soc

Robotics 2018;10:65–92. DOI
10. Patle B, Pandey A, Parhi D, et al. A review: on path planning strategies for navigation of mobile robot. Defence Technology 2019;15:582–

606. DOI
11. Zhang Hy, Lin Wm, Chen Ax. Path planning for the mobile robot: A review. Symmetry 2018;10:450. DOI
12. Ghosh S, Panigrahi PK, Parhi DR. Analysis of FPA and BA metaheuristic controllers for optimal path planning of mobile robot in

cluttered environment. IET Science, Measurement & Technology 2017;11:817–28. DOI
13. Zhang L, Li Y. Mobile robot path planning algorithm based on improved A star. In: Journal of Physics: Conference Series. vol. 1848.

IOP Publishing; 2021. p. 012013. DOI
14. Kuswadi S, Santoso JW, Tamara MN, Nuh M. Application SLAM and path planning using Astar algorithm for mobile robot in indoor

disaster area. In: 2018 International Electronics Symposium on Engineering Technology and Applications (IESETA). IEEE; 2018. pp.
270–74. DOI

15. Likhachev M, Koenig S. A generalized framework for lifelong planning A* search. In: ICAPS; 2005. pp. 99–108. DOI
16. Ogata K. A generic approach on how to formally specify and model check path finding algorithms: dijkstra, A* and LPA*. Int J Soft Eng

Knowl Eng 2020;30:1481–523. DOI
17. Likhachev M, Gordon GJ, Thrun S. ARA: formal analysis 2003. Available from: http://www.cs.cmu.edu/afs/cs/Web/People/maxim/files

/ara_tr.pdf.
18. Likhachev M, Gordon GJ, Thrun S. ARA*: anytime A* with provable bounds on suboptimality. Available from: https://www.ri.cmu.e

du/publications/araanytimeawithprovableboundsonsuboptimality/.
19. Karaman S, Walter MR, Perez A, Frazzoli E, Teller S. Anytime motion planning using the RRT. In: 2011 IEEE International Conference

on Robotics and Automation. IEEE; 2011. pp. 1478–83. DOI
20. Agarwal S, Gaurav AK, Nirala MK, Sinha S. Potential and sampling based rrt star for realtime dynamic motion planning accounting for

momentum in cost function. In: International Conference on Neural Information Processing. Springer; 2018. pp. 209–21. DOI
21. Park JK, Chung TM. BoundaryRRT* algorithm for drone collision avoidance and interleaved path replanning. J Infn Pro Syst

2020;16:1324–42. DOI
22. Zhang D, Xu Y, Yao X. An Improved path planning algorithm for unmanned aerial vehicle based on rrtconnect. In: 2018 37th Chinese

Control Conference (CCC). IEEE; 2018. pp. 4854–58. DOI
23. Li S, Zhao D, Sun Y, Yang J, Wang S. Path planning algorithm based on the improved RRTconnect for home service robot arms. In: 2021

IEEE International Conference on Intelligence and Safety for Robotics (ISR). IEEE; 2021. pp. 403–7. DOI
24. Song B, Wang Z, Zou L. An improved PSO algorithm for smooth path planning of mobile robots using continuous highdegree Bezier

curve. Applied Soft Computing 2021;100:106960. DOI
25. Lamini C, Benhlima S, Elbekri A. Genetic algorithm based approach for autonomous mobile robot path planning. Procedia Computer

Science 2018;127:180–89. DOI
26. Konatowski S, Pawlowski P. Application of the ACO algorithm for UAV path planning. Przeglad Elektrotechniczny 2019;95:115–18. DOI
27. Wang H, Qi X, Lou S, et al. An efficient and robust improved A* algorithm for path planning. Symmetry 2021;13:2213. DOI
28. Song Z, Yuan L. Application of improved A algorithm in mobile robot path planning. In: 2019 3rd International Symposium on Au

tonomous Systems (ISAS); 2019. pp. 534–37. DOI
29. Zhang H, Wang Y, Zheng J, Yu J. Path planning of industrial robot based on improved RRT algorithm in complex environments. IEEE

Access 2018;6:53296–306. DOI

http://dx.doi.org/10.20517/ces.2022.12
http://dx.doi.org/10.1177/0278364907076790
http://dx.doi.org/10.1134/S106423071804007X
http://dx.doi.org/10.15226/2473-3032/3/2/00136
http://dx.doi.org/10.4236/ica.2020.112004
http://dx.doi.org/10.1684/jpc.2018.0401
http://dx.doi.org/10.1016/j.robot.2008.10.025
http://dx.doi.org/10.1109/ICVRIS.2018.00115
http://dx.doi.org/10.1080/02642069.2019.1672666
http://dx.doi.org/10.1007/s12369-017-0431-x
http://dx.doi.org/10.1016/j.dt.2019.04.011
http://dx.doi.org/10.3390/sym10100450
http://dx.doi.org/10.1049/iet-smt.2016.0273
http://dx.doi.org/10.1088/1742-6596/1848/1/012013
http://dx.doi.org/10.1109/elecsym.2018.8615555
http://dx.doi.org/10.5555/3037062.3037075
http://dx.doi.org/10.1142/s0218194020400215
http://www.cs.cmu.edu/afs/cs/Web/People/maxim/files/ara_tr.pdf
http://www.cs.cmu.edu/afs/cs/Web/People/maxim/files/ara_tr.pdf
https://www.ri.cmu.edu/publications/ara-anytime-a-with-provable-bounds-on-sub-optimality/
https://www.ri.cmu.edu/publications/ara-anytime-a-with-provable-bounds-on-sub-optimality/
http://dx.doi.org/10.1109/icra.2011.5980479
http://dx.doi.org/10.1007/978-3-030-04239-4_19
http://dx.doi.org/10.3745/JIPS.04.0196
http://dx.doi.org/10.23919/chicc.2018.8483405
http://dx.doi.org/10.1109/isr50024.2021.9419385
http://dx.doi.org/10.1016/j.asoc.2020.106960
http://dx.doi.org/10.1016/j.procs.2018.01.113
http://dx.doi.org/10.15199/48.2019.07.24
http://dx.doi.org/10/gp9dbr
http://dx.doi.org/10.1109/ISASS.2019.8757742
http://dx.doi.org/10.1109/access.2018.2871222


Page 12 of 12 Huang et al. Complex Eng Syst 2022;2:11 I http://dx.doi.org/10.20517/ces.2022.12

30. Harabor D, Grastien A. Improving jump point search. In: Proceedings of the International Conference on Automated Planning and
Scheduling. vol. 24; 2014. pp. 128–35. Available from: https://www.semanticscholar.org/paper/ImprovingJumpPointSearchHarabor
Grastien/f4b9b6355077685a033d38dd2392684a10fa4db6.

31. Zheng X, Tu X, Yang Q. Improved JPS algorithm using new jump point for path planning of mobile robot. In: 2019 IEEE International
Conference on Mechatronics and Automation (ICMA). IEEE; 2019. pp. 2463–68. DOI

32. Webb J. A straight line is the shortest distance between two points. The Mathematical Gazette 1974;58:137–38. DOI
33. Wang KHC, Botea A. Tractable multiagent path planning on grid Maps. In: IJCAI. vol. 9. Pasadena, California; 2009. pp. 1870–75.

Available from: https://www.ijcai.org/Proceedings/09/Papers/310.pdf.

http://dx.doi.org/10.20517/ces.2022.12
https://www.semanticscholar.org/paper/Improving-Jump-Point-Search-Harabor-Grastien/f4b9b6355077685a033d38dd2392684a10fa4db6
https://www.semanticscholar.org/paper/Improving-Jump-Point-Search-Harabor-Grastien/f4b9b6355077685a033d38dd2392684a10fa4db6
http://dx.doi.org/10.1109/icma.2019.8816410
http://dx.doi.org/10.2307/3617801
https://www.ijcai.org/Proceedings/09/Papers/310.pdf

	1. Introduction
	2. Traditional A* algorithm
	2.1. Grid map
	2.2. A* algorithm

	3. Improved A* algorithm
	3.1. Selective strategy
	3.2. Rules for improvement
	3.2.1. Rules of node expansion
	3.2.2. Rules of forced neighbor
	3.2.3. Rules of jump points
	3.2.4. Rules of nodes
	3.2.5. Rules of path

	3.3. Improved algorithm

	4. Experiment
	5. Conclusion
	Declarations
	Authors' contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright


