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Abstract
This paper proposes the topics of slidingmode control for nonlinear Takagi-Sugeno systems based on a state observer
with application to single-link flexible joint robotic. Firstly, a state observer relying on estimated premise variables is
constructed, based onwhichwe define an integral-type switching surface function on the estimation space. Secondly,
by the equivalent control method, a sliding mode dynamics with an error system is obtained. Then, an adaptive
variable structure controller is constructed to make sure that the predefined switching surface will be arrived in finite-
time. Furthermore, stability analysis with an 𝐻∞ performance is analyzed for the whole closed-loop system by linear
matrix inequality condition. Finally, simulation study based on the robotics is conducted to confirm the validity of the
proposed observer-based fuzzy controller.

Keywords: Sliding mode control, nonlinear systems, observer design, robotics

1. INTRODUCTION
The research of nonlinear systems has always been the most popular topic in control theory and applications.
Since nomatter from internal and external perturbations or mechanism of dynamics, systems suffer from non-
linearities is more common in practice. However, many traditional tools were good at tackling linear systems
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and invalid for nonlinear systems. Therefore, the issue of nonlinear control strategies comes to researchers’
eyes, one of which was the Takagi-Sugeno (T-S) fuzzy approaches [1], which was viewed as a powerful math-
ematical method in dealing with complex nonlinear dynamics. Relying on a group of “IF-THEN” rules, the
T-S fuzzy model provides accurate approximation of smooth nonlinear terms via fuzzy “blending” of local lin-
ear dynamics with the help of membership functions. Recently, fruitful research results have been proposed
in literature by virtue of the T-S fuzzy approach. For example, the fault prognostics when the degradation
phenomena exhibit nonlinear and time-varying dynamics by error based revolving T-S fuzzy model in [2]; An
input-output stabilization issue for time-delay systems via T-S fuzzy method was studied in [3]; In [4], the fuzzy
observer design and 𝐻∞ controller designs for T-S fuzzy systems were investigated, for more details, see [5–7]

and references therein.

Sliding mode control (SMC) [8] has received great attention in the last decades for its powerful effectiveness
in dealing with complex systems. It is already well known that the SMC has many good features, for instance,
totally insensitive to the matched system disturbance, simplicity in computation and better transient perfor-
mance. Therefore, it has witnessed great efforts been undertaken in the application of SMC, such as switching
power converters [9]; robot manipulators [10]; Furuta pendulum [11]; electric circuits [12], fuel cell systems [13],
etc.; In general, the design of SMC contains two steps: (a) The switching surface design; (b) the sliding mode
controller design. For the issue (a), it is worth noting that significant efforts have been devoted to the integral-
type sliding surface design since it is acknowledged that the reaching action is no longer required in a con-
ventional SMC approach by designing an integral switching hyperplane. Thus, the robustness can be achieved
along the whole sliding surface, which motivates us to further investigate this issue in the paper. Recently, a
few nice works have been reported on this issue, for instance, several crucial problems regarding the perfor-
mance, modification, and improvement of integral SMC was discussed in [14]; the problems of observer-based
integral SMC and fault estimation for nonlinear systems was investigated in [15]; The decentralized adaptive
integral SMC scheme was developed to stabilize large-scale interconnected systems in [16], see more in [17–21].
For the issue (b), a lot of advanced methods have been incorporated into the sliding mode controller design,
for instance the fuzzy logic and the adaptive algorithm approaches. The proportional-derivative-based fuzzy
SMC was developed to deal with un-modeled dynamics and external disturbances in the human-exoskeleton
system in [22]; An adaptive SMC was proposed in [23] in order to adapt switching gain such that to cope with
possibly unknown system uncertainty. Regarding the application of SMC in the field of flexible joint manipu-
lators is also appealing due to its flexibility in the controller design. Recently, some nice works have appeared,
for example, an adaptive SMC method was proposed for a single-link joint robot taking consideration of mis-
matched uncertainties in [24]; In [25], a hierarchical SMC was presented for a rotary flexible joint manipulator
through Lyapunov function theory; In [26], the SMCmethod introduced to deal with the fault-tolerant tracking
control for a single-link joint manipulator, etc. However, these results did not take the advantages of T-S fuzzy
approaches.

On one hand, the system state components are not always available because of various limitations in practice,
which means the analysis and feedback control of such systems based on observers is imperative. On the other
hand, it happens that the system premise variables are the same with the state components, thus to achieve
an effective sliding mode observer design by T-S fuzzy method, the estimated fuzzy dynamics combined with
state-dependent premise variables must be considered in many practical problems. So far, a few pioneer works
have taken efforts on this problem, for instance, the fuzzy state observer design in the sense uncertain input
was proposed in [27]. To the authors’ knowledge, the issue of adaptive integral SMC for nonlinear T-S system
with unmeasurable variables is interesting and an open issue to be studied.

In view of above discussion, this paper intents to investigate the issue of observer-based fuzzy integral SMC
for nonlinear T-S systems. Based on the single-link flexible joint robotics models, a fuzzy model approach is
introduced to obtain universal mathematical model. By designing an adaptive compensator in the state ob-

http://dx.doi.org/10.20517/ces.2021.05


Liu et al. Complex Eng Syst 2021;1:8 I http://dx.doi.org/10.20517/ces.2021.05 Page 3 of 14

server, an integral-type hyperplane function is proposed on the estimated space. The reachability of switching
surface in finite-time is ensured by an adaptive sliding mode controller. A strict LMI condition is developed
ensure stability and an 𝐻∞ performance for the whole closed-loop dynamics.

Notations: In this paper, 𝑋 > 0 depicts a positive definite matrix. ‖ · ‖ is a norm for Euclidean vector or
spectral matrix. 𝜆𝑚𝑖𝑛 (·) refers to minimummatrix eigenvalue. ∗ denotes a matrix symmetric elements. He{𝑃}
represents 𝑃𝑇 + 𝑃.

2. PRELIMINARIES
Let’s consider the following single-link flexible joint robotic dynamics [28]:



¤𝜗𝑚 (𝑡) = 𝜔𝑚 (𝑡)

¤𝜔𝑚 (𝑡) =
𝑘

𝐽𝑚
(𝜗𝑙 (𝑡) − 𝜗𝑚 (𝑡)) −

𝐵𝑚
𝐽𝑚
𝜔𝑚 (𝑡) +

𝑘 𝑙
𝐽𝑚
𝑢(𝑡)

¤𝜗𝑙 (𝑡) = 𝜔𝑙 (𝑡)

¤𝜔𝑙 (𝑡) = − 𝑘
𝐽𝑙
(𝜗𝑙 (𝑡) − 𝜗𝑚 (𝑡)) −

𝑚𝑔ℎ

𝐽𝑙
sin(𝜗𝑙 (𝑡))

(1)

inwhich𝜗𝑚 (𝑡) and𝜗𝑙 (𝑡) denote the angles ofmotor and link rotations, respectively. The corresponding angular
velocities are denoted by 𝜔𝑚 (𝑡) and 𝜔𝑙 (𝑡). 𝐽𝑚 is the inertia of the actuator and 𝐽𝑙 means the inertia of the link.
The following Table 1 shows the meaning of some other parameters.

Now, denote 𝜃1(𝑡) = 𝜗𝑚 (𝑡), 𝜃2(𝑡) = 𝜔𝑚 (𝑡), 𝜃3(𝑡) = 𝜗𝑙 (𝑡) and 𝜃4(𝑡) = 𝜔𝑙 (𝑡). Then, following the method
proposed in [29] that under certain angle position, the function sin(𝜃3(𝑡)) can be presented as

sin(𝜃3(𝑡)) = ℎ1(𝜃3(𝑡))𝜃3(𝑡) + 𝛽ℎ2(𝜃3(𝑡))𝜃3(𝑡),

where 𝛽 = 0.01/𝜋 is a constant and ℎ1(𝜃3(𝑡)) + ℎ2(𝜃3(𝑡)) = 1 with ℎ1(𝜃3(𝑡)), ℎ2(𝑥3(𝑡)) ∈ [0, 1]. Consequently,
the functions ℎ1(𝜃3(𝑡)) and ℎ2(𝜃3(𝑡)) are solved as

ℎ1(𝜃3(𝑡)) =


sin(𝜃3(𝑡)) − 𝛽𝜃3(𝑡)
𝜃3(𝑡)(1 − 𝛽) , 𝑥3(𝑡) ≠ 0,

1, 𝜃3(𝑡) = 0,

ℎ2(𝜃3(𝑡)) =

𝜃1(𝑡) − sin(𝜃3(𝑡))
𝜃3(𝑡) (1 − 𝛽) , 𝜃3(𝑡) ≠ 0,

0, 𝜃3(𝑡) = 0,

It is easily seen in above functions that ℎ1(𝜃3(𝑡)) = 1 and ℎ2(𝜃3(𝑡)) = 0 if 𝑥3(𝑡) is about 0 rad, ℎ1(𝜃3(𝑡)) = 0
and ℎ2(𝜃3(𝑡)) = 1 if 𝜃3(𝑡) is about 𝜋 rad or −𝜋 rad. Therefore, in the state-space, the robotic system(1) can be
presented by:
Plant Rule 1: IF 𝜃3(𝑡) is “about 0 rad,”
THEN

¤𝜃 (𝑡) = 𝐴1𝜃 (𝑡) + 𝐵𝑢(𝑡).

Plant Rule 2: IF 𝜃3(𝑡) is “about 𝜋 rad or −𝜋 rad,”
THEN

¤𝜃 (𝑡) = 𝐴2𝜃 (𝑡) + 𝐵𝑢(𝑡).

where 𝜃 (𝑡) = [𝜃𝑇1 (𝑡) 𝜃𝑇2 (𝑡) 𝜃𝑇3 (𝑡) 𝜃𝑇4 (𝑡)]𝑇 and
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Table 1. NOTATIONS

Symbols Meaning

m (kg) Pointer mass
h (m) Link length
k (N.m.rad−1) Torsional spring constant
k𝑙 (N.m.V−1) Viscous friction coefficient
B𝑚 (N.m.V−1) Amplifier gain

𝐴1 =



0 1 0 0

− 𝑘

𝐽𝑚
−𝐵𝑚
𝐽𝑚

𝑘

𝐽𝑚
0

0 0 0 1
𝑘

𝐽𝑙
0

𝑘 + 𝑚𝑔ℎ
𝐽𝑙

0


𝐴2 =



0 1 0 0

− 𝑘

𝐽𝑚
−𝐵𝑚
𝐽𝑚

𝑘

𝐽𝑚
0

0 0 0 1
𝑘

𝐽𝑙
0

𝑘 + 𝛽𝑚𝑔ℎ
𝐽𝑙

0


𝐵 =


0
𝑘 𝑙
𝐽𝑚
0
0


More generally, by taking consideration of unknown local perturbations, the following universal model is
considered:

Plant Rule 𝑖: IF 𝑥1(𝑡) is 𝐹𝑖1 and 𝑥2(𝑡) is 𝐹𝑖2 and · · · and 𝑥𝑛 (𝑡) is 𝐹𝑖𝑛 THEN{
¤𝑥(𝑡) = 𝐴𝑖𝑥(𝑡) + 𝐵(𝑢(𝑡) + 𝑓 (𝑥(𝑡), 𝑡))
𝑦(𝑡) = 𝐶𝑥(𝑡), (2)

where 𝑥(𝑡) ∈ R𝑛 is the state vector; 𝑥1(𝑡), . . ., 𝑥𝑛 (𝑡) are also seen as the premise variables; 𝐹𝑖 𝑗 (𝑖 = 1, 2 . . . , 𝑟; 𝑗 =
1, 2 . . . , 𝑛) are the fuzzy sets, 𝑢(𝑡) ∈ R 𝑙 is the control input; 𝑦(𝑡) ∈ R𝑞 is the controlled output, 𝐴𝑖 , 𝐵 and 𝐶
are the system matrices with 𝐵 has full column rank. The local unknown nonlinearity function 𝑓 (𝑥(𝑡), 𝑡) is
assumed to satisfy

‖ 𝑓 (𝑥(𝑡), 𝑡)‖ ≤ 𝛼 + 𝛽‖𝑦(𝑡)‖

with 𝛼 > 0 and 𝛽 > being unknown.

By fuzzy blending, the overall system is depicted as:

¤𝑥(𝑡) =
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡)) [𝐴𝑖𝑥(𝑡) + 𝐵(𝑢(𝑡) + 𝑓 (𝑥(𝑡), 𝑡)], (3)

in which ℎ𝑖 (𝑥(𝑡)) stands for the membership function described as ℎ𝑖 (𝑥(𝑡)) =
Π𝑛𝑗=1𝜇𝑖 𝑗 (𝑥 𝑗 (𝑡))∑𝑟
𝑖=1 Π

𝑛
𝑗=1𝜇𝑖 𝑗 (𝑥 𝑗 (𝑡))

, with

𝜇𝑖 𝑗 (𝑥 𝑗 (𝑡)) being the grade of membership of 𝑥 𝑗 (𝑡) in 𝜇𝑖 𝑗 . In addition, for any 𝑡 > 0, it also meets that

ℎ𝑖 (𝑥(𝑡)) ≥ 0 and
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡)) = 1.

In this paper, the purposes are to construct a fuzzy observer-based SMC strategy for the fuzzy system (3)
such that the unknown local nonlinearity can be compensated by adaptive compensator and a prescribed 𝐻∞
performance and good stability property can be obtained.

Remark 1 In the above, we proposed a single-link joint manipulator based system model to study the SMC
design. In fact, we know that SMC can be combined with different algorithm to improve the its performance,
for instance, the super twisting algorithm could avoid some disadvantages of SMC, therefore, it has significant
potential application in the field such as knee exoskeleton [30] and DC-DC converter [31], etc.
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3. MIAN RESULTS
3.1. Fuzzy state observer design
In this section, due to the premise variables are also unmeasurable. Then, the following fuzzy state observer is
constructed:
Plant Rule 𝑖: IF 𝑥1(𝑡) is 𝐹𝑖1 and 𝑥2(𝑡) is 𝐹𝑖2 and · · · and 𝑥𝑛 (𝑡) is 𝐹𝑖𝑛
THEN 

¤̂𝑥(𝑡) = 𝐴𝑖𝑥(𝑡) + 𝐵(𝑢(𝑡) + 𝑣𝑠 (𝑡)) + 𝐿𝑖 (𝑦(𝑡) − 𝑦̂(𝑡))
𝑦̂(𝑡) = 𝐶𝑥(𝑡)
𝑥(0) = 𝜑̂(0)

(4)

where 𝑥(𝑡) and 𝑦̂(𝑡) correspondingly estimate the original state components and output. 𝑣𝑠 (𝑡) is a designed
compensator to attenuate unknown local perturbation. 𝐿𝑖 is the observer gain to be given in advance.

Similarly, the fuzzy observer (4) is depicted by
¤̂𝑥(𝑡) =

𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡)) [𝐴𝑖𝑥(𝑡) + 𝐵(𝑢(𝑡) + 𝑣𝑠 (𝑡)) + 𝐵𝐿𝑖 (𝑦(𝑡) − 𝑦̂(𝑡))],

𝑦̂(𝑡) = 𝐶𝑥(𝑡)
(5)

Let 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) be the estimated error. In view of systems (3) and (5), it obtains the following error
dynamics: 

¤𝑒(𝑡) =
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡)) [(𝐴𝑖 − 𝐵𝐿𝑖𝐶)𝑒(𝑡) + 𝐵( 𝑓 (𝑥(𝑡), 𝑡) − 𝑣𝑠 (𝑡))] + 𝑤(𝑡)

𝑦𝑒 (𝑡) = 𝐶𝑒(𝑡)
(6)

where 𝑤(𝑡) =
𝑟∑
𝑖=1

(ℎ𝑖 (𝑥(𝑡)) − ℎ𝑖 (𝑥(𝑡))) [𝐴𝑖𝑥(𝑡) + 𝐵(𝑢(𝑡) + 𝑓 (𝑥(𝑡), 𝑡))] is seen as disturbance satisfying 𝑤(𝑡) ∈

𝐿2 [0, +∞], from which it is obvious that 𝑤(𝑡) = 0 if 𝑥(𝑡) = 𝑥(𝑡).

3.2. Switching surface design
In this part, relying on the estimated component (5), an integral-type switching surface function is proposed
in the following:

𝑠(𝑡) = 𝐵𝑇𝑥(𝑡) −
∫ 𝑡

0

𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑠))𝐵𝑇 (𝐴𝑖 + 𝐵𝐾𝑖)𝑥(𝑠) d𝑠 (7)

with 𝐾𝑖 ∈ R𝑚×𝑛 to be designed.

Taking the systems (5) and (7) into consideration, it yields

¤𝑠(𝑡) =
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡))𝐺𝐵 [𝐿𝑖 (𝑦(𝑡) − 𝑦̂(𝑡)) − 𝐾𝑖𝑥(𝑡)] + 𝐺𝐵(𝑢(𝑡) + 𝑣𝑠 (𝑡)). (8)

When the switching surface 𝑠(𝑡) = 0 is arrived, i.e., ¤𝑠(𝑡) = 0 , from which it obtains the following equivalent
control variable

𝑢𝑒𝑞 (𝑡) =
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡)) [𝐾𝑖𝑥(𝑡) − 𝐿𝑖 ( 𝑦̂(𝑡) − 𝑦(𝑡))] − 𝑣𝑠 (𝑡) (9)

Then, combining (9) with (5), we have the sliding mode dynamics

¤̂𝑥(𝑡) =
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡)) [(𝐴𝑖 + 𝐵𝐾𝑖)𝑥(𝑡)] , (10)

http://dx.doi.org/10.20517/ces.2021.05
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Remark 2 By proposing the sliding mode observer (4) and switching surface function (7), we can see from the
resulting sliding mode dynamic (10) that the sliding motion is totally insensitive to disturbance 𝑓 (𝑥(𝑡), 𝑡), in
addition, the disturbance can be attenuated by the adaptive compensator 𝑣(𝑠), which verifies the advantages
of SMC in dealing with nonlinear systems.

Up to now, we can conclude the aim of this work is to proposed a fuzzy sliding mode controller based on the
fuzzy observer (5) in order to achieve two goals in the following:

• The systems (6) and (10) are stable in the presence of 𝑤(𝑡) = 0;
• An 𝐻∞ measurement

‖𝑦𝑇𝑒 (𝑠)‖2 ≤ 𝛾2‖𝑤𝑇 (𝑠)‖2 (11)

is satisfied with zero-initial condition, where 𝛾 is a positive scalar.

Now, as we can see, in order to attenuate the unknown local perturbation, 𝑣𝑠 (𝑡) should be designed first. Based
on the assumption made on 𝑓 (𝑥(𝑡), 𝑡), we can employ two variables 𝛼̂(𝑡) and 𝛽(𝑡) to follow corresponding
scalars 𝛼 and 𝛽. Thus, it will be resulted in estimated errors, which are denoted by 𝛼̃(𝑡) = 𝛼̂(𝑡) − 𝛼 and
𝛽(𝑡) = 𝛽(𝑡) − 𝛼, respectively.

So far, we can propose the compensator 𝑣𝑠 (𝑡) below:

𝑣𝑠 (𝑡) = ( |𝛼̂(𝑡) | + |𝛽(𝑡) |‖𝑦(𝑡)‖ + 𝜀)𝑠𝑔𝑛(𝑠𝑒 (𝑡)) (12)

in which it is required that 𝑠𝑒 (𝑡) =
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡))𝐵𝑇𝑃𝑒(𝑡) with 𝐵𝑇𝑃 = 𝑁𝐶, 𝜀 is a positive scalar. In addition,

𝛼̂(𝑡) and 𝛽(𝑡) are designed by

¤̂𝛼(𝑡) = 𝑙1‖𝑠𝑒 (𝑡)‖, ¤̂𝛽(𝑡) = 𝑙2‖𝑦(𝑡)‖‖𝑠𝑒 (𝑡)‖ (13)

with 𝑙1 and 𝑙2 are positive scalars to be selected in advance.

Remark 3 In view of above constrain 𝐵𝑇𝑃 = 𝑁𝐶 , it is reasonable since we can see

𝑠𝑒 (𝑡) =
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡))𝑁𝐶𝑒(𝑡)

=
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡))𝑁 (𝑦(𝑡) − 𝑦̂(𝑡)).

Therefore, in the process of implementing the compensator, unavailable errors will be replaced by the fuzzy
observer components and the original output variables.

3.3. SMC law design
In this part, we are to deal with the reachability of the predefined switching surface 𝑠(𝑡) = 0, to this end, SMC
scheme will synthesized to force the fuzzy observer state trajectories onto the switching surface 𝑠(𝑡) = 0 in
finite-time.
Theorem 1 By Proposing the switching surface function (7). The fuzzy SMC law constructed below can force
the fuzzy observer state trajectories onto the switching surface 𝑠(𝑡) = 0 in finite-time:

𝑢(𝑡) =
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡))𝐾𝑖𝑥(𝑡) − 𝑣𝑠 (𝑡) − (𝜌(𝑡) + 𝜍)𝑠𝑔𝑛(𝑠(𝑡)), (14)
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with 𝜍 > 0 is a tuning parameter,

𝜌(𝑡) =
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡)) [‖𝐿𝑖 ‖‖𝑦(𝑡)‖ + ‖𝐿𝑖𝐶‖‖𝑥(𝑡)‖] .

Proof By considering the following Lyapunov function:

𝑉 (𝑡) = 1
2
𝑠𝑇 (𝑡)(𝐵𝑇𝐵)−1𝑠(𝑡) (15)

Then,

¤𝑉 (𝑡) = 𝑠𝑇 (𝑡) ¤𝑠(𝑡)

= 𝑠𝑇 (𝑡)
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡)) [𝐿𝑖𝐶𝑒(𝑡) − 𝐾𝑖𝑥(𝑡)] + (𝑢(𝑡) + 𝑣𝑠 (𝑡)).

≤ |𝑠(𝑡) |
𝑟∑
𝑖

ℎ𝑖 (𝑥(𝑡)) [‖𝐿𝑖 ‖‖𝑦(𝑡)‖ + ‖𝐿𝑖𝐶‖‖𝑥(𝑡)‖]

− 𝑠𝑇 (𝑡)
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡))𝐾𝑖𝑥(𝑡) + 𝑠𝑇 (𝑡) (𝑢(𝑡) + 𝑣𝑠 (𝑡))

(16)

By substituting (14) into (16), it obtains

¤𝑉 (𝑡) ≤ −𝜍 ‖𝑠(𝑡)‖ < 0 for 𝑠(𝑡) ≠ 0 (17)

Therefore, we can conclude from (17) that the switching surface 𝑠(𝑡) = 0 will be arrived in finite time. The
proof is over.

3.4. 𝐻∞ performance analysis
In this part, we are going to give a sufficient condition to check if the systems (6) and (10) are stable and an
𝐻∞ disturbance attenuation level 𝛾 is satisfied.
Theorem 2 For a selected 𝛾 > 0, the sliding mode dynamic (10) with the error system (6) are stable and satisfy
an 𝐻∞ performance, if there exist positive-definite matrix 𝑃 > 0,𝑄 > 0 and matrix 𝐻𝑖 such that the condition
holds in the following 

𝐻𝑒{𝐴𝑖𝑄 + 𝐵𝐻𝑇𝑖 } 0 0
∗ 𝐻𝑒{𝑃(𝐴𝑖 − 𝐵𝐿𝑖𝐶)} + 𝐶𝑇𝐶 𝑃

∗ ∗ −𝛾2𝐼

 < 0 (18)

and the controller gain is computed by 𝐾𝑖 = 𝐻𝑇𝑖 𝑄
−1 and the state observer gain 𝐿1 is given such that 𝐴𝑖−𝐵𝐿𝑖𝐶

is Hurwitz.
Proof Propose the following Lyapnuov function:

𝑉 (𝑥(𝑡), 𝑒(𝑡), 𝑟𝑡) = 𝑥𝑇 (𝑡)𝑋𝑥(𝑡) + 𝑒𝑇 (𝑡)𝑃𝑒(𝑡) + 𝑙−1
1 𝛼̃2(𝑡) + 𝑙−1

2 𝛽2(𝑡) (19)

in which 𝑋 > 0 and 𝑃 > 0 , Then, ones read

¤𝑉 (𝑥(𝑡), 𝑒(𝑡)) = 2𝑥𝑇 (𝑡)𝑋
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡)) [(𝐴𝑖 + 𝐵𝐾𝑖)𝑥(𝑡)]

+ 2𝑒𝑇 (𝑡)𝑃
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡)) [(𝐴𝑖 − 𝐵𝐿𝑖𝐶)𝑒(𝑡)

+ 𝐵( 𝑓 (𝑥(𝑡), 𝑡) − 𝑣𝑠 (𝑡))] + 2𝑙−1
1 𝛼̃(𝑡) ¤̃𝛼(𝑡) + 2𝑙−1

2 𝛽(𝑡) ¤̃𝛽(𝑡)

(20)
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Taking the compensator 𝑣𝑠 (𝑡) into consideration, it follows

2𝑒𝑇 (𝑡)
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡))𝑃𝐵( 𝑓 (𝑥(𝑡), 𝑡) − (|𝛼̂(𝑡) | + |𝛽(𝑡) |‖𝑦(𝑡)‖

+ 𝜀)𝑠𝑔𝑛(𝑠𝑒 (𝑡))) + 2𝑙−1
1 𝛼̃(𝑡) ¤̃𝛼(𝑡) + 2𝑙−1

2 𝛽(𝑡) ¤̃𝛽(𝑡)
≤ −2𝜀‖𝑠𝑒 (𝑡)‖ < 0.

(21)

Overall, it obtains

¤𝑉 (𝑥(𝑡), 𝑒(𝑡)) ≤
𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑡))𝜂𝑇 (𝑡)Γ𝑖𝜂(𝑡), (22)

where 𝜂(𝑡) = [𝑥𝑇 (𝑡) 𝑒𝑇 (𝑡)]𝑇 , with

Γ𝑖 =

[
Γ1
𝑖 0

0 Γ2
𝑖

]
in which Γ1

𝑖 = 𝐻𝑒{𝑋 (𝐴𝑖 + 𝐵𝐾𝑖)}, Γ2
𝑖 = 𝐻𝑒{𝑃(𝐴𝑖 − 𝐵𝐿𝑖𝐶)}, Now, denote 𝑄 = 𝑋−1, then pre-multiplying Γ𝑖

with 𝑑𝑖𝑎𝑔{𝑄, 𝐼} and post-multiplying Γ𝑖 with 𝑑𝑖𝑎𝑔{𝑄, 𝐼}. Letting 𝐾𝑖𝑄 = 𝐻𝑇𝑖 , it obtains from the condition
(18) that Γ𝑖 < 0. Therefore, there is a scaler 𝜚 ≜ 𝜆min{−Γ𝑖} > 0 such that

𝑉 (𝑥(𝑡), 𝑒(𝑡)) ≤ −𝜚‖𝑥(𝑡)‖2 (23)

Therefore, for any 𝑡 > 0,

¤𝑉 (𝑥(𝑡), 𝑒(𝑡)) −𝑉 (𝑥(0), 𝑒(0)) ≤ −𝜚
∫ 𝑡

0
‖𝑥(𝑠)‖2 d𝑠. (24)

So it yields ∫ 𝑡

0
‖𝑥(𝑡)‖2 d𝑠 ≤ 𝜚−1𝑉 (𝑥(0), 𝑒(0)), (25)

which means the system (10) is stable in the presence of 𝑤(𝑡) = 0. Similarly, it can be proved that the error
dynamic is also asymptotically stable.

Next, let’s consider the𝐻∞ performance for the systems (6) and (10). It is obvious that𝑉 (𝑡) =
∫ +∞

0
¤𝑉 (𝑠) d𝑠 ≥ 0

in the sense of 𝑉 (𝑡) = 0. Therefore,

𝐽 =
∫ +∞

0
[𝑦𝑇𝑒 (𝑠)𝑦(𝑠) − 𝛾2𝑤𝑇 (𝑠)𝑤(𝑠)] d𝑠

≤
∫ +∞

0
[𝑦𝑇𝑒 (𝑠)𝑦(𝑠) − 𝛾2𝑤𝑇 (𝑠)𝑤(𝑠) + ¤𝑉 (𝑠)] d𝑠

=
∫ +∞

0

𝑟∑
𝑖=1

ℎ𝑖 (𝑥(𝑠))𝜁𝑇 (𝑠)Γ̄𝑖𝜁 (𝑠) d𝑠

(26)

in which 𝜁 (𝑡) = [𝑥𝑇 (𝑡) 𝑒𝑇 (𝑡) 𝑤𝑇 (𝑡)]𝑇 ,

Γ̄𝑖 =


Γ𝑖 +

[
0 0
0 𝐶𝑇𝐶

] [
0
𝑃

]
∗ −𝛾2𝐼

 .
Therefore, according to the Schur complement and the condition (18), it obtains that Γ̄𝑖 < 0, which means
𝐽 < 0. Thus, we can drawn the conclusion the systems (6) and (10) are stable, and the 𝐻∞ performance is also
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Figure 1. The state trajectories for the original system.

Table 2. SYSTEM PARAMETERS

Parameter(Units) Value

m(kg) 2.1 × 10−3

h(m) 1.5 × 10−1

k(N · m · rad−1) 1.8 × 10−2

k𝑙(N · m · V−1) 8.0 × 10−2

B𝑚 (N · m · V−1) 4.6 × 10−3

J𝑚 3.7 × 10−3

J𝑙 9.23 × 10−3

satisfied. This completes the proof.

Remark 4 In view of the constrain 𝐵𝑇𝑃2 = 𝑁𝐶 defined in the compensator is not solvable directly. The
following linear condition is proposed, it is true that

(𝐵𝑇𝑃2 − 𝑁𝐶)(𝐵𝑇𝑃2 − 𝑁𝐶)𝑇 = 0

Therefore, there is a scalar 𝜖 > 0 satisfies

(𝐵𝑇𝑃2 − 𝑁𝐶)(𝐵𝑇𝑃2 − 𝑁𝐶)𝑇 < 𝜖 𝐼

In view of the Schur complement, we have[
−𝛼𝐼 𝐵𝑇𝑃2 − 𝑁𝐶
∗ −𝐼

]
< 0 (27)

Therefore, the 𝐻∞ performance issue we proposed before is now turned into by finding a global optimal solu-
tion in the following way:

Min 𝜖 defined in LMI (27)

with the condition in (18) satisfied simultaneously.

Therefore, the design of sliding mode observer in this paper is given as follows: For the plant (2), first, select
appropriate gain matrices 𝐿𝑖 such that 𝐴𝑖 − 𝐿𝑖𝐶 is Hurwitz.]; Second, obtain controller gain matrices 𝐾𝑖 by
solving the inequality in (18) with constrain (27); Third, design compensator 𝑣𝑠 (𝑡) with parameters
gained from the second step; Last, we can design the sliding mode controller.
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4. SIMULATION STUDY
Consider the single-link flexible joint robotic presented in model (1), the values of each parameter are shown
in Table 2. Based on the fuzzy modeling approach proposed before, the system parameters, with 𝑔 = 9.81, can
be obtained as follows:

𝐴1 =


0 1 0 0

−4.864 −1.24 4.864 0
0 0 0 1

1.95 0 −2.285 0


𝐴2 =


0 1 0 0

−4.864 −1.24 4.864 0
0 0 0 1

1.95 0 −1.951 0


𝐵 =


0

2.16
0
0


𝐶 =

[
−0.1 0.1 0.1 0.1

]

By setting the attenuation level 𝛾 = 3.5. Then, solving the LMI condition in remark 2 with the condition (18),
where 𝐿1 = 𝐿2 = 10. Then, we have the following optimal solutions:

𝑄 =108 ×


2.7060 −1.3028 1.5753 −1.7276
−1.3028 5.5120 0.2454 −0.9232
1.5753 0.2454 2.6200 −1.0014
−1.7276 −0.9232 −1.0014 3.1999


𝑃 =


0.0522 0.0088 −0.0488 0.0078
0.0088 0.0041 −0.0078 −0.0005
−0.0488 −0.0078 0.0468 −0.0064
0.0078 −0.0005 −0.0064 0.0066


𝐻1 =108 ×


−0.3675
−2.9150
−1.3093
−0.6199


𝐻2 =108 ×


−0.4110
−2.9027
−1.3857
−0.7632


𝑁 = 0.0654, 𝜖 = 5.5473 × 10−4.

Therefore, the controller gain matrices can be computed as

𝐾1 = [−1.5460 − 1.1205 0.0206 − 1.3452] 𝐾2 = [−1.6556 − 1.1637 0.0164 − 1.4629]

With the help of above parameters, the simulation is performed in the following. Firstly, the initial conditions
of original system and observer system are provided as 𝑥(𝑡) = [0.1 0.1 −0.1 −0.1]𝑇 and 𝑥(𝑡) = [0 0 0 0]𝑇 . The
unknown disturbance is assumed to be 𝑓 (𝑥(𝑡)) = 0.01 sin(𝑥1(𝑡)), in the implementation of the adaptive com-
pensator and fuzzy controller, relevant parameters are given as 𝑙1 = 𝑙2 = 0.01, 𝜀 = 0.01 and 𝜍 = 0.01. Besides,
the switching signals 𝑠𝑔𝑛(𝑠(𝑡)) will be changed by 𝑠(𝑡)/(‖𝑠(𝑡)‖ + 0.01) to remove chattering effect. Conse-
quently, the simulation outcomes are shown in Figure 1- Figure 7. Figure 1 shows the trajectory changes of the
original system under control; Figure 3 gives the trajectory changes of the observer system; Figure 3 depicts
the switching surface function; Figure 6 represents the controller input; The value for adaptive gains are given
in Figure 5 and Figure 6, respectively. From those figures, it knows that the proposed control strategy achieved
satisfactory performance. In addition, in order to demonstrate the superiority of the proposed controller over
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Figure 2. The state trajectories for the observer system.
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Figure 3. The trajectory response for sliding surface function.
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Figure 4. The control input.

0 5 10 15 20 25 30

0

2

4

6

10-4

Figure 5. Estimated value for 𝛼̂.

traditional state feedback controller 𝑢(𝑡) = 𝐾𝑥(𝑡) with the same gains obtained above, the following Figure 7
shows that the state is no longer stable with the disturbance getting stronger, i.e., 𝑓 (𝑥(𝑡)) = 0.2 sin(𝑥1(𝑡)).

Remarks 5 As we know, the chattering effect is always unavoidable by employing traditional SMC. Several
methods have been proposed to deal with this paper, one of which was the approach proposed above by replace
switching signals with smooth ones. Reducing chattering effect is an interesting issue that worths further
investigation in the future.
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Figure 6. Estimated value for 𝛽.
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Figure 7. The state trajectories of the observer system under state feedback control.

5. CONCLUSION
In this paper, the topic of T-S fuzzy model-based state observer design for SMC of nonlinear systems with
application to robotics model has been investigated. Firstly, a state observer relying on estimated premise
variables was constructed, based on which an integral switching surface has been developed. Secondly, sliding
mode dynamics was derived through equivalent theory. Then, the arrival of switching surface was ensured
by designing an adaptive sliding mode controller. Furthermore, stability analysis with an 𝐻∞ performance
were undertaken for the resulting systems. Finally, simulation study based on the robotics model has been
conducted to confirm the validity of the fuzzy controller. In the near future, our attention will be focused on
proposing more advanced control strategy to n-link robotic manipulator [32] in terms of robustness, computa-
tion, operation cost and system limitation etc.
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