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Abstract
The pathway to sustainable development and carbon neutrality is contingent upon the development of high-
performance porous carbon electrode materials sourced from biomass and industrial waste. The present research 
introduces an innovative approach for the fabrication of porous carbon, harnessing the collaborative impact of 
various materials to transform biomass in the form of corncobs and industrial byproduct fly ash into tiered porous 
carbon characterized by a high specific surface area and excellent functionality, via a simple hydrothermal 
activation method. This material is particularly well-suited for applications in supercapacitors, lithium-ion batteries, 
and other energy storage systems. The porous carbon material fabricated from these two waste streams boasts a 
wealth of pores and an exceptional specific surface area (1,768 m2 g-1), which in turn confers superior 
electrochemical performance. The material achieves a remarkable specific capacitance of up to 240 F g-1 
(at 1 A g-1), and demonstrates remarkable properties for lithium storage. Lithium-ion batteries constructed with this 
material feature an extensive potential range, with an initial specific capacity of 160 mAh g-1 at 0.1 A g-1, and a near-
perfect coulomb efficiency of approximately 100%. This research uncovers a novel paradigm for the preparation of 
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high-performance porous carbon electrode materials through a low-carbon and environmentally conscious 
approach. It not only advances the pursuit of carbon neutrality and the realization of carbon peak objectives but 
also underscores the potential of valorizing biomass and industrial byproducts in the context of cutting-edge 
energy storage technologies.
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INTRODUCTION
Global warming is a result of climate change driven by human energy consumption and the release of 
significant carbon dioxide emissions, adversely affecting lives and leading to mounting issues. In 2020, 
China introduced its goals of carbon peaking and neutrality at the UN General Assembly. Subsequently, the 
nation outlined five key strategies, which include enhancing energy efficiency and establishing a green, low-
carbon circular economy. Many fossil fuels are not fully converted during use, leaving byproducts rich in 
unburned carbon that can harm the environment. Thus, the path to carbon neutrality involves repurposing 
energy waste into advanced energy storage components for sustainable energy cycles[1-3].

Supercapacitors (SCs) are energy storage devices that operate on the principle of electrochemical 
conversion, offering quick charge-discharge capabilities, high power density, and long cycle life[4-10]. They 
are categorized into electric double-layer capacitors (EDLCs) and pseudocapacitors based on their storage 
mechanisms[11-13]. In EDLCs, the charging and discharging processes involve the complete adsorption and 
desorption of charges. The electrode materials used in EDLCs are primarily carbon materials with large 
surface areas, such as activated carbon (AC), hierarchically porous carbon (HPC), carbon nanotubes (CNT), 
graphene (GH), etc.[14-18]. The pore structures of these materials can be classified as micropores (less than 
2 nm), mesopores (2-50 nm), and macropores (greater than 50 nm). Each pore structure offers unique 
advantages, but also comes with specific performance limitations. The microporous structure provides more 
active sites, but is not conducive to the transport of electrolytes and active substances. Macropores form the 
foundation and skeleton of the construction of conductive network and pore structure. They have large 
pore volume and transport channels, but low specific surface area and insufficient reactive sites. Enhancing 
EDLC performance relies on designing and creating multi-pore structures to increase the surface area of 
carbon materials[19-22].

Biomass materials, with advantages such as being environment-friendly, sustainable, rich in heteroatoms, 
and cost-effective, have become the preferred choice for preparing EDLC electrode materials in recent 
years[23-26]. So far, a large amount of plant- or animal-derived biomass materials have been used to produce 
electrode materials for SCs with excellent electrochemical properties[26-28]. Ghosh et al. prepared AC from 
banana stem, corncob (CC) and potato starch by KOH activation or simple carbonization, in which the 
specific capacitance of KHC was about 225 F g-1 at 5 A g-1. In addition, they assembled KHC as a SC; after 
6,000 cycles, the capacitance retention is 72.88%[29]. Lin et al. used nitrogen-rich soybean as the precursor to 
prepare nitrogen-doped graded mesoporous micro carbon (ANPC) by coupling template method and KOH 
activation. They also studied its SC performance and REDOX ability[30]. Finally, the material prepared by the 
mass ratio of KOH to carbon of 3:1 exhibits the largest specific surface area and the best performance, with 
a specific capacitance of 243.2 F g-1 at 0.5 A g-1. Furthermore, Jung et al. also proposed a method for 
preparing graded porous biomass-derived GH-based carbons by glucose-based polymers[31]. They first 
transformed the glucose-based polymer into a three-dimensional (3D) foam-like structure, then carbonized 
it to form the corresponding structure, and finally activated the carbon by physical and chemical ways to 
produce micro and mesopores, resulting in layered porous biomass-derived GH-based carbon. The specific 
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capacitance of this material is 175 F g-1 at 1 A g-1, and the assembled SC has a maximum energy density of 
74 Wh kg-1, corresponding to a maximum power density of 408 kW kg-1. Despite the advancements in 
biomass materials for SCs, several challenges remain: (1) Limited specific surface area. For example, plant-
derived biomass has an abundance of macroporous and mesoporous structures due to the presence of lignin 
and cellulose, but it rarely contains microporous structures, making it difficult for the material to provide 
more active sites; (2) Complex preparation process. Biomass, as a natural carbon source, contains a 
deficiency of heteroatoms in its original composition, which is typically used as a hard template to form 
hierarchical porous carbon structures through a complex heteroatom doping process; and (3) Uneven pore 
size distribution. Biomass, when used as a carbon-based material obtained through traditional 
carbonization, hydrothermal, or activation procedures, presents challenges in precisely regulating the pore 
size distribution on its surface. To further address these issues, we are using biomass and industrial wastes 
containing inorganics of various sizes as raw materials, providing a new perspective for the preparation of 
electrode materials for SCs with high surface area, reasonable porosity, and high performance.

CC, a lignocellulosic byproduct of corn threshing and refinement, is rich in cellulose, hemicellulose, and 
lignin, endowing it with desirable mechanical properties such as superior tensile strength, enhanced 
hygroscopicity, and exceptional abrasion resistance. As a biomass residue, CC has found applications across 
various industries, including abrasive polishing, desiccant materials, and nutritional feed additives, which 
positions it as a promising precursor for the large-scale synthesis of carbonaceous substrates[32]. Moreover, 
the intrinsic carbohydrate and crude protein content within CC offers the potential for in situ heteroatom 
doping, specifically nitrogen and oxygen, within the carbon matrix. Fly ash (FA), a particulate byproduct of 
fossil fuel combustion, is composed primarily of inorganic oxides such as SiO2, Al2O3, Fe2O3, and CaO, along 
with a residual carbon content[33,34]. The fine particle size and smooth surface texture of FA necessitate its 
responsible management to prevent environmental contamination. Although FA has been repurposed in 
various applications, ranging from cementitious materials to agronomic fertilizers, as well as in wastewater 
treatment and industrial recycling, its potential in the synthesis of electrode materials for energy storage 
devices such as SCs is a rapidly emerging field of interest[35].

In light of the above considerations and with a commitment to eco-friendly materials science, we have 
crafted an advanced strategy for the two-step hybrid conversion of materials. This process involves 
hydrothermal carbonization followed by activation to fabricate N/O co-doped, porous biomass-derived 
carbon. The hydrothermal carbonization phase promotes the selective decomposition of lignin and 
hemicellulose, thereby enhancing the mesoporosity and oxygenation of the carbon framework, which are 
crucial for improving electrochemical performance, particularly specific capacitance. This innovative 
strategy not only leverages the synergistic integration of these two waste streams but also introduces a 
groundbreaking method for fabricating advanced electrode materials for energy storage applications, 
highlighting the potential for valorizing industrial byproducts. The porous carbons derived from CC and 
FA, designated as CFCs, boast a 3D macroporous framework combined with microporous and mesoporous 
structures. They exhibit a high specific surface area of 1,768 m2 g-1, which marks an enhancement factor 
exceeding 70, thereby significantly amplifying the void fraction of the material. The specific capacitance of 
the sample in 6 M KOH electrolyte, measured using a three-electrode system, was as high as 240 F g-1 (at 
1 A g-1). In addition, we found that the material has surprising lithium storage properties, with an initial 
energy density of 160 mAh g-1 (at 0.1 A g-1). After 100 cycles, the specific capacity remains at 50 mAh g-1, 
with a coulomb efficiency of nearly 100%. The successful preparation of this material provides a new idea 
for energy recycling.
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EXPERIMENTAL
Material
The CC with a size of about 20 mesh is purchased from a food processing plant in Jiangsu province, China. 
FA with a size of about 300 mesh is purchased from an environmental protection company Henan province, 
China. Highly conductive graphene (HCG) and single-wall CNTs (SWNs) are purchased from Angxing 
New Carbon Materials Changzhou Co., Ltd., China. Polyvinyl pyrrolidone (The average molecular weight is 
58000, K30 PVP), acetonitrile (ACS, ≥ 99.5% CH3CN), hydrochloric acid (AR, 36%-38% HCl), ethyl alcohol 
(AR, 99.7% C2H5OH), and potassium hydroxide (AR, 90% KOH) are purchased from Sinopharm Chem. 
Reagent Co., Ltd., China.

Preparation of porous carbons
CC and FA are mixed in a 1:2 ratio and then ball-milled for 12 h to get a fine mixture. A portion of 3 g of 
this mixture is dispersed in 20 mL 3 M HCl and then transferred to the inner tank of the hydrothermal 
kettle. After sealing the hydrothermal kettle, it is placed in an oven, and the temperature is raised to 200 °C 
for 2 h. The hydrothermal product is washed with deionized water until neutral, filtrated, and dried. The 
product is then soaked in 10 mL 6 M KOH for 12 h and subsequently transferred to an oven at 80 °C to 
evaporate any remaining liquid. Finally, the mixture is placed in a tube furnace protected by nitrogen 
atmosphere for carbonization. The temperature is increased to 700 °C at a rate of 2 °C s-1 and held for 3 h. 
After the furnace cools to room temperature, the sample is taken out, washed with 1 M HCl and dried in an 
oven at 80 °C overnight. The resulting product is named CFC; in addition, samples containing only CC or 
FA are prepared using the same method, named CC and FAC, respectively.

Preparation of self-supporting electrodes
Due to the complex preparation process of the electrode and the tendency for active material to detach from 
the substrate during long-term immersion in the electrolyte in a three-electrode test, we propose a method 
to fabricate self-supporting electrodes: CFCs, HCG, SWNs and PVP are added to acetonitrile with a ratio of 
5:4:1:2, stirred for 2 h and then dispersed evenly with an ultrasonic cell crusher. The mixture is then filtered 
to form a film. This self-supporting has good conductivity, strength and toughness, making it suitable for a 
variety of test systems.

Characterization
This study uses Scanning Electron Microscopy (SEM, Hitachi S-4800) and Transmission Electron 
Microscopy (TEM, Fei Tecnai G2 F30) for the microstructural characterization of the sample materials. 
Chemical state and elemental composition analysis of the samples is conducted using X-ray Photoelectron 
Spectroscopy (XPS) on an Axis Ultra DLD (Kratos) spectrometer equipped with a monochromatic Al-Kα 
X-ray source. X-ray Fluorescence (XRF, Axios wavelength dispersive XRF spectrometer) is utilized to 
analyze the composition of FA qualitatively and quantitatively. The specific surface area and pore size 
distribution of the samples are measured using a nitrogen adsorption and desorption apparatus 
(Micromeritics ASAP 2020, USA) and are calculated according to the Brunauer-Emmett-Teller (BET) 
theory. Additionally, the mesopore volume and radius are determined using the Berret-Joyner-Halenda 
(BJH) method.

Electrochemical measurements
The electrochemical properties of the samples are evaluated using the CHI660D electrochemical 
workstation (Shanghaichenhua, China). Techniques including Cyclic Voltammetry (CV), 
Chronopotentiometry (CP), Electrochemical Impedance Spectroscopy (EIS), and cycle stability tests are 
performed within a conventional three-electrode configuration, utilizing a 50 mL 6 M KOH electrolyte 
solution. The working electrode consists of the prepared self-supporting electrodes; the counter electrode is 
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a platinum (Pt) foil (2 × 2 cm2), and the reference electrode is a Hg/Hg2O electrode. CV measurements are 
conducted within a voltage range of -1.3 to 0.6 V, with scan rates varying from 0.01 to 1 V s-1. CP 
measurements are taken with a charge and discharge voltage range of -1.2 to 0.4 V, and current densities 
range from 1 to 8 A g-1. EIS measurements are carried out over a frequency range of 0.1 to 105 Hz, with a 
5 mV voltage amplitude.

The gravimetric specific capacitance (Cs, F g-1) of the prepared samples is computed from the discharge 
curve in accordance with[36-38]:

Herein, I represents the current (A), t is the discharge time (s), ΔV is the discharge voltage range (V), and m 
is the mass of the active material on the working electrodes (g).

The energy density (Ed) and the power density (Pd) of SC electrodes can be respectively calculated based on 
[39-41]:

where I is the current (A), m is the mass of the active material on the working electrodes (kg),  is the 
integral of the discharge curve, and Δt is the discharge time (h).

Preparation of lithium-ion battery
In this research, the CR2032 button battery case is employed to assemble the lithium-ion battery, with the 
process accomplished in an atmosphere-protected glove box. First of all, place the prepared self-supporting 
electrode on the positive electrode shell, and then put the polypropylene (PP) diaphragm and drop the 
appropriate electrolyte on it to moisten it. Next, position the lithium sheet at the center of the PP 
diaphragm, then place the nickel foam on the lithium sheet and drop the appropriate electrolyte, and 
subsequently cover the negative shell. Finally, the device is encapsulated under pressure. The EIS and CV of 
the battery are tested by Zhner Electrochemical Workstation (Hong Kong Global, China), and in addition, 
the charge and discharge, rate performance and cycle performance are tested by the Xinwell TC53 battery 
test system.

RESULTS AND DISCUSSION
Figure 1 shows a schematic diagram depicting the preparation of CFC. Low-cost CC and industrial waste 
FA are used as a self-template and template, respectively. The precursors are obtained by hydrothermal 
reaction to remove the existing metal oxides and retain the microporous structure. Then, the microporous 
and mesoporous structures are realized by high temperature carbonization and activation of KOH under N2 
atmosphere.

Figure 2 shows the surface morphology of CC and FA before and after treatment respectively. As depicted 
in Figure 2A, untreated CC exhibits a substantial volume characterized by numerous large pores on its 
surface, approximately 25 μm in diameter. As can be further observed from the illustration, its surface is 
smooth with almost no pore structure. After being treated with hydrothermal and KOH activation 
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Figure 1. A schematic illustration of CFC preparation by CC and FA.

[Figure 2B], the original pores on the CC surface disappear and are replaced by large pores. Through careful 
observation, it can be found that the size of these pores is similar to that of the original pores. It acts as a 
support and frame for the material. In addition, it can also be observed from the illustration that the surface 
of the CC at this time is still smooth, and there is only a large hole structure. Figure 2C shows FA without 
any treatment where it is clearly observed to consist of many balls and lumps of varying sizes. In order to 
explore its main components, the material content of FA is analyzed with the help of XRF technology 
[Supplementary Tables 1 and 2]. It can be inferred that in addition to unburned carbon, it also mainly 
contains silicon oxide, calcium oxide, iron oxide, alumina and some trace metal oxides. During the reaction 
process, these metal oxides become embedded in the CC surface and are subsequently removed through 
treatment to facilitate initial pore formation. As illustrated in Figure 2D, a limited number of mesopores and 
larger pores emerge on the surface of FA following hydrothermal and KOH activation treatments, with pore 
sizes ranging from 10 to 500 nm. This observation suggests that unburned carbon within FA can also 
interact with metal oxides to generate pore structures. However, given the restricted availability of carbon 
sources in FA, the energy conversion efficiency remains minimal.

Figure 3A and B illustrates the morphology of carbon foam composites (CFC) synthesized from the two 
materials which reveals two distinct morphologies: block and spherical forms within the CFC structure. 
Furthermore, they demonstrate that both morphological contain macroporous and mesoporous structures 
with pore sizes ranging from 10 to 500 nm, indicating a significant increase in pore quantity compared to 
treatments involving FA alone. The emergence and proliferation of these pores suggest that porous carbon 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
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Figure 2. SEM images of (A and B) Before and after processing of CC; (C and D) Before and after processing of FA.

is successfully synthesized through the synergistic interaction between CC and FA, resulting in a novel 
morphology characterized by porous carbon microspheres.

To investigate the co-pore formation mechanism between CC and FA and the origin of porous carbon 
microspheres, we delve into an extensive examination of their preparation process. Supplementary Figure 1 
presents the micro-morphology of CC, FA, and CFC precursors following hydrothermal treatment. As 
observed in Supplementary Figure 1A, numerous carbon microspheres are generated on the surface of CC 
after water heating. These microspheres exhibit smooth surfaces but display uneven diameters; some appear 
to be dissolving. Consequently, it can be inferred that these carbon microspheres may gradually detach from 
larger blocks or spheres over time. Subsequently, controlling hydrothermal duration allows for regulation of 
the size of these carbon microspheres. Supplementary Figure 1B and C presents scanning electron 
microscopy images of FA following hydrothermal treatment at varying magnifications. It is evident that the 
aforementioned phenomenon does not manifest in FA post-hydrothermal reaction; however, under high 
magnification, irregularly sized pores are observable on the material's surface. This observation supports the 
hypothesis that metal oxides within FA interact with unburned carbon during hydrothermal processing to 
create these voids. In contrast, the morphology of the CFC precursor exhibits slight differences compared to 
the two previously discussed materials [Supplementary Figure 1D and E]. Notably, this material displays 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
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Figure 3. (A and B) SEM images of CFC at different magnifications; (C and D) TEM images of CFC.

both block structures and carbon spheres derived from those blocks simultaneously. As illustrated in 
Supplementary Figure 1D, the surface of carbon microspheres in this sample is not smooth but rather 
features numerous fine particles. Based on prior analyses regarding CC hydrothermal behavior, it can be 
inferred that these carbon microspheres primarily originate from direct fragmentation of larger blocks or by 
division of individual microspheres into smaller ones; thus, it is reasonable to conclude that these minute 
particles result from contributions made by FA. Furthermore, high-magnification images 
[Supplementary Figure 1E] reveal a limited presence of carbon microspheres on the surface of corn pellets 
while indicating significant preliminary pore formation effects as well. Overall, the porous structure 
development within CFC predominantly arises from metal oxide intercalation found in FA; concurrently, 
some remain adhered to the carbon surfaces as fine particles. Following activation and high-temperature 
carbonization processes, these particles may either be removed or etched away to yield porous 
characteristics on the underlying carbon substrate. Additionally, CC - serving as biomass-derived carbon - 
produces a substantial quantity of carbon microspheres during hydrothermal treatment which enriches 
material architecture and provides critical value for subsequent strategies aimed at preparing porous carbon 
microsphere structures.

Figure 3C and D shows TEM images of CFC. It can be clearly seen that the material is amorphous carbon 
and has mesoporous structure with a diameter of about 10-50 nm. From the marked area and the inset part, 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
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it can be observed that there are some bright spots of light transmission on the material, which we speculate 
may be microporous structures. The existence of these microporous structures may be attributed to two 
factors: on the one hand, the rich element composition inside the CC will react into gas and escape at high 
temperatures, and on the other hand, CC, as a plant, originally has many micropores. In summary, we 
successfully prepared CFC porous biomass carbon with abundant macroporous, mesoporous and 
microporous structures through the synergistic effect of CC and FA. The existence of these pores plays a 
positive role in electrolyte transport and the active site of electrochemical reaction, which can effectively 
improve the electrochemical performance of electrode materials.

The elemental composition and chemical bonds of the CFC are further analyzed through the XPS spectra 
presented in Figure 4. First, the C 1s peak of CFC can be divided into five main components, C=C 
(284.3 eV), C-C (284.9 eV), C-N (286.6 eV) and C-O/C=N (288.2 eV), and the peak at 294.6 eV is 
characterized by π-π oscillation[42-44]. As can be seen from Figure 4B, the N 1s XPS spectrum of CFC consists 
of four peaks - quinoid amine (=N-, 398.6 eV), pyrrole -N (399.6 eV), benzene (-NH-, 400.5 eV), and 
nitrogen cation radical (N+,401.8 eV) - with azane type (402.3 eV) at the center[23,45,46]. The presence of the 
azane type indicates a cross-linking structure. The combination of nitrogen functionalities such as pyrrole, 
pyridine, and graphitic nitrogen boosts the pseudocapacitance characteristics of the electrode, thus 
enhancing its energy storage capability. Moreover, nitrogen doping improves the wettability of the electrode 
material, facilitating a more efficient interaction with electrolyte ions. This outstanding interface lowers the 
equivalent series resistance (ESR), promotes charge transfer kinetics, and eventually raises the power density 
and accelerates the charge and discharge kinetics. Additionally, nitrogen doping is capable of enhancing the 
conductivity of the carbon substrate. The insertion of nitrogen atoms disrupts the sp2 carbon matrix, 
generating additional defects that make electron transfer more effortless. This increase in conductivity leads 
to an enhanced rate capability and overall superior performance of SCs[36,37]. Finally, the O 1s peak, as seen 
in Figure 4C, can be deconvoluted into three characteristic peaks: C=O (531.4 eV), C-O (532.4 eV) and 
-COOH (533.2 eV), respectively[47-49]. The existence of oxygen-containing groups can enhance the 
hydrophilicity, allowing the ions in the water system electrolyte to permeate the material more easily. The 
Raman spectra for CC, FA, and CFC are depicted in the Supplementary Figure 2. Their I(D)/I(G) ratios are 
1.03, 1.01, and 0.99, respectively, indicating that CFC exhibits a greater degree of graphitization. A sharp 
peak at 2,949 cm-1 is observed in all three materials, signifying the stretching vibration of the O-H bond. 
Notably, FA possesses a distinctive 2D peak characteristic of GH at 2,549 cm-1.

In order to investigate the specific surface area and pore size distribution of the material, nitrogen 
adsorption/desorption test was carried out. First of all, it can be seen from the above SEM photos that the 
surfaces of CC and FA before treatment are smooth, and the existence of holes is almost invisible. Since 
their nitrogen absorption and desorption curves are irregular and do not close, and their specific surface 
areas are less than 1 m2 g-1, the test results will not be shown or detailed. Supplementary Figure 3 shows the 
nitrogen absorption and desorption of the three materials after hydrothermal treatment. It can be seen that 
the absorption and desorption curves of the three materials are all type IV isotherms[50,51]. The failure of the 
absorption and desorption curves of the CC in Supplementary Figure 3A may be caused by the small 
specific surface area of the material itself and the insufficient amount of test samples. There is no obvious 
rapid rise of adsorption lines in the low-pressure region, indicating almost no microporous structure in the 
three curves. Platforms and hysteresis loops appear in the middle pressure region and the high-pressure 
region, indicating that they have mesoporous and macroporous structures. In addition, their specific surface 
area is slightly increased compared with that before treatment, while the specific surface area of FA and 
mixture is larger, indicating that the addition of FA plays a positive role in the formation of pores, and the 
preliminary pore-making begins to take effect.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202503/em40217-SupplementaryMaterials.pdf
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Figure 4. XPS deconvoluted spectrum of (A) C 1s, (B) N 1s and (C) O 1s of CFC.

The sample adsorption and desorption curves after activation and carbonization are shown in Figure 5. It 
can be seen from Figure 5A that the adsorption-desorption isotherm of CC after complete porosity is a type 
I isotherm[52,53], and there is a steep long platform in this curve, reflecting the reversible adsorption process 
of a single layer, indicating that the material has a microporous structure. Therefore, it can be concluded 
that the simple CC porosity can only have a microporous structure, but cannot achieve multi-layer porous 
carbon structure.

Figure 5C shows that the adsorption-desorption isotherm of CFC exhibits a type IV mesoporous 
characteristic curve; when P/P0 < 0.01, the adsorption line obviously rises rapidly, indicating the existence of 
micropores in CFC. Further adsorption of N2 reveals a plateau in the adsorption curve where P/P0 is 
between 0.2-0.5. With the increase of P/P0 from 0.5 to 0.9, the adsorption line gradually rises, forming a H2 
hysteresis loop related to capillary condensation, which manifests the characteristics of mesoporous surface. 
In the range of P/P0 = 0.9-1.0, the adsorption line continues to rise, and does not show an obvious 
adsorption plateau as it approaches 1.0, exhibiting an H3 hysteresis loop, which indicates the existence of 
macropore distribution. In addition, the pore size distribution diagram in the illustration shows that the 
pore size of CFC is mostly concentrated in the ranges of 1.5-1.3, 3.5-4 and 10-15 nm, indicating a 
combination of microporous, mesoporous and mesoporous structures[54,55].

The same phenomenon can be found in the nitrogen adsorption/desorption curve of FAC [Figure 5B], but 
the sample has a small distribution of large pores, with a specific surface area of only one-third that of CFC, 
possibly due to insufficient carbon sources in FA. The above results show that the core-making of FA and 
CC can greatly increase the specific surface area of carbon materials. On the one hand, CC, as a biomass 
material, provides a large number of microporous and macroporous channels and a stable carbon source. 
On the other hand, the macromolecules and unburned carbon in FA itself can be used as templates and self-
templates to generate mesoporous structures.

In Figure 6A, the CV plot of the CFC measured by 6 M KOH electrolyte in the three-electrode system is 
plotted. At negative potential (-0.6-0 V), the curve appears a plateau, indicating that the electrochemical 
reaction of the CFC at low potential is dominated by charge absorption and desorption, which shows a 
double-layer capacitance behavior. It can complete the transmission and diffusion of electrons and ions 
within a short time, manifesting that it has good capacitance characteristics. As the potential increases, the 
curve reveals the emergence of REDOX peaks within the range of 0.6-1.3 V, indicative of pseudocapacitive 
behavior. These peaks are attributed to the reversible REDOX reactions of the functional groups doped with 
heteroatoms during the charge and discharge processes. The XPS spectrum reveals the presence of various 
nitrogen-containing functional groups within the CFC, including quinoid amine, pyrrole-N, benzene-NH-, 
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Figure 5. (A-C) Nitrogen adsorption/desorption isotherms and pore size distribution diagram of CC, FAC, and CFC.

Figure 6. (A) CV curves at different scanning speeds of CFC, (B) CV curve of CFC, CC and FAC with a scanning speed of 0.1 V s-1, (C) 
the constant current charge and discharge curve at different current densities of CFC, and (D) the specific capacitance of CFC, CC and 
FAC.

and nitrogen cation radicals. The integration of these functional groups contributes to the enhancement of 
the electrode’s pseudocapacitive characteristics, thereby augmenting its energy storage capacity. At different 
scanning speeds (1-8 A g-1), the shape of each curve is similar, the response current increases with the rise of 
scanning speed, and the REDOX peak position rarely has displacement, which indicates that the electrode 
material has good cycle reversible stability and fast REDOX current response. This phenomenon can also be 
easily seen from the CV curves of CC and FAC materials in Supplementary Figure 4A and B. It can be 
found from Figure 6B that the CV area and response current of CFC prepared by CC and FA are larger than 
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Table 1. Electrochemical performances of different precursor electrodes

Precursor Electrolyte Current density SSA Specific capacitance Ref.

Reed straw 6 M KOH 1 A g-1 547.1 m2 g-1 202.8 F g-1 [56]

Peanut shell 6 M KOH 1 A g-1 2,764 m2 g-1 228 F g-1 [57]

Biomass fulvic acid TEABF4/PC 1 A g-1 1,938 m2 g-1 107 F g-1 [58]

Fatsia japonica 6 M KOH 1 A g-1 870.3 m2 g-1 140 F g-1 [59]

Ambrosia melon peels 1 M H2SO4 1 A g-1 529.9 m2 g-1 200 F g-1 [60]

Passion fruit husks 1 M trifluoroacetic acid 1 A g-1 1,858 m2 g-1 297.1 F·g-1 [61]

Camellia 1 M KOH 2 A·g-1 / 125.42 F·g-1 [62]

Corncob and fly ash 6 M KOH 1 A g-1 1,768 m2 g-1 240 F g-1 This work

Figure 7. (A) CV curves at different scanning speeds of CFC half-cell, (B) magnification performance of CFC half-cell, (C) cycle 
performance of CFC half-cell.

those of the other two materials prepared by monomers; meanwhile, a pair of REDOX peaks possessed by 
CC (at 0.6 and 1.1 V approximately) and FAC (at 0.8 and 0.9 V approximately) are reflected in CFC 
respectively. It is worth noting that we can also observe that the potential range of CFC is -0.6-1.3 V, and the 
potential difference reaches 1.9 V, which is relatively scarce in aqueous electrolytes. Figure 6C, 
Supplementary Figure 4C and D illustrate that the charge-discharge profiles of the various samples at 
distinct current densities (1-8 A g-1) exhibit favorable rate capabilities. Notably, CFC demonstrates the 
longest discharge duration at a current density of 1 A g-1. Figure 6D visually depicts that the specific 
capacitance of CFC is markedly superior to that of CC and FAC across different current densities, with CFC 
achieving a specific capacitance of 240 F g-1 at 1 A g-1. This suggests that the CFC, prepared through the 
collaborative efforts of CC and FA, possesses a greater specific surface area and a higher number of 
functional groups, enabling a greater number of active sites to be utilized on the surface of the CFC. 
Nevertheless, the specific capacitance of the CFC diminishes progressively as the current density increases, 
which we attribute to the possibility that the REDOX reactions and charge transfer rates of the active 
material may not suffice to accommodate the abrupt rise in current. The collective results of these tests 
underscore the outstanding performance of CFC, which also compares favorably with several previously 
reported materials in the literature [Table 1].

Except for the research on the electrical properties for SC of CFC, we also assemble a half-cell using the 
lithium sheet as the counter electrode to test its lithium storage performance in a lithium electrolyte. 
Figure 7A is the CV map of CFC measured at different sweep speeds under the voltage window of 1.5-4 V. 
All curves are roughly symmetrical and rectangular, which is a typical double-layer capacitance 
characteristic, indicating that the main occurrence of the material is the adsorption and desorption of 
lithium ions on the material surface. The rate characteristics of CFC are recorded in Figure 7B. When the 
current density increases to 2 A g-1, the capacity is maintained at 53.2%. After switching back to 0.1 A g-1, the 
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reversible capacity is maintained at 67.7%, showing good rate performance. Figure 7C shows the cycle 
performance of the half-cell at 0.1 A g-1. The initial capacity is about 160 mAh g-1. Although there is 
significant attenuation in the first 10 cycles, the capacity gradually rises and basically remains stable 
thereafter. After 100 charging and discharging cycles, the specific capacity stabilizes at 50 mAh g-1, 
demonstrating excellent cycle stability. The aforementioned results suggest that the materials also possess 
lithium storage properties, but the lithium storage mechanism and performance enhancement still require 
further investigation.

CONCLUSIONS
In this study, biomass carbon (CC) and industrial waste (FA) are successfully employed together for the 
preparation of CFC through the hydrothermal method and KOH activation, thereby achieving waste 
recycling. The results showed that the participation of FA effectively increased the mesoporous ratio of the 
material and thus enriched the specific surface area of the material. Simultaneously, a considerable number 
of carbon microspheres generated in the hydrothermal process of biomass CC enriched the microstructure 
of the electrode material and increased the heteroatom doping site. In the three-electrode test, CFC shows a 
maximum specific capacitance of 240 F g-1 (at 1 A g-1), and even at 8 A g-1, the specific capacitance can reach 
over 100 F g-1, with good reversibility and magnification performance. In addition, CFC also displays 
excellent lithium storage capacity. When the current density is 0.1 A g-1, the first discharge specific capacity 
of the assembled Li|CFC capacitor is about 160 mAh g-1, and the specific capacity can be maintained at 
50 mAh g-1 after 100 cycles. This strategy leverages the synergistic action between different materials to 
prepare porous carbon, offering a new idea for increasing the specific surface area of materials and 
comprehensively improving electrochemical properties.
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