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Abstract
Aim: This study aimed to develop an m6A-related gene signature for predicting the prognosis of clear cell renal cell 
carcinoma (ccRCC) patients and explore its value in predicting the immunotherapy response.

Methods: In total, 530 ccRCC patients with gene expression data in the TCGA cohort were included and classified 
into the training (n = 371) and validation (n = 159) sets. Differential expression analyses of 23 m6A regulators 
between survivors and non-survivors were performed. Subsequently, an m6A-related gene signature was 
developed via LASSO Cox regression. All patients were categorized into two groups of m6A subtypes, i.e., low or 
high m6A score group. The Kaplan-Meier survival curves and Tumor Immune Dysfunction and Exclusion (TIDE) 
scores of the two m6A subtype groups were compared to measure the gene signature’s predictive value in 
prognosis and potential immunotherapy response, respectively.

Results: Eighteen m6A regulators were significantly differentially expressed between the survivors and non-
survivors, and were also related to overall survival (OS). A gene signature containing five selected m6A 
methylation regulators (KIAA1429, METTL14, IGF2BP2, IGF2BP3, and SRSF2) was developed and showed favorable 
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discrimination in the training (C-index 0.708) and validation (C-index 0.689) sets. Patients with low m6A scores 
had significantly better OS and lower TIDE scores than those with high m6A scores. Moreover, a robust MRI-based 
radiomic signature was developed to noninvasively predict the m6A subtype for each patient.

Conclusion: We demonstrated the prognostic value of five m6A regulators and constructed a gene signature for 
prognosis and immunotherapy response prediction among ccRCC patients. In addition, a radiomic signature was 
developed for noninvasive prediction of the m6A subtype. These findings may promote precision medicine and 
provide novel insights into the regulation of tumor immune microenvironment.

Keywords: Clear cell renal cell carcinoma, m6A, prognosis, immunotherapy response, tumor immune 
microenvironment, prediction model, radiomics

INTRODUCTION
Renal cell carcinoma (RCC) is among the most common types of cancer globally, holding a position within 
the top 10. RCC encompasses a group of highly heterogeneous cancers, of which clear cell RCC (ccRCC) is 
the most common subtype[1]. Although localized RCC can be managed through ablation, partial or radical 
nephrectomy or active surveillance[2], more than 30% of individuals eventually present with or develop 
metastases, which are refractory to conventional chemotherapy and are associated with high mortality[3]. 
Targeted agents against vascular endothelial growth factor (VEGF) and mammalian target of rapamycin 
(mTOR) pathways have been created for treating metastatic RCC, but the treatment response is varied, and 
most cases eventually progress[4]. Downregulation of lactotransferrin promotes metastasis in ccRCC and 
also renders the ccRCC tumor cells more responsive to mTOR inhibitors, suggesting its potential as a 
predictor for therapeutic effectiveness[5]. Over the past decade, marked advances in the treatment of cancers 
have been made, with immunotherapies being the fourth therapeutic technique for cancer therapy after 
surgery, chemotherapy, and radiotherapy[6]. To date, immune checkpoint inhibitors have been 
demonstrated to bring survival benefits for metastatic RCC[7]. Nevertheless, most treated patients do not 
experience effective clinical relief after immunotherapy. For example, the response rate of advanced RCC to 
nivolumab is only 25%[8]. For a substantial proportion of patients who are not suitable for immunotherapy, 
tyrosine kinase inhibitors (TKI) monotherapy remains an appropriate first-line therapy, and may bring 
lifestyle benefits with treatment breaks[9]. Therefore, it is urgently needed to predict the prognosis and 
response to immunotherapy of ccRCC patients and provide individual therapy.

N6-methyladenosine (m6A) modification is a common modification in mRNA of most eukaryotes. The 
modification is a reversible process regulated by the balanced activities of “writers” (methyltransferases 
including WTAP, METTL3, and METTL14), “readers” (binding proteins including YTHDF1, YTHDF2, 
YTHDF3, YTHDC1, and YTHDC2), and “erasers” (demethylases including ALKBH5 and FTO)[10]. 
Research has demonstrated that m6A modification plays a pivotal role in the regulation of mRNA 
metabolism, encompassing various stages such as gene expression, nuclear pre-mRNA processing, 
cytoplasmic translation, and mRNA decay[11-13]. In addition, previous studies have indicated that aberrant 
m6A modification is related to various pathophysiological processes, including developmental defects, 
dysregulation of cell proliferation, differentiation, and death, as well as tumor progression[14-16]. Additionally, 
m6A methylation plays important roles in the innate and adaptive immune response as well as the tumor 
immune microenvironment[17]. Moreover, besides exosomes, circulating tumor DNA, and other novel 
noninvasive tumor biomarkers, substantial evidence has revealed that m6A methylation regulators could be 
reliable biomarkers for the prediction of the prognosis and/or treatment response of many types of 
tumors[18-20]. However, whether m6A methylation regulators could be utilized to predict prognosis and 
immunotherapy response among patients with ccRCC has not been systematically and rigorously 
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investigated.

In the presented study, we developed and validated an m6A-related gene signature based on the 
pretreatment expression of m6A regulators for predicting the prognosis in ccRCC patients and explored the 
value of the gene signature in predicting immunotherapy response.

METHODS
Data acquisition
The clinical data and gene expression profiles of ccRCC patients were downloaded from The Cancer
Genome Atlas (TCGA), and the biological data were normalized. In total, 530 ccRCC cases from the
TCGA-KIRC project were involved in the analysis. A total of 23 m6A regulators were extracted, including
nine writers (METTL3, RBM15, WTAP, ZC3H13, METTL14, METTL16, RBM15, RBM15B, and KIAA1429),

readers  ( YTHDF1,   YTHDF2,   YTHDF3,   IGF2BP1,   IGF2BP3,  YTHDC1,  YTHDC2,  HNRNPC,
HNRNPA2B1, SRSF2, FMR1, and ELF3), and two erasers (FTO and ALKBH5).

Association between prognosis and m6A regulators
To explore the prognosis value of m6A regulators in ccRCC patients, differentially expressed gene (DEG)
analyses were performed to assess their differential expression between survivors and non-survivors among
patients with ccRCC. Additionally, we used Wilcoxon’s tests to compare the expression levels of m6A
regulators between the survivors and non-survivors.

Construction of the gene signature
The gene signature construction flowchart is shown in Figure 1. All cases were randomly split into a
training set (n = 371) and a validation set (n = 159) at a ratio of 7:3. The potential associations between the
m6A regulators and overall survival (OS) were estimated with univariable Cox regression analyses in the
training set. Among 23 m6A regulators, prognosis-related genes with nonzero coefficients were identified
via the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm[21]. The log-rank
tests were used to compare the OS of the low or high expression of the selected prognosis-related m6A
regulators, whose thresholds were selected by the “Survminer” package in the R language.

According to the results of the LASSO Cox regression, we developed an m6A-related gene signature for OS
prediction among patients with ccRCC, and for individual patients, a risk score (m6A score) was calculated
using the subsequent regression equation:

m6A score = b1G1 + b2G2 +... + biGi,

where Gi is the selected prognosis-related m6A regulator and bi is the regression coefficient of Gi.

Performance evaluation of the m6A-related gene signature
We evaluated the discrimination of the m6A-related gene signature by using Harrell’s C-index in the
training and the validation sets. We also performed time-dependent receiver operating characteristic (ROC)
analyses to estimate the predictive accuracy of gene signature. All patients were classified into two m6A
subtypes, i.e., low or high m6A score groups, according to their m6A scores, whose threshold was
determined using X-tile software in the training set[22]. The Kaplan-Meier OS curves of the two m6A
subtypes were compared by the log-rank tests. Subsequently, a series of stratified analyses were conducted
to evaluate the potential modification effects according to age, sex, T stage, N stage, M stage, and tumor
grade. To determine whether the m6A subtype is an independent predictor of prognosis in ccRCC, the
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Figure 1. The study flowchart. TCGA: The Cancer Genome Atlas; TCIA: the Cancer Imaging Archive; MRI: magnetic resonance imaging; 
LASSO: least absolute shrinkage and selection operator.

candidate variables were subjected to multivariable analysis based on backward stepwise selection. The 
discrimination of the significant predictors, as well as their combination, were measured by Harrell’s 
C-indexes.

The predictive value of the m6A subtype in clinical benefit of immunotherapy
The underlying clinical benefit of immunotherapy for ccRCC patients in each m6A subtype was assessed 
according to the Tumor Immune Dysfunction and Exclusion (TIDE) score. The TIDE score was calculated 
through the online website (http://tide.dfci.harvard.edu/)[23].

Furthermore, we also investigated the role of prognosis-related m6A regulators in immunity. The 
CIBERSORT algorithm was used to evaluate the infiltration of 22 types of immunocytes[24]. Subsequently, 
the relationship between the identified prognosis-related m6A genes and different types of immunocytes 
was investigated.

MR images acquisition, images segmentation, and radiomic features extraction
To predict the m6A subtypes individually and noninvasively, we developed an MRI-based radiomic 
signature. Radiomics is an emerging field of research aiming to extract high-dimensional image-based 
features from medical images, and to estimate the correlations between the features and potential 
pathophysiology[25,26]. Radiomics has recently drawn widespread interest in many cancer studies due to its 
potential to predict prognosis and treatment outcomes and aid in diagnosis[25,27,28]. Figure 1 depicts the 
radiomics workflow of this study. In total, 47 ccRCC patients from the TCIA-KIRC project were enrolled 
for radiomics analysis. We downloaded the preoperative MRI images from the TCIA (http://www.
cancerimagingarchive.net/). Tumor image segmentation was performed by using 3D Slicer software 
(v 4.9.0). Then, extraction of radiomic features was conducted through the PyRadiomics platform implanted 

http://tide.dfci.harvard.edu/
http://www.cancerimagingarchive.net/
http://www.cancerimagingarchive.net/


Page 5 of Chen et al. J Cancer Metastasis Treat 2024;10:21 https://dx.doi.org/10.20517/2394-4722.2024.43 16

in Python software (v 3.9.19)[29]. A total of 1,316 radiomic features were extracted from each tumor lesion. 
Subsequently, these feature values were normalized in a linear manner in the range of 0 to 1. The detailed 
procedure of the radiomics pipeline is described in Supplementary Method 1 and Supplementary Table 1 
lists all extracted radiomic features.

Radiomics signature development and performance evaluation
The m6A subtype-related radiomic features were identified by using the LASSO logistic regression 
algorithm [Supplementary Method 2]. According to the LASSO logistic regression results, we constructed a 
radiomics signature to measure the probability of the m6A subtype for individual patients. Based on the 
LASSO regression formula, a radiomics score for each patient could be calculated. The radiomics signature 
performance was evaluated according to the area under the ROC curve (AUC). The prognostic value of the 
radiomic signature in ccRCC patients was estimated by performing univariable Cox regression analysis.

Statistical analysis
R statistical software (v 4.0.4) was used to perform statistical tests. Supplementary Method 3 listed the R 
packages used in our study. P values < 0.05 indicated significant differences.

RESULTS
Association between prognosis and m6A regulators
Baseline characteristics of the enrolled ccRCC patients in the training and validation sets were provided in 
Supplementary Table 2. Eighteen m6A methylation regulatory genes (YTHDF1, YTHDF2, YTHDF3, 
YTHDC1, YTHDC2, RBM15, RBM15B, ALKBH5, WTAP, KIAA1429, METTL14, METTL16, ZC3H13, 
FMR1, FTO, IGF2BP1, IGF2BP2, and IGF2BP3) were differentially expressed between the survivors and 
non-survivors [Figure 2A]. Among the survivors, the expression levels of YTHDF1, YTHDF2, YTHDF3, 
YTHDC1, YTHDC2, RBM15, RBM15B, ALKBH5, WTAP, KIAA1429, METTL14, METTL16, ZC3H13, FTO, 
and FMR1 were significantly decreased compared to the non-survivors, while expression levels of IGF2BP1, 
IGF2BP2, and IGF2BP3 were significantly increased [Figure 2B].

Construction of the gene signature
As shown in Figure 3A, YTHDF2, YTHDF3, YTHDC1, YTHDC2, RBM15, RBM15B, KIAA1429, METTL14, 
METTL16, ZC3H13, IGF2BP1, IGF2BP2, IGF2BP3, FMR1, FTO, SRSF2, and HNRNPC were related to the 
OS in the univariable Cox regression analysis. In addition, five prognosis-related genes (KIAA1429, 
METTL14, IGF2BP2, IGF2BP3, and SRSF2) were selected by the LASSO Cox regression analysis 
[Figure 3B-D]. Overall, patients with the low expression of SRSF2, IGF2BP2, or IGF2BP3 had better OS 
compared to those with the high expression, while patients with the high expression of METTL14 or 
KIAA1429 had better OS compared to those with the low expression [Supplementary Figure 1]. According 
to the regression results, a gene signature was developed, which can be calculated as an m6A score:

m6A score = 0.0396 × IGF2BP2 + 0.2196 × IGF2BP3 + 0.4638 × SRSF2 - 0.5850 × KIAA1429 - 0.0615 × 
METTL14.

Performance evaluation of the m6A-related gene signature
C-index for the gene signature was 0.708 in the training set (95% confidence interval [CI]: 0.660-0.756) and 
0.689 in the validation set (95%CI: 0.611-0.767). The time-ROC curve analysis also demonstrated 
satisfactory predictive accuracy for the gene signature. In the 3-year and 5-year ROC curves, the AUCs were 
0.715 (95%CI: 0.657-0.772) and 0.746 (95%CI: 0.689-0.803) in all patients, 0.724 (95%CI: 0.656-0.792) and 
0.744 (95%CI: 0.677-0.812) in the training set, and 0.698 (95%CI: 0.590-0.806) and 0.766 
(95%CI: 0.662-0.870) in the validation set, respectively [Figures 4A-C]. After calculating the m6A scores 
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Figure 2. Association between the expression of m6A methylation regulators and prognosis in ccRCC patients. (A) The heatmap
exhibits the expression patterns of the 23 m6A methylation regulators between the survivors and non-survivors. (B) The violin plots
show the differential expression of the 23 m6A methylation regulators in the survivors (blue) and the non-survivors (red). ccRCC: Clear
cell renal cell carcinoma. 

from the gene signature, the patients were categorized into two groups of m6A subtypes, i.e., the low and 
high m6A score groups, on account of the threshold of 1.10 [Supplementary Figure 2]. Overall, compared 
with patients with high m6A scores, those with low m6A scores had better OS [Figure 4D]; the same results 
were also found in the training or validation set [Figure 4E and F], as well as in different subgroups 
regarding age, sex, T, N, M stage, and tumor grade [Figure 5].

Based on the multivariable Cox regression analyses, five variables were determined as the independent 
predictors of OS, including age, tumor grade, N stage, M stage, and m6A subtype [Supplementary Table 3]. 
Moreover, the m6A score achieved better discrimination than other clinical predictors 
[Supplementary Table 4].

Genetic mutation landscape analysis
A total of 391 ccRCC patients with genetic mutation data were enrolled to analyze the genetic mutation 
landscape for ccRCC lesions, including 105 patients with high m6A scores and 286 patients with low m6A 
scores. The identified somatic mutations were compared between the two different m6A subtypes 
[Supplementary Figure 3A]. Among patients with high m6A scores, VHL, PBRM1, SETD2, BAP1, and TTN 

*P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 3. Development of the m6A-based gene signature. (A) Univariable Cox regression analyses measuring the predictive value of 
m6A methylation regulators for overall survival of ccRCC patients. (B) Tuning parameter (λ) selection in the LASSO model used 10-fold 
cross-validation via minimum criteria. Partial likelihood deviances from the LASSO regression cross-validation procedure were drawn as 
a function of log(λ). The numbers along the upper x-axis represent the average number of predictors. The red dots show the average 
deviance values for each model with a given λ, and the vertical bars through the red dots indicate the upper and lower values of the 
deviance. The dotted vertical lines are plotted at the optimal values where the model provides its best fit to the data. The optimal λ 
value of 0.038 with log (λ) = -3.279 was identified. (C) LASSO coefficient profiles of the 23 m6A methylation regulators. The dotted 
vertical line is plotted at the value determined by using 10-fold cross-validation in (B), where optimal λ resulted in 5 nonzero 
coefficients. (D) Histogram showing the coefficients of the selected m6A regulators in the gene signature. ccRCC: Clear cell renal cell 
carcinoma; LASSO: least absolute shrinkage and selection operator.

were the five genes with the highest mutation frequency [Supplementary Figure 3B], while VHL, PBRM1, 
TTN, MUC16, and SETD2 were the genes with top five mutation frequencies in patients with low m6A 
scores [Supplementary Figure 3C].

The predictive value of the m6A subtype in clinical benefit of immunotherapy
To further assess the predictive value of the m6A subtype in immunotherapy efficacy, the TIDE score, T cell 
dysfunction score, microsatellite instability (MSI) score, and T cell exclusion score were calculated for each 
patient. As shown in Figures 6A and B, the TIDE score and T cell dysfunction score were significantly lower 
in patients with low m6A scores than those with high m6A scores. Meanwhile, a lower m6A score was 
associated with a higher MSI score [Figure 6C]. According to these findings, patients in the low m6A score 
group were more likely to achieve a positive immunotherapy response. However, the T cell exclusion score 
did not differ significantly between the two groups [Figure 6D].

Moreover, as shown in Figure 7, among those selected prognosis-related m6A regulators, IGF2BP3 was 
positively correlated with activated CD4+ memory T cells. METTL14 was negatively correlated with 
follicular helper T cells and regulatory T cells. KIAA1429 was negatively correlated with follicular helper T 
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Figure 4. Correlation between the gene signature and prognosis in ccRCC patients. (A-C) Time-ROC curve analyses of the m6A score in 
all patients (A), the training set (B), and the validation set (C), respectively. (D-F) Kaplan-Meier survival curves of patients divided into 
low and high m6A score groups in all patients (D), the training set (E), and the validation set (F), respectively. ccRCC: Clear cell renal 
cell carcinoma; ROC: receiver operator characteristic curve.

cells, regulatory T cells, and activated NK cells.

Radiomics signature development and performance evaluation
In total, 7 prognosis-related features were determined by the LASSO logistic regression [Figures 8A and B]. 
The selected prognosis-related features’ coefficients are provided in Figure 8C. An AUC of 0.915 (95%CI: 
0.835-0.996; Figure 8D) suggested that the radiomics signature had satisfactory discrimination for m6A 
subtypes prediction. Based on the maximum Youden index, an optimal radiomics score cutoff was chosen 
as -0.537. The waterfall plot illustrates the distribution of radiomics scores and m6A subtypes for all 
patients, with the dividing line delineated at the threshold value [Figure 8E]. Moreover, based on the 
univariable Cox regression, the radiomic signature was determined to be a significant predictor of the OS 
among patients with ccRCC (hazard ratio: 1.717, 95%CI: 1.080-2.730; P = 0.022).

DISCUSSION
According to the pretreatment expression of 5 prognosis-related m6A methylation regulators, we developed 
and validated a gene signature to predict the ccRCC patient prognosis, and assessed the predictive value of 
the gene signature for immunotherapy response. According to the gene signature, patients could be 
categorized into two m6A subtypes, indicating different prognoses. Moreover, we developed an MRI-based 
radiomic signature, which can serve as a noninvasive tool for individualized prediction of the m6A 
subtypes. It would help develop therapeutic schemes and promote precision medicine.
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Figure 5. Stratified analyses of the m6A subtype. Stratified analyses were applied to determine the performance of the m6A subtype in 
various subgroups according to age (A and B), sex (C and D), T stage (E and F), N stage (G and H), M stage (I and J), and tumor grade 
(K and L).

Our study revealed that eighteen m6A regulators (YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, 
RBM15, RBM15B, ALKBH5, WTAP, KIAA1429, METTL14, METTL16, ZC3H13, FMR1, FTO, IGF2BP1, 
IGF2BP2, and IGF2BP3) were differentially expressed between survivors and non-survivors, whose 
expression was related to OS as well. Our findings preliminarily suggest that these eighteen m6A regulators 
may affect the malignant behavior of renal carcinoma cells.

Subsequently, by incorporating five selected m6A regulators (KIAA1429, METTL14, IGF2BP2, IGF2BP3, 
and SRSF2), we developed a gene signature to predict OS among ccRCC patients. The gene signature can 
accurately predict the prognosis of ccRCC patients. Moreover, both the TIDE score and T-cell dysfunction 
score were lower in the low m6A score group, while the MSI score was higher. These scores can indicate the 
potential ability of immune evasion of cancer and could be used to predict immunotherapy response[23]. In 
addition, three prognosis-related m6A regulators (IGF2BP3, METTL14, and KIAA1429) were found to be 
correlated with specific immune cell types. These results indicate that the m6A modification plays a vital 
role in the tumor immune microenvironment. In light of this, our results demonstrated that patients with 
low m6A scores may have a lower probability of tumor cells escaping from the surveillance of the immune 
system and, thus, would be more likely to achieve a positive immunotherapy response. This also indicates 
the favorable value of the m6A subtype in predicting immunotherapy benefits. Our study will provide novel 
insights into the regulation of tumor immune microenvironment. Additionally, the presented gene 
signature will aid clinicians in determining whether the prognosis or immunotherapy response of a patient 
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Figure 6. The probable benefit of patients for immunotherapy in different m6A subtypes. (A) TIDE score, (B) T cell dysfunction score, 
(C) MSI, and (D) T cell exclusion score in different groups of m6A subtypes. The scores between the two groups were compared 
through the Wilcoxon tests. TIDE: Tumor Immune Dysfunction and Exclusion; MSI: microsatellite instability.

is good or bad, thus facilitating the development of more appropriate treatment plans that are more 
conducive to the allocation of medical and health resources.

In the present study, based on LASSO Cox regression analysis, five m6A regulators, including METTL14, 
KIAA1429, IGF2BP2, IGF2BP3, and SRSF2, were identified as critical predictors of OS in ccRCC patients. 
Among them, METTL14 is a close counterpart of METTL3 and an integral part of the multiprotein 
methyltransferase complex[30], which can stabilize METTL3, maintain complex integrity, and facilitate RNA 
binding[31]. Compared to each protein alone, the stabilized complex formed by the METTL3-METTL14 
heterodimer exhibits enhanced methyltransferase activity[30,32]. Previous studies revealed the low expression 
of METTL14 in ccRCC, and the downregulation of METTL14 is related to poor OS[33,34], which was also 
found in our study. In addition to ccRCC, decreased expression of METTL14 was demonstrated in 
glioblastoma stem cells[35], whereas upregulation of METTL14 in acute myeloid leukemia promoted 
leukemogenesis[36].

The RNA-binding protein KIAA1429 is localized in nuclear speckles[37]. Knockdown of KIAA1429 leads to a 
diminished expression of m6A, with a decrease that is more pronounced compared to depletion observed 
by the knockdown of METTL3 or METTL4 alone, indicating the important role of KIAA1429 in the 
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Figure 7. The relationship of the selected m6A regulators with different types of immune cells. (A) The heatmap shows the relationship 
between the expression levels of the selected m6A regulators and different types of immunocytes. (B-G) Correlation plots exhibit the 
relationship between the selected m6A regulators and different types of immunocytes. Only the relationship with the absolute value of 
correlation coefficients no less than 0.3 was displayed.

multiprotein methyltransferase complex[37]. Consistent with our study, a previous study revealed that the 
KIAA1429 expression is decreased in ccRCC patients, and downregulation is associated with shortened 
survival following nephrectomy[33]. However, a few studies supposed that KIAA1429 might enhance the 
generation and progression of tumors, such as hepatocellular carcinoma and breast cancer[38,39].

In agreement with our study, several previous studies also demonstrated that elevated expression of 
IGF2BP2 and IGF2BP3 was significantly related to shortened OS of ccRCC patients[34,40,41]. Moreover, the 
expression of IGF2BP2 and IGF2BP3 was positively related to activated central memory CD8+ T cells and 
CD4+ T cells[40]. Therefore, we hypothesized that the dysregulation of IGF2BP2 and IGF2BP3 may influence 
the associated immune cells and thus affect the survival of ccRCC patients. In addition, IGF2BP2 was 
reported to be differentially expressed in pancreatic cancer, and its high expression promotes tumor growth 
by stimulating the PI3K/Akt pathway[42].
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Figure 8. Development and performance evaluation of the MRI-based radiomics signature. (A) Tuning parameter (λ) selection in the 
LASSO model used 10-fold cross-validation via minimum criteria. The optimal λ value of 0.096 with log (λ) = -2.339 was identified. (B) 
LASSO coefficient profiles of the 1,316 radiomic features. The dotted vertical line is drawn at the value selected using 10-fold cross-
validation in (A), where optimal λ resulted in 7 nonzero coefficients. (C) Histogram showing the coefficients of the selected features in 
the radiomics signature. The radiomics score was calculated as a linear combination of the 7 selected features weighted by their 
respective coefficients. (D) ROC curve of the gene signature. (E) Waterfall plot for distribution of radiomics scores and m6A subtypes 
in all patients. LASSO: Least absolute shrinkage and selection operator; ROC: receiver operator characteristic curve; LoG: laplacian of 
gaussian; GLSZM: gray level size zone matrix; GLRLM: gray level run length matrix; GLCM: gray level cooccurence matrix; LRHGLE: long 
run high gray level emphasis; IDN: inverse difference normalized; LAHGLE: large area high gray level emphasis; IMC2: informal measure 
of correlation 2.

The SRSF2 protein belongs to the SR family of proteins that regulate constitutive and alternative splicing[43]. 
SRSF2 is a key predictor of OS in ccRCC patients in this study. SRSF2 causes apoptosis by regulating the 
alternative splicing of some apoptosis-associated genes in lung cancer[44], suggesting that SRSF2 can lead to 
tumorigenesis. Several studies also revealed that silencing of SRSF2 resulted in the upregulation of TP53, 
which generally functions as an apoptotic protein[45,46]. However, p53 can also be considered an activator of 
anti-apoptosis in several tumor cells[47-49]. In renal cancer, upregulation of p53 is related to tumor metastasis 
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and worse prognosis in patients[50].

To further elucidate the biological implications of our m6A-related gene signature, it is noteworthy to focus 
on the behavior of cancer stem cells (CSCs) in ccRCC, given their significant impact on tumor relapse and 
treatment resistance. A recent study discovered a subset of CD133+/CD24+ CSCs in ccRCC, which exhibited 
self-renewal and clonogenic capabilities, leveraging pathways such as Notch, Wnt, and Hedgehog - 
commonly involved in early embryogenesis and also affected by m6A modifications[51]. Investigating the 
intersection of m6A methylation regulators with these CSC pathways could provide novel insights into their 
roles in sustaining CSC populations and affecting tumor heterogeneity, thereby potentially improving the 
predictive accuracy of our gene signature for both prognosis and therapeutic responses. Other significant 
biomarkers such as MUC1, a glycoprotein known for its role in epithelial tumor biology, may also play a 
vital role in how m6A modifications influence ccRCC pathology. MUC1 is frequently overexpressed in RCC 
and influences crucial processes including cell proliferation and metabolic reprogramming[52,53]. The 
interaction between MUC1 overexpression and m6A methylation patterns could provide deeper insights 
into the regulatory networks that drive ccRCC progression and resistance to therapy. Exploring these 
connections might uncover new layers of complexity within the tumor microenvironment and highlight 
potential synergies between epigenetic modifications and membrane protein dynamics, offering novel 
avenues for targeted therapeutic interventions[52].

Notably, the m6A subtypes can only be determined in an invasive way. For patients who are planning to 
receive neoadjuvant immunotherapy or patients who are unable to undergo surgical treatment in an 
advanced stage, a tumor biopsy is required to obtain information about m6A subtypes; however, this 
procedure is prone to some adverse effects such as bleeding and tumor dissemination. Therefore, we 
developed a reliable radiomic signature to predict the m6A subtypes noninvasively in ccRCC patients. The 
high-throughput features could provide more comprehensive information about tumors and would be 
more sensitive to determining the m6A subtype, which will be helpful in estimating the prognosis and 
immunotherapy response. Additionally, our research design may be applicable to other cancer studies. The 
study results may also offer new perspectives on cancer diagnosis, treatment, or patient management in 
other tumor types.

There are several limitations to our study. First, even though substantial evidence has shown that m6A 
regulatory genes are crucial for predicting the prognosis of ccRCC patients, the underlying mechanisms 
remain unknown and warrant further exploration by experiments on cell lines and human tissues. Second, 
due to the retrospective design of the study, potential biases are present, such as selection bias, information 
bias, and confounding bias. Third, because of the shortcomings inherent in bioinformatics analysis 
performed in this study, in future clinical applications, data from different sources need to be standardized 
to ensure effective integration, and medical professionals need to receive appropriate training to understand 
and apply the analysis results of this study. Moreover, the prediction efficacy of the gene signature and 
radiomic signature needs to be further externally validated to guarantee the generality and reliability of this 
study.

CONCLUSIONS
In our study, we identified five critical prognosis-related m6A regulators in ccRCC patients. Additionally, 
the presented m6A-related gene signature could aid in predicting the OS and immunotherapy response of 
ccRCC patients. Moreover, the radiomic signature can be used as a noninvasive tool for predicting the m6A 
subtypes individually. It is necessary to verify the robustness of the two signatures by multicenter validation 
before they are applied in clinical settings.
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