
                                                                                            www.jcmtjournal.com

Original Article Open Access

Gottlieb et al . J Cancer Metastasis Treat 2018;4:37
DOI: 10.20517/2394-4722.2018.26

Journal of Cancer 
Metastasis and Treatment

© The Author(s) 2018. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 

sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

New insights into the role of intra-tumor genetic 
heterogeneity in carcinogenesis: identification of 
complex single gene variance within tumors
Bruce Gottlieb1,2,3, Farbod Babrzadeh4, Kathleen Klein Oros1, Carlos Alvarado1, Chunlin Wang4, Baback 
Gharizadeh4, Mark Basik2,5, Celia M.T. Greenwood1, Lenore K. Beitel1,3,5, Mark Trifiro1,2,3,5

1Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
2Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
3Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada. 
4Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA.
5Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada. 

Correspondence to: Dr. Bruce Gottlieb, Lady Davis Institute for Medical Research, 3755 Côte Ste Catherine Road, Montreal, QC 
H3T 1E2, Canada. E-mail: bruce.gottlieb@mcgill.ca

How to cite this article: Gottlieb B, Babrzadeh F, Oros KK, Alvarado C, Wang C, Gharizadeh B, Basik M, Greenwood CMT, Beitel 
LK, Trifiro M. New insights into the role of intra-tumor genetic heterogeneity in carcinogenesis: identification of complex single 
gene variance within tumors. J Cancer Metastasis Treat 2018;4:37. http://dx.doi.org/10.20517/2394-4722.2018.26

Received: 14 Apr 2018    First Decision: 28 May 2018    Revised: 9 Jun 2018    Accepted: 12 Jun 2018    Published: 19 Jul 2018

Science Editors: Yi-Hong Zhou    Copy Editor: Jun-Yao Li    Production Editor: Huan-Liang Wu

Abstract
Aim: Present cancer hypotheses are almost all based on the concept that accumulation of specific driver gene mutations 
cause carcinogenesis. The discovery of intra-tumor genetic heterogeneity (ITGH), has resulted in this hypothesis being 
modified by assuming that most of these ITGH mutations are in passenger genes. In addition, accumulating ITGH 
data on driver gene mutations have revealed considerable genotype/phenotype disconnects. This study proposes to 
investigate this disconnect by examining the nature and degree of ITGH in breast tumors. 

Methods: ITGH was examined in tumors using next generation sequencing of up to 68,000 reads and analysis tools that 
allowed for identification of distinct minority variants within single genes, i.e., complex single gene variance (CSGV). 

Results: CSGV was identified in the androgen receptor genes in all breast tumors examined. 

Conclusion: Evidence of CSGV suggests that a selection - as opposed to a mutation - centric hypothesis could better 
explain carcinogenesis. Our hypothesis proposes that tumors develop by the selection of preexisting de novo  mutations 
rather than just the accumulation of de novo  mutations. Thus, the role of selection pressures, such as changes in tissue 
microenvironments will likely be critical to our understanding of tumor resistance as well as the development of more 
effective treatment protocols.

http://crossmark.crossref.org/dialog/?doi=10.20517/2394-4722.2018.26&domain=pdf
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INTRODUCTION
Current carcinogenesis hypotheses
The traditional understanding of carcinogenesis, that cancer cells accumulate somatic driver mutations that 
give them a growth advantage[1] is beginning to be questioned as data reveal the presence of driver gene 
mutations involved in carcinogenesis in normal tissues[2]. Further, a critical issue still to be elucidated is how 
these mutations create a gain-of-function in cells that results in them acquiring new oncogenic properties, 
rather than just the loss-of-function of factors that control cell growth and division. One indication as to 
why these properties might be more complicated than a simple case of excessive or distorted growth is that 
cancer genes are generally not over-expressed in the tissues from which the cancer develops[3]. For example, 
out of 130 highly specific-cancer genes only four are most highly expressed in the tissue from which the 
cancer originates[3]. Thus, other factors besides protein accumulation are likely to be involved. Compound-
ing this conundrum is the observation that there are often different mutations in different cancer-associated 
genes in different cancer tissues[1]. Raising the question as to how these differences are related to the tissue 
specificity of certain cancer mutations. 

Further, in a recent study looking for associations between specific cancer genes and specific cancer tis-
sues some genes did not behave as expected[1]. The analyses suggested that both cell-intrinsic (i.e., genomic 
and epigenetic) and cell-extrinsic (i.e., environmental, both internal and external) factors could explain the 
differences in the cell type-specificity of cancer genes. For example, in breast cancer, specific external en-
vironmental factors have included estrogen receptor alpha (ER) activation by estradiol[4] and conversion of 
estrogen into genotoxic metabolites that can cause DNA double-strand breaks[5]. However, in most cases it 
has not been possible to associate any specific intrinsic or extrinsic factor with cancer tissue specificity. Un-
derlying these fundamental questions is a growing awareness of substantial amounts of genetic heterogeneity 
not only within different types of cancer tissues[6], but within single tumor cancer tissues as well. These latter 
observations have been labelled as intra-tumor genetic heterogeneity (ITGH)[7].

Intra-tumor genetic heterogeneity
ITGH identified within breast tumors, has revealed numerous alterations in different genes, with the as-
sumption that most mutations are in “passenger” genes[8], including studies using single cell sequencing 
techniques[9]. However, such studies have also not drawn many definitive conclusions as to precise roles of 
many of the “driver” genes in carcinogenesis. Genes being identified as drivers: (1) if they are either onco-
genes or tumor suppressor genes; (2) if they function in some aspect of cell growth; (3) if their location are 
close to any of these types of genes[10]. Further, a recent paper noted that passenger genes can also have dam-
aging effects on cancer progression[11].

We believe this confusion is partly because of a failure to investigate the nature and degree of genetic het-
erogeneity within single genes, a condition that we have labelled, complex single gene variance (CSGV), as 
opposed to just identifying mutations in different cancer-associated genes. Why this is important is that as 
natural selection is being increasingly identified as a critical process in cancer biology[12], there needs to be a 
better understanding of the nature of the genetic variation that is being subjected to selection.

Identification of single gene genetic heterogeneity
The question as to why genetic heterogeneity within individual genes has not been studied before is partially 
because the approach to identifying gene variants is based on using sequence analysis algorithms and tools 
that make it inherently difficult to identify CSGV. Essentially, they are designed to ignore or minimize the 
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possibility that different mutations of an individual gene can exist in a single person’s tissues. The assump-
tion being that finding multiple variants of a single gene within an individual’s tissues is highly unlikely and 
therefore if identified is likely the result of either PCR or sequencing errors. Indeed, almost all NGS analyses 
rely on the use of filters and other techniques such as sequence alignment tools to remove such variants[13]. 
These techniques further reduce the possibility of finding multiple mutations within an individual gene, as 
some are likely to be at very low frequencies, and will be present in only a small minority of cells within an 
individual tumor, as noted in a recent review of post-zygotic somatic mosaicism[14]. Therefore, one of the 
challenges of the study was to develop a sequencing analysis approach that allows for the identification of 
CSGV. Further, an important practical consideration for identifying CSGV is that it is increasingly becom-
ing apparent that every driver gene mutation does not produce a cancer phenotype, with some driver muta-
tions even being present in non-cancer tissues[15,16]. In the present study, we have used a sequencing approach 
that makes it easier to detect multiple mutations of the androgen receptor gene (AR) within individual breast 
tumors. 

Androgen receptor and breast cancer
In the case of breast cancer (BC), the AR is more widely expressed than either estrogen receptor (ER) alpha 
or progesterone receptor (PR) genes, and so it is not surprising that the AR has become a significant marker 
in defining BC subtypes[17]. The AR has therefore started to be singled out as a possible therapeutic target, 
particularly in triple-negative [ER-/PR-/herceptin receptor (HER) 2-] BC (TNBC)[18,19]. Indeed, a large cohort 
study reported AR expression in 32% of TNBC cases[20]. In another study examining cases of ER-positive 
breast carcinoma, tumor cells changed after treatment from ER-dependent to AR-dependent, possibly ex-
plaining why such cells become resistant to aromatase inhibitor treatment[21]. At present, most studies have 
focused on AR expression during different BC stages, and, indeed, AR expression has been identified as a 
possible critical marker in predicting BC survival[22]. While androgen-based therapeutics have been used for 
over 50 years to treat BC[23]. The authors believe that to truly exploit potential AR related mechanisms to pro-
vide clinical therapeutic benefits, a more detailed understanding of AR variant distribution and frequency in 
BC tissues, i.e., AR CSGV, both before and throughout carcinogenesis, will be required. 

Further, examining CSGV occurrence in other critical driver genes may help resolve the genotype-pheno-
type disconnects between the mutational status of putative cancer-associated genes and the occurrence and 
progression of cancer. For, if it is assumed that somatic clonal evolution is the mechanism driving carcino-
genesis, then tissue microenvironments need to be able to select from different variants of individual genes. 
As the presence of a single variant would not allow cells and tissues sufficient flexibility to adapt to different 
selection pressures produced by different tissue microenvironments. Further, the ability to collect such data 
about all potential driver genes may well provide new insights into resistance to treatment as well as to treat-
ment failures.

METHODS
Laser capture microdissection and DNA extraction 
Frozen tumors were obtained from a breast cancer tissue bank [Table 1] that had been set up with all the 
required experimental permissions and vetted by the Jewish General Hospital’s ethics board. Histological 
slides of 5-7 µm thick were prepared and stained using a standard hematoxylin/eosin protocol. To ensure 
the maximum purity of the cancer samples, following histo-pathological characterization by an expert pa-
thologist, cells from cancer tumor areas were dissected by LCM using an AutoPix 100 (Molecular Devices, 
Sunnyvale, CA). An average of 2500 cells was dissected from each different section. Genomic DNA was ex-
tracted from the cells using a QIAamp DNA Micro kit (QIAGEN, Germantown, MD) following the manu-
facturer’s directions.
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PCR amplification
Amplification of AR exons was carried out using the Fast Start High Fidelity PCR kit (Roche, Indianapo-
lis, IN). PCR products were generated using 36 different pairs of fused primers designed to flank the AR 
sequences of exons 4-8, which has been shown to be the region of the AR that contains a high proportion 
of mutations, including those associated with cancer[24]. The primers also included the sequence of in-
trons 3-8 [Table 2]. Each primer consisted of a 5’ overhang of 19 bp, a 3 bp patient-specific barcode, and a 
20-27 bp AR-specific sequence. The 5’ overhang was used to facilitate emulsion PCR (em-PCR) and 
sequencing. The 3 bp barcode facilitated sample identification post sequencing, by allowing the pooling of 
different DNA samples for em-PCR. To ensure consistency three separate PCR preparations were prepared 
for each of the samples. 

Ultra-deep pyrosequencing (next generation sequencing) 
After conventional PCR amplification, the DNA from each sample was quantified by PicoGreen® dsDNA 
Assay (Invitrogen, Carlsbad, CA) and pooled equimolarly (em). For optimal em-PCR, the theoretical distri-
bution ratio of beads and ssDNA is 1:1 for the clonal amplification. Based on this ratio, the initial eight em-
PCR reactions were performed to determine the optimal ratio for em-PCR, based on bead recovery percent-
age (which was between 10%-15%). After the em-PCR reaction, the micro-reactors were broken and the beads 
captured by filtration. The biotin-labeled amplicon-positive beads were enriched using Streptavidin magnetic 
beads and then single stranded. The DNA beads were pre-incubated with DNA polymerase, sequencing 
primer and single strand binding protein (SSB), and then distributed into the wells on a PicoTiterPlate™ 
optical faceplate (454, Branford, CT), that contained 1.6 million wells. After adding the DNA beads and en-
zymatic beads (ATP sulfurylase and luciferase), the packing beads were layered onto the wells and the plate 
centrifuged for bead deposition. The signal processing and base-callings were performed using the software 
package from 454 (Branford, CT)[25]. 

The sequence reads that passed quality control were aligned to the AR reference sequence (NM_000044.2) 
mRNA sequence of Homo sapiens androgen receptor, transcript variant 1 using a BLAST-based approach 
to determine the direction of each read; exons 4-8 were examined. To determine the likelihood of identify-
ing PCR and sequencing errors, which is known that the 454 sequencing technology can generate[26], special 
care was taken in sequencing homopolymeric regions, which can generate spontaneous insertions/deletions. 
However, as the study only sequenced exons 4-8 of the AR, that do not contain any homopolymeric regions, 
such errors were unlikely be a problem.

Sequence analysis
The sequencing data was aligned using MAFFT version 7.050, a multiple sequence alignment software. The 
data was then filtered by the length of each read, only reads that were the expected length were retained. The 
mode of the length of the total reads was used to imply expected length. Since sequencing errors are known 
to depend on position within the read, with more errors occurring near the end of each read, we further fil-

Table 1. Clinical data

Specimen No. Age at 
diagnosis

Nuclear 
grade

Histology 
grade Menopausal T N M TNM 

stage ER PR HER2

T-44 55 III III + pT2 pN2a pM1 IV + + +

T-102 78 III III + pT2 pN3a pM0 IIIC + + +

T-106 64 II II + pT1c pN0 pMx I + + -

T-112 60 III III + pT2 pN0(i+) pM0 IIA - - -

T-121 62 I I + pT1c pN1a pM0 IIA + + -

T-125 60 II II + pT1c pN0(i-) pM0 I + + -

T: tumor stage; N: lymph node stage; M: metastatic stage; TNM stage: overall breast cancer stage; ER: estrogen receptor a; PR: 
progesterone receptor; HER2: herceptin receptor
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tered the data by retaining only the sequence between the fifth and one hundred and fiftieth bp. All variants 
in the data sets were then identified.

RESULTS 
The samples were analyzed by ultra-deep sequencing at a depth of up to 68,000 reads for each sample [Table 3]. 
The analyses revealed 53 exonic mutations [Table 4]. These included 20 mutations in exon 4, 11 mutations in 
exon 5, 10 mutations in exon 6, 4 mutations in exon 7, and 8 mutations in exon 8. It was noted that a signifi-
cant number of the mutations (18 out of 53) had previously been identified as either associated with andro-
gen insensitivity syndrome (AIS) (11 mutations) or prostate cancer (7 mutations). Twenty-one mutations oc-
curred in several of the tumor samples, with 4 of the mutations occurring in at least 4 of the tumor samples. 
The distribution of the mutations in each tumor was unique, resulting in a different set of AR variants being 
present in each of the tumors [Figure 1].

DISCUSSION
Do CSGVs really exist?
Before discussing the results, it seems reasonable to address the controversy with regards to whether intra-
tissue genetic heterogeneity really exists, particularly as it has been identified not just within tumors, but 
within normal tissues as well[27,28]. Indeed, questions have been raised as to the possible role of methodologi-
cal errors in generating genetic heterogeneity in both tumors[29] and tissues in general[30]. To address these 
questions, it is important to discuss the sequence analysis tools used in our NGS protocols. In traditional 
sequencing approaches, coverage is based on genome mapping approaches, which use a theoretical redun-
dancy in coverage based on the expression LN/G, where L is the read length, N is the number of reads and 
G is the haploid genome length[31]. Unfortunately, many factors can result in unequal coverage that produces 
gaps or much lower coverage than expected[32]. Further, problems such as the choice of alignment algorithms 
means that even the best mapping algorithms cannot align all reads to a reference genome[33]. As the cost 
of sequencing has come down, so has the depth of sequencing increased, and this has had a profound effect 
on the sensitivity of sequencing and the ability to detect rare mutations accurately[34]. Experimental data has 
confirmed that the major factors that influence detection sensitivity are read depth and experimental preci-
sion[34]. Indeed, it would appear possible to accurately detect mutations at a frequency of as low as 0.1%, pro-
vided there is sufficient read depth[34]. Somewhat surprisingly, the use of filters used to eliminate false reads 
etc. does not necessarily prevent low frequency mutations from being detected[35]. Indeed, if used correctly 
they can in fact enhance the ability to detect low frequency mutations, and in cases of tumor genetic hetero-
geneity, such an ability is likely to be extremely important[35]. In the case of the present study we believe we 
have adopted a sufficiently precise sequencing technique that we can use a 0.1% cutoff value to identify the 
mutations present in our breast tumor samples. 

Importance of identifying changing frequencies of driver gene variants during carcinogenesis
At present, identification of ITGH has solely been based on whether specific driver gene variants have been 

Table 3. Number of sequencing reads

Exon
Patient

T-44 T-102 T-106 T-112 T-121 T-125
4A 37,704 68,001 33,819 15,660 20,289 59,399

4B 2884 1317 3882 n/a 2862 6640

5 4206 3765 4488 3705 4460 3763

6 9612 2683 4198 3108 1434 2853

7 19,248 7104 3729 1260 6188 2993

8 3443 3836 4430 1569 1662 1795
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Table 4. Summary of androgen receptor exonic mutations 

Codon WT NT Mutant Context WT AA AA 
change

Patients tumor Disease 
phenotypeT-44 T-102 T-106 T-112 T-121 T-125

Exon 4A Number of reads

37,704 68,001 33,819 15,660 20,289 59,399

Number of mutants

630 1888C T CC CGG Arg Trp 68 72

647 1941C T TCC Ser Ser 40 118 21 23 107

649 1947C T ACC Thr Thr 66

650 1950C T ACC Thr Thr 31 73 PCa

652 1955C T C CCC Pro Pro 67

658 1972C T ACC CAG Gln Stop 20 63 CAIS

672 2015C T CCC Pro Pro 21 60

Exon 4B Number of reads

2884 1317 3882 n/a 2862 6640

Number of mutants

672 2015C T CCC Pro Pro 4

678 2021C T C CTG Leu Leu 3 9

683 2047C T CCA Pro Ser 2

689 2065G A GGA Gly Arg 4

694 2080C T C CAG Gln Stop 4 4 4 7 CAIS

695 2084C T CCC Pro Leu

695 2085C T CCC Pro Pro 7 3

696 2086G A GAC Asp Asn 4 CAIS

697 2091C T TCC Ser Ser 4 5 6

705 2113C T C CTC Leu Ser 2

708 2124G A CTG GGA Leu Leu 4

709 2125G A CTG GGA Gly Arg 2 CAIS

715 2141A AA (ins A) GTA CAC His fs 6

Exon 5 Number of reads

4206 3765 4488 3705 4460 3763

Number of mutants

727 2180G A C CGC Arg His 5

731 2191G A GTG GTA Val Ala 6 4 7

734 2200C T GAC CAG Gln Stop 5 4 CAIS

739 2218T TT (ins T) ATT Gln fs 10 6 4

742 2225G A TGG Trp Stop 7 9 7 6 PCa

743 2229G A ATG GGG Met Ile 5 6 PAIS

744 2231G A ATG GGG Gly Arg 5 CAIS

746 2238G A ATG GTG Met Ile 4 4

749 2246C T GCC Ala Val 8 PCa

750 2250G A ATG GGC Met Ile 4 4 PCa

752 2255G A TGG Trp Stop 5 PCa

Exon 6 Number of reads

9612 2683 4198 3108 1434 2853

Number of mutants

775 2323C T TAC CGC Arg Cys 11 4 CAIS

779 2337C T TCC CGG Ser Ser 4

780 2338C CC (ins C) TCC CGG Arg Pro fs 3

786 2354T C GTC CGA Val Ala 3

787 2359C T GTC CGA Arg Stop 21 3 PCa, CAIS

796 2390G A TTT GGA Gly Arg 3 5 3

797 2391G A TGG CTC Trp Stop 3 CAIS

799 2395C T CTC CAA Gln Stop 20 6 6 5 5 CAIS

801 2403C T ACC CCC CAG Thr Thr 12

802 2405C T ACC CCC CAG Pro Leu 3
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present within cancer tissues, but their frequencies have generally not been assessed. This is because it has 
been assumed that such variants are present in most tumor cells and are therefore responsible for the cancer 
phenotype, so that ITGH just reflects the complex genetic makeup of individual tumors, but that the basic 
mutation-centric paradigm still applies. However, evidence that driver gene mutations can also be present 
in normal tissues has considerably confused the role of these driver genes in carcinogenesis. We believe that 
identifying cases of CSGV is likely to be helpful in resolving the phenotype/genotype disconnect, because 
the data will reveal the actual frequency of the variants and put them in context within a tumor. In a previ-
ous study examining an AR CAG repeat length polymorphism in breast tumors, changes in the frequency 
of these polymorphisms in normal and cancer tissues from individual tumors, as well as in matching blood 
samples were investigated. This revealed the distribution frequencies of different length AR CAG repeat vari-
ants associated with carcinogenesis[6]. A similar approach applied to analyzing driver gene CSGV is likely to 
give further information to help elucidate the significant genetic events of carcinogenesis.

Exon 7 Number of reads

19,248 7104 3729 1260 6188 2993

Number of mutants

824 2471A AA (ins A)
AAA AAT CAA 
AAA

Asn Gln Lys fs 5

825 2472T TA (ins A)
AAA AAT CAA 
AAA

Gln fs 21

825 2473C CA (ins A)
AAA AAT CAA 
AAA

Gln Lys Gln Lys fs 4

Exon 8 Number of reads

3443 3836 4430 1569 1662 1795

Number of mutants

880 2638T TT (ins T) ACT TTT GAC Asp Stop 4

887 2661G A ATG GTG Met Ile 2 PCa

890 2670G A GTG CAC Val Val 2 2

893 2678C T TTT CCG GAA Pro Leu 2 CAIS

893 2678C CC (ins C) TTT CCG GAA Pro Pro fs 2

893 2679G A TTT CCG GAA Pro Pro 2

905 2715C CC (ins C) GTG CCC AAG Pro Pro fs 3

n/a: not available; PCa: prostate cancer; CAIS: complete androgen insensitivity syndrome

Figure 1. AR  exonic mutations present in each of the tumor samples. T- refers to individual tumor samples. AR refers to codon within 
which mutations were found
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How can identifying CSGV in tumors contribute to our understanding of cancer genetics? 
Clearly, the presence of CSGV within cancer tissues clashes with our present understanding that carcino-
genesis is the result of “purifying” selection pressure on single gene variants in a tumor that eventually will 
lead to removal of all the non-selected variants of that gene[36]. This argument in turn justifies being satisfied 
with the identification of a single variant per gene, and therefore to ignore any other low frequency variants 
within the same gene, on the assumption that they must be artifacts, possibly due to PCR or sequencing er-
rors. The recognition that a selection of different single gene variants can remain in individual tumors, is 
clearly not in line with our present understanding of the occurrence and distribution of cancer mutations. 
However, our present results would question the validity of this understanding as CSGV were identified in 
the AR within all 6 breast tumors examined and suggests that the role of mutations in carcinogenesis is more 
complex than previously thought.

How can identifying CSGV help in understanding treatment resistance?
First, it suggests a mechanism to explain how some tumors can become rapidly resistant to treatment by 
proposing the existence of genetic variants that can be selected for in genes that have been targeted by che-
motherapy. Indeed, the selection of such variants could be a response to ensure the survival of cells that 
contained the targeted gene as postulated by the atavistic model[37], which considers resistance of cancer cells 
to treatment as one of their major characteristics. Second, it places much more emphasis on understanding 
the role of selection pressures generated by different tissue microenvironments on carcinogenesis[38,39]. It also 
suggests that analyzing the makeup of tissue microenvironments may facilitate the recognition of specific 
factors involved in the selection of cancer-associated variants.

A different paradigm to explain carcinogenesis
The principle of “parsimony” has underwritten our understanding of science since the middle of the 19th 
century by telling us to choose the simplest scientific explanation that fits (all) the observed evidence. In 
studying the genetics of cancer this has been reflected in our belief that identifying common gene mutations 
present in tumor tissues is one of the keys to understanding the ontology of solid tumors. However, the va-
lidity of this concept is being challenged by accumulating evidence of genetic diversity within individual tu-
mors, which this study has further expanded by revealing evidence of AR CSGV in breast tumors. As noted 
previously, current cancer hypotheses are almost all based on the concept that accumulation of specific de 
novo individual driver mutations within specific tissues can result in carcinogenesis. However, the lack of 
a consistent relationship between driver mutations and cancer types and the discovery of the presence of 
many different driver mutant genes within the same types of cancer tissues has resulted in complex genetic 
profiles. These have effectively meant that many of these driver gene mutations have been reduced to risk 
factors, albeit with significant clinical implications, rather than gene mutations that are directly responsible 
for carcinogenesis.

Interestingly, such phenotype/genotype lack of precision has been found not just in multifactorial diseases 
such as cancer, but in locus specific genetic disorders as well. For example, in certain locus specific diseases 
a significant number of individuals that exhibit the disease phenotype do not have a mutation in the puta-
tive disease-causing gene, such as in the case of androgen insensitivity syndrome[24] and PKU[40]. Further, a 
review of genotype-phenotype relationships in a wide range of genetic diseases has revealed many cases of 
reduced or even zero penetrance[41]. While whole genome sequencing studies have found individuals that 
can have well known disease-causing gene mutations but do not exhibit the disease phenotypes[42] including 
cancer-associated genes in healthy individuals[43].

Other recent evidence has further complicated the genetics of cancer, by revealing the effect on cancer 
phenotypes of processes such as epigenetic regulation, DNA and RNA editing, cellular differentiation hier-
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archies, gene expression stochasticity and protein-protein interactions[44]. However, their roles are not well 
defined at present, as in many cases these factors are analyzed as separate events, rather than studying their 
integrated effect on the selection pressures of the complete tissue microenvironment[45].

One possible hypothesis we have previously proposed is that while intra-tissue genetic heterogeneity may 
provide the genetic underpinnings for carcinogenesis. It is tumor microenvironment selection pressure on 
preexisting de novo mutations that is the carcinogenic trigger, rather than just the accumulation of de novo 
mutations[46]. We have further postulated that these mutations occur early in human embryogenesis[45], as 
has now been suggested in another recent study[47].

We believe that this hypothesis is supported by the presence of genetic heterogeneity in both cancer and nor-
mal tissues, as well as by the evidence of non-genomic, often environmental factors as risk factors for cancer. 
Indeed, the complexity of post-zygotic variation[14] has only added to the importance of variant selection due 
to environmental factors within tissue microenvironments in determining cancer phenotypes[48]. A detailed 
examination of the arguments favoring a selection-centric paradigm has been given in a recent paper[49], 
which the identification of AR CSGV in breast tumors has further strengthened.

How the identification of CSGV could affect approaches to cancer treatment
Based on many cases of individual-gene genetic heterogeneity that have recently been identified in normal 
as well as cancer tissue, it seems reasonable to believe that CSGV is likely to also occur in normal tissue. 
The presence of multiple variants within single genes at low frequencies in normal tissue and cells prior to 
tissue becoming cancerous would further strengthen the selection-centric paradigm of carcinogenesis. This 
paradigm could also better explain many observations in which, environmental factors that are clearly non-
mutagenic, i.e., diet, exercise, etc., can somehow direct mutations in specific “driver” genes[50]. Thus, “healthy” 
lifestyle factors can result in the selection of environments that are “cancer resistant”, while other environ-
ments identified as “cancer causing”, that are often man-made, can lead to cancer[51]. CSGV could then sim-
ply explain a “cancer resistant” environment as one that selects for pre-existing wild-type gene variants and 
a “cancer causing” environment as one that selects for pre-existing oncogenic gene variants.

Based partially on the principle of parsimony discussed previously, success of species, tissues or cells, has 
always been considered to eventually result in a specific species, tissues or cells eliminating the competition. 
However, in the case of CSGV this clearly does not seem to be the case, as while gene variants may not be 
selected, they are not eliminated entirely either. Thus, in the case of cancer, just destroying the cancer cells 
and not changing the conditions that allow for them to be preferentially selected, is possibly going to allow 
other cancer cells with different gene variants to eventually be selected, as the environmental conditions that 
selected cells with oncogenic properties have not been altered. Our present approach to cancer treatment of 
removing cancer cells, does of course not preclude the possibility of cancer recurring. However, the presence 
of CSGV would suggest an approach to cancer treatment that in addition to removing the cancer would also 
seek to select the normal tissue and cells that are always present within cancer tissues, although normally 
only as a very small minority of cells. This new treatment approach would therefore require that cancer tis-
sue microenvironments be returned to conditions that would once again select for normal cells, although 
this is clearly not a simple task.

Recently, more attention has started to be given to the carcinogenic role of the tumor microenvironment 
including in both tumorigenesis[52] and differential tissue responses to therapy[53]. These studies have begun 
to analyze and reveal some of the tumor micro-environmental factors that may play a critical role in car-
cinogenesis. Naturally, these data are also likely to help reveal the tissue micro-environmental properties 
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within normal, non-cancer tissues. However, our understanding of what constitutes tissue-specific micro-
environment conditions is still very incomplete. Also, it is highly likely that individuals will have their own 
set of micro-environmental, chemical and biological conditions, so it will be necessary to analyze their tissue 
microenvironments in considerable detail. Clearly, cells and tissues exist in complex three-dimensional en-
vironments, which include both extra- and intracellular environments. To analyze these microenvironments 
new technologies are being developed, including atomic force microscopy[54], quantitative extracellular 
matrix proteomics[55], and single cell multiomics[56] that are being used to create complex databases of tissue 
micro-environmental factors that will hopefully facilitate the identification of those significant factors that 
allow for the selection of normal as opposed to cancer cells. 

However, at first glance there appears to be the same underlying problem with this approach as the one that 
has characterized attempts to analyze the genomic and post-genomic events that cause cells to become on-
cogenic. Namely, the inability to identify the critical oncogenic events involved because we can only measure 
conditions before and after a cell becomes cancerous. However, the tissue micro-environmental conditions 
that result in normal cells being selected do not suffer from this drawback, as normal cells remain dominant 
in tissue over relatively long periods of time, presumably because they are subject to relatively consistent tis-
sue micro-environmental conditions. Nevertheless, it is important to note that tissue microenvironments 
are likely to be highly individualized, so that even within an individual different tissue microenvironments 
might exist around different tissues. 

Conclusion
Before the discovery of ITGH and now CSGV, the novel approach to cancer treatment that we are suggesting 
would have never been considered. However, if it is proven that cancer-associated genes within tumors as 
well as normal tissue consistently exhibit CSGV. Then a treatment approach that includes the goal of rese-
lecting normal tissues by adjusting the tissue microenvironment, would seem to be the logical way to ensure 
that cancer treatments finally result in the permanent elimination of cancer.
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