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A B S T R A C T
Epigenetic alterations, including DNA methylation, histone modifi cation, loss of genome imprinting, chromatin remodeling 
and non-coding RNAs, are associated with human carcinogenesis. Among them, DNA methylation is a fundamental epigenetic 
process to modulate gene expression. In cancer cells, altered DNA methylation includes hypermethylation of site-specifi c CpG 
island promoter and global DNA hypo-methylation. Detection of aberrant gene promoter methylation has been applied to the 
clinic to stratify risk in cancer development, detect early cancer and predict clinical outcomes. Environmental factors associated 
with carcinogenesis are also signifi cantly related to aberrant DNA methylation. Importantly, epigenetic changes, including altered 
DNA methylation, are reversible and thus, used as targets for cancer therapy or chemoprevention. An increasing number of 
recent studies reported DNA methylation level to be a useful biomarker for diagnosis, risk assessment and prognosis prediction 
for gastrointestinal (GI) cancers. This review summarized the accumulated evidence for clinical application to use aberrant DNA 
methylation levels in GI cancers, including colorectal, gastric and esophageal cancer.
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Introduction
Epigenetics refers to heritable changes in gene expression 
that, unlike mutations, are not attributable to alterations 
in genomic DNA sequences. Epigenetic changes, such 
as DNA methylation, histone modifi cations, and altered 
expression of microRNAs, can regulate gene expression 
through mechanisms other than changes in genomic 
DNA sequence. Among them, genomic DNA methylation 
is a major epigenetic mechanism to mediate the 
X-chromosome inactivation, imprinting and repression 
of endogenous retroviruses.[1-4] DNA methylation is 
the covalent post-replicative addition of a methyl 
group (-CH3) to the 5-carbon of the cytosine ring in 
CpG dinucleotides. CpG dinucleotides are non-uniformly 
distributed throughout the human genome.[2-4] Regions 
of the genome that are rich in sequences of a cytosine 
preceding a guanine (CpG dinucleotide) are known as 
CpG islands, which in particular, exist in the promoter 
regions of approximately half of all coding genes.

Altered DNA methylation in human cancers includes 
hypermethylation of site-specifi c CpG island 
promoter and global DNA hypo-methylation.[1-4] DNA 
methylation in gene promoter CpG islands results 

in its transcriptional inactivity and silence of protein 
expression. Thus, hypermethylation of a gene promoter 
is now recognized as a means of silencing tumor 
suppressor genes with effects similar to those of mutation 
or allelic loss in the development of cancer or other 
diseases.[3] Another DNA methylation alteration in 
human cancer is genome-wide DNA hypo-methylation.[5] 
Genome-wide DNA hypo-methylation appears to play 
an important role in genomic instability, leading to 
cancer development.[6-8] Previous experimental studies 
demonstrated that DNA hypo-methylation of repetitive 
sequences, that is,  short interspersed transposable 
elements (SINE or Alu elements) or long interspersed 
transposable elements (LINEs) may predispose cells to 
chromosomal defects and rearrangements, resulting in 
genetic instability.[6] As LINE-1 constitutes a substantial 
portion (approximately 17%) in the human genome, 
levels of LINE-1 methylation are regarded to be 
surrogate markers for global DNA methylation.[9] Thus, 
epigenetic regulation of gene expression has emerged 
as a fundamental way in pathogenesis of numerous 
malignancies, including cancers of the digestive system. 
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In fact, many exciting discoveries in epigenetics have 
emerged from the study of gastrointestinal (GI) cancers. 
In this review, we summarized the accumulated evidence 
supporting the clinical application of DNA methylation 
level in diagnosis of esophageal, gastric and colorectal 
cancers.

Altered DNA Methylation in Esophageal Cancer
Esophageal cancer can be classifi ed into two histological 
types,   esophageal squamous cell carcinoma (ESCC) and 
esophageal adenocarcinoma (    EAC). Their incidences 
vary notably by geographic distribution. ESCC accounts 
for approximately 90% of the esophageal cancers in 
East Asian countries,[10,11] whereas the highest number of 
EAC is found in Northern and Western Europe, North 
America and Oceania.[12] These two subtypes also have 
different epigenetic alterations. Growing evidence suggests 
that there is a fi eld of epigenetic changes in esophageal 
cancer[13-15] by particularly emphasized signifi cance of 
promoter hypermethylation of 14 specifi c genes (SFRP1, 
SFRP2, DCC, APC, p16, p14, APBA1, APBA2, APBA3, 
CACNA1G, PTGS2, DAPK1, MLH1 and MGMT) in 
non-cancerous mucosae from ESCC patients vs. mucosae 
from healthy volunteers,[13] indicating that aberrant 
methylation or these 14 gene promoters in esophageal 
mucosae is associated with ESCC development. An 
overview of different previous studies of clinical 
implications of DNA methylation in esophageal cancer 
is provided in Table 1. Aberrant promoter methylation 
of tumor suppressor genes has also been used to predict 
clinical outcomes following curative ESCC resections. 
For example, promoter methylation of APC has been 
associated with reduced survival of ESCC patients after 

esophagectomy.[16] Ling et al.[17] showed that MSH2 
promoter hypermethylation in circulating tumor DNA 
was a valuable predictor of disease-free survival of ESCC 
patients after esophagectomy. Aberrant methylation of 
FHIT was also reported to be associated with exposure to 
tobacco smoking and individuals with early-stage ESCC 
whose tumors exhibited FHIT hypermethylation had poor 
prognoses.[18] CDH1 hypermethylation was detected in 
14-61% of ESCC, which was associated with recurrence 
of early-stage ESCC.[19] Moreover, aberrantly methylated 
gene promoters were also detected in plasma or sera of 
ESCC patients. Hibi et al.[20] showed that p16 promoter 
methylation in ESCC specimens had this same methylation 
change in their serum DNA in 23% the of patients, which 
implied that detection of serum DNA p16 promoter 
methylation could serve as a tumor marker. However, few 
studies have addressed or detected DNA hypo-methylation 
in ESCC. LINE-1 methylation is regarded as a surrogate 
marker for global DNA methylation. To better understand 
DNA methylation in ESCC tissues, our group measured 
their LINE-1 methylation using the pyrosequencing 
technology. Chronic tobacco smoking and heavy 
alcohol drinking are established as risk factors for 
ESCC development.[21-25] LINE-1 hypo-methylation is 
signifi cantly associated with tobacco smoking, which 
supports its plausibility as a surrogate marker for an 
epigenetic fi eld defect.[26] LINE-1 methylation is highly 
variable among ESCC specimens (25-92%) and its 
hypo-methylation is strongly associated with poor ESCC 
prognosis.[27] Moreover, loss of insulin-like growth factor 
2 (IGF2) imprinting has been found in ESCC and loss of 
IGF2 methylation is associated with shorter survival of 
patients.[28]

Table 1: Association of gene promoter methylation with clinical outcomes of esophageal cancer patients
Gene Histological type Correlation with clinical outcomes Reference
DNA hypermethylation

APC ESCC Associated with poor prognosis [16]
CDH1 ESCC Associated with poor prognosis [19]
p16 ESCC Associated with poor prognosis, serum promoter methylation [20,94]
Claudin-4 ESCC Associated with poor prognosis [95]
FHIT ESCC Associated with poor prognosis and tobacco/alcohol consumption [18,96]
Integrin α4 ESCC Associated with poor prognosis [19]
MGMT ESCC Association with lymph node metastasis [97]
MSH2 ESCC Associated with poor prognosis [17,98]
AKAP12 Barrett/BAC Progression prediction in Barrett’s esophagus [31]
CDH13 Barrett/BAC Progression prediction in Barrett’s esophagus [31]
p16 Barrett/BAC Progression prediction in Barrett’s esophagus [31,99]
HPP1 Barrett/BAC Progression prediction in Barrett’s esophagus [31,99]
NELL1 Barrett/BAC Progression prediction in Barrett’s esophagus [31]
RUNX3 Barrett/BAC Progression prediction in Barrett’s esophagus [31,99]
SST Barrett/BAC Progression prediction in Barrett’s esophagus [31]
TAC1 Barrett/BAC Progression prediction in Barrett’s esophagus [31]

DNA hypomethylation
IGF2 ESCC Associated with poor prognosis [28]
LINE-1 ESCC Associated with poor prognosis and tobacco consumption [26,27]

ESCC: Esophageal squamous cell carcinoma; Barrett/BAC: Barrett’s esophageal adenocarcinoma
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In EAC, methylation patterns of promoter CpG 
islands in several genes, such as tumor suppressor 
genes (APC, TIMP3, SFRP1, SFRP2, WIF1, AKAP12, 
RUNX3, SOCS1 and SOCS3) and DNA repair 
genes (MGMT), have been reported previously.[29] In 
Barrett’s esophagus, a pre-malignant condition that can 
lead to EAC development, aberrant DNA methylation 
has also been shown to occur in promoters of tumor 
suppressor genes, adhesion molecules and DNA repair 
genes (AKAP12, APC, CDH13, DAPK1, GPX, GST, 
MGMT, NELL1, REPRIMO/RPRM, p16, SFRP, 
SOCS, SST, TAC1, TIMP3 and WIF1).[30] Jin et al. 
reported that promoter hypermethylation of eight genes 
(p16, RUNX3, HPP1, NELL1, TAC1, SST, AKAP12 and 
CDH13) could predict neoplastic progression risk in 
Barrett’s esophagus.[31] However, in the study of DNA 
hypo-methylation in Barrett’s EAC (BAC), Alvarez et al. 
reported a predominance of DNA hypo-methylation 
rather than DNA hyper-methylation in early-stage 
of BAC carcinogenesis. They also detected DNA 
hypo-methylation in a series of genes associated with 
the immune system such as chemokines (CXCL1 and 
CXCL3).[32]

Altered DNA Methylation in Gastric Cancer
Gastric cancer is the fourth most frequently diagnosed 
cancer and the second leading cause of cancer-related 
deaths in the world.[33] Gastric adenocarcinoma accounts 
for 90-95% of gastric cancer and has two histological 
subtypes (intestinal and diffuse) based on microscopic 
observation and tumor growth patterns, which differ 

widely in molecular pathogeneses.[34] Nonetheless, 
epigenetic alterations play important roles in the 
development of both gastric carcinoma types. Gene 
promoter methylation has been reported to associate with 
gastric cancer development, such as CDKN2A, CDK2AP2, 
CDH1, MGMT, RASSF1, RUNX3, DLC1, ITGA4, ZIC1, 
PRDM5, PCDH10, TFPI2, RUNX3, SPINT2, BTG4, 
SFRP2, hMLH1, DKK-3, TCF4, GRIK2, RAR, CHFR, 
BNIP3, RASSF1A, LRP1B and SFRP5, promoter of 
which was more frequently methylated in gastric cancer 
tissues than those of the corresponding normal gastric 
tissue.[35,36] Furthermore, promoter methylation of many 
genes with different biological functions has been 
associated with the clinicopathological characteristics 
and prognosis of gastric cancer [Table 2].[37] Of these 
genes, promoter hypermethylation of CDH1[38] and 
MGMT[39,40] was associated with worse outcomes of 
gastric cancer patients after surgery. However, patients 
with hypermethylated IGF2 in blood leukocyte DNA 
reportedly had a signifi cantly better survival rate than 
those with hypo-methylated IGF2.[41] Additionally, 
DNA methylation of detected in body fl uids that can 
be obtained non-invasively, such as serum and gastric 
washes, may have a clinical application for gastric cancer; 
for example, detection of aberrant DNA methylation 
of CDH1, DAPK, GSTP1, p15, p16, RARβ, RASSF1A, 
RUNX3 and TFPI2 in serum may be a useful biomarker 
for gastric cancer.[42]

Environmental factors also signifi cantly affect 
DNA methylation. Etiological studies have closely 
associated two distinct infectious agents, Helicobacter 

Table 2: Association of gene promoter methylation with clinical outcomes of gastric cancer
Gene Correlation with clinical outcomes References
DNA hypermethylation

BNIP3 Association with poor prognosis [100,101]
CACNA2D3 Correlation with lymph node metastasis [102]
CDH1 Association with poor prognosis, H. pylori infection, and EBV infection [38,46,49-51]
DAPK Correlation with cell differentiation, lymph node metastasis [100,103]
FLNc Association with poor prognosis [104]
GPX3 Correlation with lymph node metastasis [105,106]
HAI-2/SPINT2 Correlation with cell differentiation, lymph node metastasis [107]
HoxD10 Association with poor prognosis [108]
LOX Association with poor prognosis and H. pylori infection [45]
MGMT Association with poor prognosis [103,104,109]
MLH1 Association with poor prognosis [104]
p15 Association with EBV infection [49-51]
p16 Association with poor prognosis, H. pylori infection and EBV infection [38,46,49-51,102,104]
p73 Association with EBV infection [52]
PAX6 Association with poor prognosis [100]
RASSF1A Association with poor prognosis [100,103]
RASSF2 Association with poor prognosis [104]
RUNX3 Correlation with TNM stage and H. pylori infection [110,111]

DNA hypormetylation
LINE-1 Association with poor prognosis and H. pylori infection [55,56]
SURF Association with poor prognosis [57]

H. pylori: Helicobacter pylori; EBV: Epstein-Barr virus
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pylori and Epstein-Barr virus (EBV) with gastric 
carcinogenesis.[43,44] Previous prospective studies showed 
that H. pylori infection had an essential role in gastric 
carcinogenesis[43] and the mechanisms, underlying 
gastric carcinogenesis due to H. pylori-induced 
DNA methylation, had been indicated. H. pylori 
infection induced aberrant promoter methylation in 
tumor-suppressor genes, such as RUNX3, p16, LOX 
and CDH1.[45,46] Furthermore, IL-1β is thought to be 
especially signifi cant as a specifi c single-nucleotide 
polymorphism of IL-1β in association with increases in 
both gastric cancer risk and incidence.[47,48] EBV infection 
occurs at a very early-stage in cancer development 
and plays an important role in gastric carcinogenesis. 
Aberrant methylation of tumor suppressor genes, such 
as CDH1, p15, p16 and p73, is frequently observed 
in EBV-associated gastric cancer but is less frequently 
detected in adjacent non-neoplastic mucosa,[49-52] 
which suggests that aberrant methylation is a critical 
mechanism of EBV-related gastric tumorigenesis. 
Regarding the molecular mechanisms underlying host 
DNA methylation during early-stage EBV infection in 
gastric epithelium, LMP2A expression was upregulated 
through STAT3 phosphorylation, which further induced 
DNA methyltransferases during EBV infection.[53]

However, few studies addressed or detected DNA 
hypo-methylation in gastric cancer. In gastric cancer, 
global genomic hypo-methylation has been found in 
premalignant stages of the disease.[54] In our previous 
study that assessed 203 resected gastric cancer specimens, 
we found gastric cancer tissues had signifi cantly lower 
LINE-1 methylation levels than that of their matched 
normal gastric mucosa. LINE-1 hypo-methylation in 
gastric cancer was also associated with shorter survival 
of patients.[55] Moreover, LINE-1 hypo-methylation 
of non-cancerous gastric mucosae in gastric cancer 
patients signifi cantly correlated with H. pylori 
infection.[56] Hur et al. reported that gastric cancer tissues 
had conspicuously higher expression of SULF1 regulated 
by promoter hypo-methylation than that of the normal 
mucosa. SULF1 is also an independent prognostic factor, 
and LN is a metastasis predictive factor in gastric cancer 
patients.[57]

Altered DNA Methylation in Colorectal Cancer
Aberrant DNA methylation was reported as an important 
hallmark of colorectal cancer. Colorectal cancer is 
a heterogeneous disease and molecularly, it can be 
classifi ed into three major molecular subtypes, that is, 
microsatellite instability (MSI), chromosomal instability 
and CpG island methylator phenotype (CIMP).[58] In 
1999, Baylin and Issa et al. coined the term “CpG island 
methylator phenotype” or CIMP, in which promoter of 
tumor suppressor genes was methylated to contribute 
to tumorigenesis at least in theory through progressive 
genetic silence, possibly even in the absence of any 
genetic mutations.[59] According to epigenetic and clinical 

profi les, primary colorectal cancer is divided into 
three distinct subclasses, that is, CIMP1, CIMP2 and 
CIMP-negative. CIMP1 tumor often shows mutations of 
MSI (80%) and BRAF (53%) while CIMP2 tumor often 
shows K-RAS mutation (92%) but rarely shows MSI or 
BRAF or TP53 mutations. Non-CIMP tumor has a high 
frequency of TP53 mutations (71%).[60] CIMP1 has a 
favorable prognosis, whereas CIMP2 is associated with 
poor prognosis.[60] Cancer CIMP status has been assessed 
as a predictive marker for 5-FU responsiveness.[61]

Colorectal cancer with CIMP is distinct from those with 
chromosomal instability, and there are two forms of 
nuclear derangement represented alternative pathways 
for colorectal cancer development,[62,63] which overlap 
somewhat as hypermethylation can occur in APC and 
is part of the chromosomal instability pathway,[64] or 
in the MLH1 gene, triggering MSI.[65] MLH1 accounts 
for approximately 40% of the cases of the hereditary 
colorectal cancer and Lynch syndrome.[66] Detection 
of MLH1 methylation is currently used to discriminate 
between sporadic colorectal cancer with MSI and familial 
forms (Lynch syndrome).[67] Methylation of MGMT 
promoter also occurs during colorectal cancer progression 
in either pathway and may facilitate the accumulation of 
point mutations as tumors evolve.[65]

The CpG island methylation affects a number of genes 
in colon cancer, and signifi cance of these epigenetic 
alterations in colon cancer pathogenesis has been 
widely reported.[68,69] Hundreds of gene promoters 
have been found to be aberrantly methylated in the 
average colorectal cancer genome and their number 
is ever-growing, including genes of the Wnt signaling 
pathway such as APC, AXIN2, DKK1, SFRP1, SFRP2 
and WNT5A, the DNA repair genes MGMT, hMLH1 and 
hMLH2, cell cycle-related genes such as p14, p15 and 
p16, RAS signaling genes RASSF1A and RASSF1B and 
many more.[70,71]

Several DNA methylation markers have been proposed 
as useful early biomarkers for colorectal cancer early 
detection and prediction of prognosis. For instance, 
methylation of MLH1 can be detected in colorectal 
cancer tissue samples[72] or blood[73] to help interpret 
MSI because its presence helps to exclude diagnosis of 
Lynch syndrome. The presence of aberrantly methylated 
SEPT9 (which encodes a GTPase that is involved in 
dysfunctional cytoskeletal organization) in plasma is a 
valuable and minimally invasive blood-based polymerase 
chain reaction test with a sensitivity of almost 70% and 
a specifi city of 90% in colorectal cancer detection.[74-78] 
In fact, an assay that detects hypermethylated SEPT9 
is now being commercialized and offered in some 
parts of Europe to screen colorectal cancer. Moreover, 
detection of aberrant methylation of vimentin in fecal 
DNA was reported in colorectal cancer when compared 
with normal control;[79] the sensitivity and specifi city 
of methylated vimentin for colorectal cancer were 88% 
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and 87%, respectively.[80] Kamimae et al. have recently 
shown that detection of DNA methylation in mucosal 
wash fl uid from patients undergoing colonoscopy may be 
a good molecular marker for predicting invasiveness of 
colorectal tumors.[81]

Promoter hypermethylation of MLH1, MGMT 
and HIC1 can be detrimental and lead to cancer 
progression.[82-85] Seven additional genes (TIMP3, 
CXCL12, ID4, IRF8, CHFR, IGFBP3 and CD109) were 
frequently methylated in late-stage colorectal cancer and 
could have a role in colorectal cancer progression and 
metastasis.[71,86,87] Yi et al. observed that colorectal cancers 
that have silenced (methylated) genes in the extracellular 
matrix-remodeling pathway, such as IGFBP3, EVL, 
CD109 and FLNC, showed worse survival, suggesting 
that methylation of this pathway-related genes might 
represent a prognostic signature for colorectal cancer 
patients.[87] Moreover, hypo-methylation of the IGF2 
differentially methylated region in colorectal tumors was 

associated with poor prognosis.[88] However, all of these 
possible markers need to be further validated before they 
are used clinically.

Global hypo-methylation may infl uence tumor progression 
by making chromosomes more susceptible to breakage 
and causing disruption of normal gene structure and 
function, leading to reactivating previously silenced 
retrotransposons.[89-91] Most recent research on LINE-1 
methylation levels in GI cancers has focused on colorectal 
cancer; Ogino et al. reported LINE-1 methylation 
levels widely occurred and approximately normally 
distributed (range: 23.1-90.3%) in a cohort of 869 
colorectal cancer patients.[92] LINE-1 hypo-methylation 
was inversely associated to the MSI and CIMP;[92,93] 
these fi ndings suggest that CIMP/MSI and genomic 
hypo-methylation represent different pathways in 
colorectal cancer development. A summary of reported 
gene methylation in stool, blood and tissue samples of 
patients with colorectal cancer is shown in Tables 3 and 4.

Table 3: Association of gene promoter methylation with diagnosis of colorectal cancer
Gene Specimen type Correlation with clinical outcomes References
DNA hypermetylation Diagnosis

AGTR1 Stool Diagnosis of CRC [112]
ALX4 Blood Diagnosis of colorectal adenomas and cancers [113]
APC Blood Diagnosis of CRC [114]
BMP3 Stool Diagnosis of colorectal adenomas and cancers [115]
BMP3 Tissue Diagnosis of colorectal adenomas and cancers [112]
CNIP1 Stool Diagnosis of CRC [116]
DAPK Blood Diagnosis of CRC [117]
FBN1 Stool Diagnosis of CRC [116]
GATA-5 Stool Diagnosis of CRC [118]
IGFBP7 Cells Diagnosis of CRC [119]
INA Stool Diagnosis of CRC [116]
MAL Stool Diagnosis of CRC [116]
MGMT Blood Diagnosis of CRC [114]
MLH1 Blood, cells Diagnosis of sporadic MSI CRC [73]
NDRG4 Stool Diagnosis of CRC [120]
NDRG4 Stool Diagnosis of colorectal adenomas and cancers [115]
NEUROG1 Blood Diagnosis of CRC [121]
NGFR Blood Diagnosis of CRC [74]
p16 Blood Diagnosis of CRC [122]
RASSF2 Stool Diagnosis of CRC, distinction from gastric cancer [123]
RASSF2A Blood Diagnosis of CRC [114]
RUNX3 Blood Diagnosis of CRC [124]
SDC2 Blood Diagnosis of CRC [125]
SEPT9 Blood Diagnosis of CRC [74,75]
SFRP2 Stool, blood, tissue Diagnosis of CRC, distinction from gastric cancer [123]
SLIT2 Stool Diagnosis of CRC [112]
SNCA Stool Diagnosis of CRC [116]
SPG20 Stool Diagnosis of CRC [116]
TFPI2 Stool Diagnosis of colorectal adenomas and cancers [115]
TMEFF2 Blood Diagnosis of CRC [74]
Vimentin Stool, blood Diagnosis of colorectal adenomas and cancers [126]
WIF1 Blood Diagnosis of CRC [114]
WNT1 Stool Diagnosis of CRC [112]

CRC: Colorectal cancer; MSI: Microsatellite instability
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Conclusion
In this review, we have summarized the main epigenetic 
alterations in GI cancer-global DNA hypo-methylation 
and site-specifi c CpG island promoter hypermethylation 
with clinical characteristics in patients with GI cancers. 
Epigenetic signatures have a potential usefulness in 
early diagnosis, screening, monitoring and prediction of 
prognoses or therapy responses for GI cancer patients. 
Further investigation in this fi eld would increase our 
knowledge of epigenetic alterations of GI cancer and help 
to develop novel therapeutic strategies for GI cancers.
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