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Abstract
The estimation of the parameters of a system by a set membership approach consists in characterizing the set of
parameters completely compatible with all the measurements made on the system, the model of this system and
the characteristics of the errors and uncertainties that affect the measurements and the system. In this context, it is
assumed that the error affecting the measurements is bounded and belongs to a set that is realizable a priori. The
estimation problem to be solved then consists in finding the set of admissible values of the model parameters in ade-
quacy with the measurements, the errors and the uncertainties. These uncertainties are handled by an approach that
takes into account the unknowns that are the structural error of the model and the values of these parameters. From
a practical point of view, the result obtained is a domain of parameters varying in time, domain which is characterized
by its bounds. The volume of this domain is minimized, the proposed model explaining the measurements made at
each time by optimizing a criterion of precision of the volume in consideration.
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1.1. Historical point of view
Obtaining a representative image of the functioning of a system remains an important step in the management
of such a system. Indeed, even the techniques based on data use in one way or another the synthesis of a model
capable of representing the functioning of a system. In this approach, several difficulties make this synthesis
difficult, namely: the uncertainties on the data and measurements, the variations of the parameters which
characterize the functioning of the system, the assumptions made on the structure of the model. If we consider
each difficulty separately, many solutions have been proposed to deal with them. However, taking them into
account at the same time remains a major difficulty. In what follows, we are interested in the identification of
a system from uncertain data and taking into account the variability over time of the parameters of the system.
More precisely, the aim is to estimate the bounds of the variable parameters simultaneously with those of the
measurement errors.

From a historical point of view, the first works on parametric estimation taking into account bounds were
published in the 80’s and the proposed strategies were interested in circumscribing the domain describing the
model uncertainties by a simple form. This estimation problem then leads to the determination of the set of
admissible parameters known as the Feasible Parameter Set (FPS).This approach was initially designed to deal
with a linear model with uncertain parameters and bounded errors. The estimation procedure amounts to
determining the set of parameter values explaining all available observations. In this way we can guarantee
that these observations are consistent with the bounds of the errors and the structure of the model. Among
these sets are, for example, polytopes, zonotopes and ellipsoids. Generally, the ellipsoidal set is privileged in
literature for its simplicity. More recently, constrained zonotopes have been introduced [1–3] which provide
a new representation of sets allowing to combine the flexibility of convex polytopes with the efficiency of
zonotopes. For that reason they have been extensively used in several fields in automatic control that include
in particular state estimation, reachability analysis, identification, fault detection and isolation, diagnosis [3–8].

For models that are linear with respect to their parameters, the FPS is characterized by a convex polytope
that can be easily approximated by an ellipsoid [9] or by an orthotope [10] containing it in the least pessimistic
way. One can in particular refer to the works byWalter et al. [11] and Mo et al. [12] which made use of polytopic
domain for an exact and recursive characterization. In 2014, a recursive approach has been developed to define
an approximation by an orthotope containing a set of parameters, the latter belonging to a polytope [13]. The
main idea is to select a restricted number of constraints providing a quantified approximation of the exact set.

Many results have been published by Milanese et al. [14]. In this paper, which is a historical reference, the au-
thors’ idea was to get rid of the representation of uncertainties byGaussian stochastic variables and to substitute
them with a set of possible values whose bounds are only known. In another works [15,16] the authors use the
same idea of interval representation and develops it for the estimation of parameters of autoregressive-moving-
average-exogenous (ARMAX) models. Of course this approach has been extended to non linear models with
respect to their parameters. In order to reduce complexity, various methods have been proposed to determine
an approximation of the FPS and some linear techniques have been extended to the nonlinear case using a
succession of linearizations of the model [17].

To solve the problem of nonlinear estimation with bounded error, the study by Jaulin et al. [18] proposed to
use set inversion techniques and based on interval analysis, the idea being to characterize the FPS by means
of boxes enclosing it externally and internally. We can also refer to the study by Bravo et al. [19] which uses a
bounded description of the measurement noise and considers a representation of the set of parameters by a
zonotope. The dimension of the monotype is adapted recursively as the measurements are acquired. The arti-
cle [20] proposes a minimax estimation of parameters of nonlinear parametric models using experimental data.
After choosing model structures, it is then possible to exhibit sets of linear inequalities to describe a domain
approximating the FPS. The proposed algorithm effectively combines a local search procedure to decrease the
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upper bound of the solution with a pruning procedure based on the propagation of interval constraints.

Of course, identification is not an end in itself and many works use bounded parameter models for control,
observer synthesis and diagnosis. For example, the article [21] is located in a Bayesian framework to address
the problem of identification and detection of fault. A new approach to estimating fault by interval is proposed
in the study by Zhou et al. [8]. A zonotope is used to represent a discrete linear time system whose parameters
vary in the presence of bounded parametric uncertainties, measured disturbances and system disturbances.
In general, many articles widely use polytope representation for the synthesis of state observers. For exam-
ple in the study by Valero et al. [22], the authors present an alternative state estimation method using convex
polyhedra. The Kalman filter condition estimate was also discussed in light of the zonotope representation [6]

and [4] in which, based on a new zonotope dimension criterion and combining observer gain design according
to optimality and robustness criteria, a zonotopic Kalman filter is proposed with a robust convergence proof.
The recent paper [23] also exploits the interval representation of stochastic uncertainties affecting a system in
order to synthetize a Kalman filter dedicated to sensor fault detection.

Despite a possible resemblance, the problem considered in the study by Ploix et al. [24] is significantly different
in that the uncertain parameters depend on time; more precisely, they are defined by random variables whose
realizations have limited amplitudes. In addition, the proposed method does not use probabilistic formalism
to determine the imprecision with which eachmodel parameter is known. Only a class of linear structured and
static models in uncertain parameters is considered. As already mentioned in citerag the measurement errors
are bounded while the system parameters fluctuate within a limited domain invariant in time represented by
a convex domain.

1.2. Aim of the paper
Thus, the proposed paper deals with parameter estimation in a bounded error context for linear models in
parameters. Parameters may vary in a bounded volume domain, measurement errors also belong to a bounded
domain, but the two domains are not known a priori. The objective of the proposed method is to determine
the geometric characteristics of these domains (centre and radii for example). The idea is to determine the
nominal value of the parameter vector and some time-variant uncertainties making it possible to explain the
current observation. Maximal magnitudes of these uncertainties make it possible to deduce the characteristics
of the considered domain. By fluctuating inside this one, parameters can explain all measurements. Moreover,
in order to obtain the most precise model, the estimation problem is then to find the smallest domain.

In the following, section 2 formulates the variable parameter estimation problem and section 3 defines an accu-
racy criterion to obtain the smallest possible parametric uncertainty domain while guaranteeing the adequacy
of the data to the system model. Sections 4 and 5 are related to the implementation of the proposed approach
and to the presentation and discussion of numerical results.

What are the contributions of the proposed paper ? As indicated by the previous bibliographic references, the
bounded error approach to identify the parameters of a system is not new. Therefore, the contribution of our
proposal lies in the following points:

• The representation of the uncertainties in additive formbut also inmultiplicative form, according towhether
they affect the measurements of the outputs or the parameters of the considered system;

• The taking into account of the coupling between outputs of the system due to the presence of parametric
uncertainties. Therefore the parametric domain has a minimal volume;

• The taking into account of a matrix characterizing the direction of the parametric uncertainties, this matrix
can be a priori known or obtained in an experimental way;

• The joint identification of the parameters of the system and the bounds of the uncertainties, this estimation
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guaranteeing the membership of all the measurements to the identified model.

2. PROBLEM FORMULATION
We describe in subsection 2.1 the structure of an uncertain system and its modelisation. Subsection 2.2 gives
the principle of estimating the parameters of the model.

2.1. Modelling of an uncertain system
Let us consider an uncertain model of a system with several outputs, linear in parameters and observations,
and represented by the following structure at each time instant 𝑘 :

𝑦(𝑘) = 𝑋 (𝑘)𝜃 (𝑘) + 𝑏(𝑘) + 𝑒(𝑘) 𝑘 = 1..𝑁
𝜃 (𝑘) = 𝜃𝑐 + 𝑀 (𝜆)𝑣(𝑘)
𝑒(𝑘) = 𝑍 (𝛿)𝑤(𝑘)

∥ 𝑣(𝑘) ∥∞≤ 1 ∥ 𝑤(𝑘) ∥∞≤ 1

(1)

where 𝑦(𝑘) ∈ IR𝑛, 𝑋 (𝑘) ∈ IR𝑛×𝑝 and 𝑏(𝑘) ∈ IR𝑛 are the explanatory variable at the time 𝑘 and 𝜃 (𝑘) ∈ IR𝑝 defines
model parameters. The bounded vector 𝑒(𝑘) ∈ IR𝑛 defines the error taking into account the uncertainties due
to the measuring process and to modeling errors at the same time. The vector 𝑣(𝑘) is varying inside an unit
hypercube notedH𝑞 :

H𝑞 = {𝑣 ∈ IR𝑞 , ∥ 𝑣 ∥∞≤ 1}

This vector allows to represent the uncertain nature of model parameters. Theses uncertainties are distributed
on the various components of the vector 𝜃 via a full row rank matrix 𝑀 (𝜆) ∈ IR𝑝×𝑞 (in general 𝑞 ≥ 𝑝)
depending on the vector 𝜆 = (𝜆1 . . . 𝜆𝑞)𝑇 . The matrix 𝑀 (𝜆) and 𝑍 (𝛿) are supposed to have the following
structure:

𝑀 (𝜆) = 𝑀 𝐷𝑖𝑎𝑔(𝜆), 𝜆 ∈ IR𝑞+, 𝑀 ∈ IR𝑝×𝑞

𝑍 (𝛿) = 𝑍 𝐷𝑖𝑎𝑔(𝛿), 𝛿 ∈ IR𝑛+, 𝑍 ∈ IR𝑛×𝑛
(2)

where 𝑀 =
[
𝑚1 𝑚2 . . . 𝑚𝑞

]
and where 𝑍 =

[
𝑧1 𝑧2 . . . 𝑧𝑛

]
. When the uncertainties affect inde-

pendently each output, 𝑍 reduces to a diagonal matrix. Thus the outputs of the system are not correlated by
the uncertainties 𝛿𝑖 , 𝑖 = 1, . . . , 𝑛. On the other hand, as the matrix 𝑀 (𝜆) of the uncertainties does not have a
particular structure, which can be the cause of coupling between its lines due to the parameters 𝜆𝑖 , 𝑖 = 1, . . . , 𝑞.

In the numerical applications of section 5, without affecting generality, the matrix 𝑍 will be taken equal to
the identity matrix. The vector 𝛿 =

[
𝛿1 . . . 𝛿𝑛

]𝑇 defines the magnitude of additive uncertainties which are
considered bounded. Summarizing, the uncertainties allow to define two invariant domains:

P𝑒 (𝛿) = {𝑒(𝑘) = 𝑍 (𝛿)𝑤(𝑘), ∥ 𝑤(𝑘) ∥∞≤ 1} (3)
P𝜃 (𝜆, 𝜃𝑐) = {𝜃 (𝑘) = 𝜃𝑐 + 𝑀 (𝜆)𝑣(𝑘), ∥ 𝑣(𝑘) ∥∞≤ 1} (4)

This type of model includes the particular case of multi input single output (MISO) systems and that of multi
input multi output (MIMO) systems. However, in the MIMO case, according to the presence of uncertain
parameters 𝜃 (𝑘) in (1), the components of the output 𝑦(𝑘) can be coupled by some of the uncertain parameters
𝑣(𝑘) that can lead to some difficulties in the estimation problem. This important point is discussed in Section
3.

Remark 1. The reader will note that the model describing 𝜃 (𝑘) in (1) is that of a zonotope usually defined as a
Minkowski sum, but formulated here from its center and its generating vectors [7]. The values of 𝑀 and 𝜆, but also
the number of faces of the zonotope linked to 𝑞, impact the shape of the domain P𝜃 (𝜆, 𝜃𝑐), which allows to describe

a large number of situations. As an example, with 𝑀 =

[
1 −1 0
1 1 −1

]
and 𝜃𝑐 =

[
0
0

]
, the Figure 1 visualizes the
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Figure 1. Two shapes of zonotope P𝜃 (𝜆, 𝜃𝑐 ).

shapes obtained for two values of 𝜆. The left part visualises the 3 generating vectors𝑚1, 𝑚2, 𝑚3 (the columns of the
𝑀 matrix) and the left part shows the deformation of the zonotope according to a modification of its pareameters.

Remark 2. Obviously, the formulation (1) of the system output also applies to a dynamic model. Indeed, without
affecting generality, let us consider the stable system with a completely measured state :

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵𝑢(𝑘)
𝑦(𝑘) = 𝑥(𝑘) + 𝑣(𝑘) (5)

By restricting the estimation problem to the coefficients of the matrix 𝐴(𝑘), we can always write (5) in the form :

𝑥(𝑘 + 1) = 𝐹 (𝑥(𝑘))𝜃 (𝑘) + 𝐵𝑢(𝑘)
𝑦(𝑘) = 𝑥(𝑘) + 𝑣(𝑘) (6)

with 𝜃 = 𝑉𝑒𝑐(𝐴) where the 𝑉𝑒𝑐(.) operator stacks the columns of the matrix 𝐴 and where 𝐹 (𝑥(𝑘)) is expressed
linearly in terms of the vector 𝑥. Substituting 𝑥 as a function of the measure 𝑦 leads to :

𝑦(𝑘 + 1) = 𝐹 (𝑦(𝑘))𝜃 (𝑘) + 𝐵𝑢(𝑘) + 𝑒(𝑘)
𝑒(𝑘) = 𝑣(𝑘 + 1) − 𝐹 (𝑣(𝑘))𝜃 (𝑘) (7)

the structure of this equation being then consistent with (1).

2.2. Principle of parameter estimation
The problem involved with parameter estimation is to characterize the unknown parameters 𝜃 (𝑘) of a model
usingmeasured data 𝑋̃ (𝑘) and 𝑦̃(𝑘). In other words, the aim is to determine the parameter domain containing
all possible values consistent with data. Moreover, this domain must be, for reasons of precision, of minimal
volume.

In the case of time-invariant parameters, Milanese and Belforte [10] suggest approximating the parameter do-
main with an orthotope aligned with the parameter coordinate axes and finding the minimal and maximal
values of the 𝜃𝑖 , 𝑖 = 1, . . . , 𝑝 components, by using linear programming. Fogel and Huang [9] propose an ellip-
soidal outer-bounding recursive algorithm: the centre of the ellipsoid and the positively defined symmetrical
matrix which definies it are considered, respectively, as the central value of the parameter and its measurement
of uncertainty.

In our formulation, the parameter estimation problem consists in finding the values of the vectors 𝜃𝑐 , 𝜆 and 𝛿
which define the parameters domain P𝜃 (𝜆, 𝜃𝑐) (4) and the measurement errors domain P𝑒 (𝛿) (3), so that the
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characterised model explains all the available measurements 𝑦̃(𝑘) in the most precise way:

𝑦̃(𝑘) ∈ P𝑦 (𝜆, 𝛿, 𝜃𝑐), 𝑘 = 1, . . . , 𝑁 (8)

with:
P𝑦 (𝜆, 𝛿, 𝜃𝑐) = {𝑦(𝑘) | 𝑦(𝑘) = 𝑋̃ (𝑘)𝜃𝑐 + 𝑏(𝑘) + 𝑋̃ (𝑘)𝑀 (𝜆)𝑣(𝑘) + 𝑍 (𝛿)𝑤(𝑘)

∥ 𝑣(𝑘) ∥∞≤ 1, ∥ 𝑤(𝑘) ∥∞≤ 1}
(9)

P𝑦 (𝜆, 𝛿, 𝜃𝑐) defines all possible values of the variables 𝑦̃(𝑘) consistent with measurements 𝑋̃ (𝑘) of variables
𝑋 (𝑘) and the model uncertainties description given by the vectors 𝜆 and 𝛿. So, P𝑦 (𝜆, 𝛿, 𝜃𝑐) is an interval
estimation of measurements 𝑦̃(𝑘).

In this paper, it is assumed that a certain level of knowledge about the parameter domain is available in the sense
that P𝜃 (𝜆, 𝜃𝑐) (4) has a pre-determined shape (thematrix𝑀 is a priori chosen by the user) or an undetermined
shape (𝑀 must be determined) whose structure has been given in the previous section. As shown in Figure 1,
theP𝜃 (𝜆, 𝜃𝑐) domain is characterized by the position of its center 𝜃𝑐 and by its shape due to thematrix𝑀 (𝜆). It
is the same for the P𝑦 (𝜆, 𝛿, 𝜃𝑐) domain which, in addition, is sensitive to the uncertainties 𝛿. These parameters
can have complementary or competing effects depending on their respective magnitudes, as evoked by the
following three cases.

• In a first case, if we consider that the parameters of the model are constant (𝜆𝑖 are equal to 0), then the
𝛿𝑖 bounds can be chosen as large as desired for a given value of 𝜃𝑐 . This then increases the volume of the
uncertainty domain affecting the model, until it becomes compatible with all measurements;

• In a second case, if themeasurements are not affected by errors (the 𝛿𝑖 bounds are equal to 0), then themodel
can be totally compatible with the measurements by increasing the magnitude of the 𝜆𝑖 bounds enough;

• In the other cases, it will be possible to define a criterion for adjusting the bounds which is representative of
the accuracy of the model, the latter being linked to the size of the domain. Indeed, increasing ”arbitrarily”
the values of the bounds 𝜆𝑖 and 𝛿𝑖 is possible in order to explain all the measurements, but is not a satis-
factory solution in terms of accuracy. This is why the volume of this domain must be controlled, and even
optimized.

In view of the above remarks, it is necessary to define an indicator that is sensitive to the difference between
the actual measurements and their model-generated estimates, and this indicator should depend explicitly on
the model parameters. Ragot [25], defined a criterion based on interval arithmetic [26] for a model with only one
output. In this paper, a MIMOmodel is studied and the aim is to characterise uncertainties while minimising
a criterion of precision related to the dimension of the output domain P𝑦 (𝜆, 𝛿, 𝜃𝑐). An obvious and intuitive
choice that one can make, is to consider the volume of the domain. If P𝑦 (𝜆, 𝛿, 𝜃𝑐) has a pre-determined form,
it is easy to show that its volume is proportional to the components of 𝜆. Then, the solution is the smallest 𝜆
which explains all measurements.

The extension of this domain characterisation procedure, when P𝑦 (𝜆, 𝛿, 𝜃𝑐) has an indeterminate form, leads
to some calculation difficulties. Indeed, the evaluation of the volume of a polytope leads to an expression
containing symbolic functions [27], which are unusable to find a solution andmake the calculation very delicate.
It is therefore necessary to establish a criterion which, at the same time, is representative of the precision of the
model and does not lead to major difficulties in calculation.

3. CRITERIA FOR ESTIMATING THE MODEL PARAMETERS
The aim of this section is to define a mathematical criterion which provides a solution (𝜆𝑠, 𝛿𝑠, 𝜃𝑐,𝑠) with a
twofold objective. The first one is that the domain P𝑦 (𝜆𝑠, 𝛿𝑠, 𝜃𝑐,𝑠), corresponding to the estimation of 𝑦(𝑘),
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contains all the measurements 𝑦̃(𝑘). The second concerns the accuracy of the model and aims to have a
minimal size domain. In the following, the general case where the parameter domain P𝜃 (𝜆, 𝜃𝑐) (4) has an
undetermined shape (and consequently P𝑦 (𝜆, 𝛿, 𝜃𝑐) too) is considered. To start with, we have to give the
definition of a vertex 𝑆 of P𝑦 (𝜆, 𝛿, 𝜃𝑐), vertex being a good way for caracterizing the shape and further the
volume of P𝑦 (𝜆, 𝛿, 𝜃𝑐). This section gives also the way to characterize the data domain and the construction
of the precision criterion.

3.1. Output domain
Now, we are interested in the computation of all vertices of P𝑦 (𝜆, 𝛿, 𝜃𝑐). Moreover, due to the definition
of the uncertainties (that are centered), the set of the vertices and the pseudo-vertices of P𝑦 (𝜆, 𝛿, 𝜃𝑐), are
symmetrically distributed around its centre 𝑦̃𝑐 (𝜃𝑐, 𝑘). Since its structure depends on 𝜆 and 𝛿, the shape of this
set is directly related to model uncertainties 𝜆 and 𝛿. Then, the distances between the centre of P𝑦 (𝜆, 𝛿, 𝜃𝑐)
and its vertices (which can be easily computed) can also describe this shape. So, it is then possible to consider
these distances as a criterion of the model precision. The expression which generates the domain P𝑦 (𝜆, 𝛿, 𝜃𝑐),
parametrized by 𝜆, 𝛿 and 𝜃𝑐 , given in (9), can also be expressed as:

𝑦̃(𝑘) ∈ P𝑦 (𝜆, 𝛿, 𝜃𝑐) ⇔ 𝑦̃(𝑘) = 𝑦̃𝑐 (𝜃𝑐, 𝑘) + 𝑇 (𝑘, 𝜆, 𝛿)𝜉 (𝑘) (10)

with:

𝑇 (𝑘, 𝜆, 𝛿) =
[
𝑋̃ (𝑘)𝑀 (𝜆) 𝑍 (𝛿))

]
, 𝑇 (𝑘, 𝜆, 𝛿) ∈ IR𝑛×(𝑞+𝑛) (11a)

𝑦̃𝑐 (𝜃𝑐, 𝑘) = 𝑋̃ (𝑘)𝜃𝑐 + 𝑏(𝑘) (11b)

𝜉 (𝑘) =
[
𝑣(𝑘)
𝑤(𝑘)

]
, 𝜉 (𝑘) ∈ H𝑞+𝑛 (11c)

The expression (10) clearly shows that the components of 𝑦̃(𝑘) are coupled with respect to the variables 𝜉 (𝑘).
It is therefore necessary to take these couplings into account in order to describe correctly the P𝑦 (𝜆, 𝛿, 𝜃𝑐)
domain and especially not to overdimension it. The highlighting of these couplings requires the search for
𝑅(𝑘) matrices reducing the number of uncertain variables present in the 𝑇 (𝑘, 𝜆, 𝛿)𝜉 (𝑘) matrix (10). Therefore
the matrix 𝑅(𝑘) must be orthogonal to a set of columns of the matrix 𝑇 (𝑘, 𝜆, 𝛿). In this way a certain number
of components of the uncertainty vector 𝜉 (𝑘) will not appear in the new equation thus generated :

𝑦̃(𝑘) ∈ P𝑦 (𝜆, 𝛿, 𝜃𝑐) ⇔ 𝑅(𝑘) ( 𝑦̃(𝑘) − 𝑦̃𝑐 (𝜃𝑐, 𝑘)) = 𝑑 (𝑘, 𝜆, 𝛿, 𝜃𝑐)
𝑑 (𝑘, 𝜆, 𝛿, 𝜃𝑐) = 𝑅(𝑘) 𝑇 (𝑘, 𝜆, 𝛿) 𝜉 (𝑘)

(12)

with 𝑅(𝑘) ∈ IR𝑟×𝑛 (where 𝑟 will be defined later on). Before detailing how to obtain 𝑅 and 𝑑, here is an example
illustrating the problem of dependence between the outputs of a system. We have chosen the free input system
described by :

𝑋̃ =

[
1 2
0 1

]
, 𝑀 (𝜆) =

[
𝜆1 −𝜆2
2𝜆1 0

]
, 𝑍 (𝛿) =

[
𝛿1 0
0 𝛿2

]
, 𝜃𝑐 =

[
0
0

]
, 𝛿 =

[
1
2

]
(13)

the time 𝑘 being voluntarily omitted. Given the definition (1), the components of the measured output are
explained

𝑦̃1 = 5𝜆1𝑣1 − 𝜆2𝑣2 + 𝛿1𝑤1
𝑦̃2 = 2𝜆1𝑣1 + 𝛿2𝑤2

(14)

These equations being only coupled with respect to 𝑣1, by simple linear combination using 𝑅 =
[
2 −5

]
which

is orthogonal to the first column of 𝑋̃𝑀 , we obtain from (14) :

2𝑦̃1 − 5𝑦̃2 = −2𝜆2𝑣2 + 2𝛿1𝑤1 − 5𝛿2𝑤2 (15)
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Figure 2. Domain 𝑃𝑦 (𝜆, 𝛿, 𝜃𝑐 ), vertices in green, pseudo-vertices in red, true domain in green.

whose structure is in accordance with (12). Given the bounds on the uncertainties 𝑣 and 𝑤, we deduce from
(14) and (15 ) the bounds of 𝑦̃1, 𝑦̃2, 2𝑦̃1 − 5𝑦̃2 and those of 𝑦̃ which are then collected :

1 0
−1 0

0 1
0 −1
2 −5

−2 5


𝑦̃ ≤



5𝜆1 + 𝜆2 + 𝛿1
5𝜆1 + 𝜆2 + 𝛿1

2𝜆1 + 𝛿2
2𝜆1 + 𝛿2

2𝜆2 + 2𝛿1 + 5𝛿2
2𝜆2 + 2𝛿1 + 5𝛿2


(16)

In the space {𝑦̃2, 𝑦̃1}, the domain P𝑦 (𝜆, 𝛿, 𝜃𝑐) can then be constructed by looking for the intersections of the
half-spaces defined by (16), This amounts to determining the support lines (hyperplanes in the general case)
of the domain P𝑦 (𝜆, 𝛿, 𝜃𝑐). This search is difficult from an analytical point of view because the considered
half-spaces are functions of the unknowns 𝜆, 𝛿. Of course, if the parameters 𝜆 and 𝛿 are known, the situation
is quite different and the determination of the intersections of the half-spaces is trivial. With 𝜆 =

[
1 0.5

]𝑇
and 𝛿 =

[
1 2

]𝑇 , the Figure ?? visualizes, in the space {𝑦̃2, 𝑦̃1}, the 12 intersections, the points of green
color corresponding to the vertices of the polytope P𝑦 (𝜆, 𝛿, 𝜃𝑐), those of red color being able to be qualified of
pseudo vertices. Again, if the shape parameters 𝜆, 𝛿 are unknown, the distinction between vertices and pseudo
vertices is complex. For this reason, the following section proposes an alternative to the characterization of
the domain P𝑦 (𝜆, 𝛿, 𝜃𝑐) without necessarily trying to distinguish vertices from pseudo vertices. The Figure ??
clearly highlights the pessimism resulting from not taking into account the coupling (15) of the model outputs.
The real domain (green colour) which takes this coupling into account is to be compared to the red rectangle
obtained without this coupling .

In the aforementioned, the reader’s attention has been drawn to the problem of the coupling of the equations
by the parametric uncertainties. Of course, this coupling could also be taken into account depending on how
the noise 𝑤 affects the measurements. In this case, the matrix 𝑍 (𝛿) (13) has to be restructured like the matrix
𝑀 (𝜆).

3.2. Data paralelotope characterisation
Following the previous observation, in what follows all the intersections of the hyperplanes defining the half
spaceswill be consideredwithout distinguishing between vertices and pseudo vertices of the domainP𝑦 (𝜆, 𝛿, 𝜃𝑐).

In fact, to characterize the domain, three steps are considered, the first for analyzing separately the components
of 𝑦̃(𝑘), the second to take into account the coupling of the component of 𝑦̃(𝑘) according the variable𝑤(𝑘) and,
at last, the results of the two analysis are aggregated. Moreover this characterization of the domain P𝑦 (𝜆, 𝛿, 𝜃𝑐)
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is to be done for all the available information, i.e., for 𝑘 = 1, . . . , 𝑁 . Let us now specify the implementation of
these three steps.

• For the first step, knowing that 𝜉 (𝑘) (11c) varies inH𝑞+𝑛 (∥ 𝜉 (𝑘) ∥∞≤ 1), it is possible to calculate the lower
and upper bounds of each component of 𝑦̃(𝑘). Indeed, from (10), one obtains the folowing halfspaces:

𝑦̃(𝑘) ≤ 𝑦̃𝑐 (𝜃𝑐, 𝑘)+ | 𝑇 (𝑘, 𝜆, 𝛿) | I𝑞+𝑛 (17a)
𝑦̃(𝑘) ≥ 𝑦̃𝑐 (𝜃𝑐, 𝑘)− | 𝑇 (𝑘, 𝜆, 𝛿) | I𝑞+𝑛 (17b)

where𝑇 (𝑘, 𝜆, 𝛿) has been defined in (11a) and where | . | denotes the absolute value operator andI𝑞+𝑛 is the
unity vector in IR𝑞+𝑛 (all its elements are equal to 1). In order to point out the role played by the parameters
𝛿 and 𝜆 in (17), let us define:

𝛼 =

[
𝜆

𝛿

]
∈ IR𝑞+𝑛 (18a)

𝑇 (𝑘) =
[
𝑋̃ (𝑘)𝑚1 . . . 𝑋̃ (𝑘)𝑚𝑞 𝑍

]
(18b)

Then P𝑦 (𝜆, 𝛿, 𝜃𝑐) and 𝑑 (𝑘, 𝜆, 𝛿, 𝜃𝑐) become respectively P𝑦 (𝛼, 𝜃𝑐) and 𝑑 (𝑘, 𝛼, 𝜃𝑐). Using definitions (18),
relations (17) are grouped under the form:[

𝐼𝑛
−𝐼𝑛

]
( 𝑦̃(𝑘) − 𝑦̃𝑐 (𝜃𝑐, 𝑘)) ≤

[
| 𝑇 (𝑘) |
| 𝑇 (𝑘) |

]
𝛼 (19)

and highlights the influence matrix of the 𝛼 uncertainties. The relations (19) define an aligned orthotope in
IR𝑛 centred on 𝑦̃𝑐 (𝜃𝑐, 𝑘). However, these relations do not take into account the dependencies between the
components of 𝑦̃(𝑘) generated by the elements of 𝜉 (𝑘) (10). Indeed, the 𝑗 th component of 𝜉 (𝑘) generally
appears in the expression of several components of the vector 𝑦̃(𝑘), thus it creates a dependency between
the components of 𝑦̃(𝑘) where it occurs.

• Thus, the second step, consists in reducing the coupling effect between the components of the 𝑦̃(𝑘) output
with the objective of reducing the volume of domain P𝜃 . First of all, recall that the influence of 𝑣(𝑘) and
𝑤(𝑘) on the output 𝑦̃(𝑘) is due to the matrix 𝑇 (𝑘, 𝜆, 𝛿) (10) :

𝑦̃(𝑘) = 𝑦̃𝑐 (𝜃𝑐, 𝑘) + 𝑇 (𝑘, 𝜆, 𝛿)𝜉 (𝑘) (20a)

= 𝑦̃𝑐 (𝜃𝑐, 𝑘) +
[
𝑋̃ (𝑘)𝑀 𝑍 (𝛿)

] [
𝐷𝑖𝑎𝑔(𝜆)𝑣(𝑘)
𝐷𝑖𝑎𝑔(𝑣)𝑤(𝑘)

]
(20b)

For that purpose, we try to eliminate, as much as possible, subsets of the components of the uncertainties
𝑣(𝑘) and 𝑤(𝑘). The uncertainties to be eliminated are identified by the indices :

𝜏 =
{
𝑗1 𝑗2 . . . 𝑗𝑠

}
, 1 ≤ 𝑠 ≤ 𝑛 − 1 (21)

where 𝑗𝑝 (𝑝 = 1, . . . , 𝑠) are the indices of the components of 𝜉 (𝑘) that one seeks to eliminate and where
𝑠 is the number of components to eliminate, number necessarily lower than the number of equations 𝑛
serving for this elimination. The influence of the selected 𝜉𝜏 (𝑘) components on 𝑦̃(𝑘) is then due to the
submatrix 𝑇:,𝜏 (𝑘) extracted from 𝑇 (𝑘) where the indices {:, 𝜏} selecting respectively all the rows of 𝑇 (𝑘)
and its columns defined by 𝜏. Let us define he co-kernel 𝑔𝑠 (𝑘) of 𝑇:,𝜏 (𝑘):

𝑔𝑇𝑠 (𝑘) 𝑇:,𝜏 (𝑘) = 0 (22)

It goes without saying that the dimension of this co-kernel cannot be given because it depends on the rank
of the matrix 𝑇:,𝜏 (𝑘), but, necessarily it is less than 𝑛 − 𝑠.
The elimination of a part of the uncertain parameters 𝜉 (𝑘) is made effective by pre-multiplying on the left
(20a) by 𝑔𝑇𝑠 (𝑘), which leads to :

𝑔𝑇𝑠 (𝑘) 𝑦̃(𝑘) = 𝑔𝑇𝑠 (𝑘) 𝑦̃𝑐 (𝜃𝑐, 𝑘) + 𝑔𝑇𝑠 (𝑘) 𝑇 (𝑘, 𝜆, 𝛿)𝜉 (𝑘) (23)
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Taking into account the bounds of 𝜉 (𝑘) and using definition (18b) we deduce from (23):

𝑔𝑇𝑠 (𝑘) 𝑦̃(𝑘) ≤ 𝑔𝑇𝑠 (𝑘) 𝑦̃𝑐 (𝜃𝑐, 𝑘)+ | 𝑔𝑇𝑠 (𝑘)𝑇 (𝑘) | 𝛼 (24a)
𝑔𝑇𝑠 (𝑘) 𝑦̃(𝑘) ≥ 𝑔𝑇𝑠 (𝑘) 𝑦̃𝑐 (𝜃𝑐, 𝑘)− | 𝑔𝑇𝑠 (𝑘)𝑇 (𝑘) | 𝛼 (24b)

By iterating this procedure for of all possible sets 𝜏 (21) of bounded variables to eliminate and aggregating
the pairs of inequalities (24), one obtains:



𝑔𝑇1 (𝑘)

...

𝑔𝑇𝑛𝑦 (𝑘)

−𝑔𝑇1 (𝑘)

...

−𝑔𝑇𝑛𝑦 (𝑘)


( 𝑦̃(𝑘) − 𝑦̃𝑐 (𝜃𝑐, 𝑘)) ≤



| 𝑔𝑇1 (𝑘)𝑇 (𝑘) |

...

| 𝑔𝑇𝑛𝑦 (𝑘)𝑇 (𝑘) |

| 𝑔𝑇1 (𝑘)𝑇 (𝑘) |

...

| 𝑔𝑇𝑛𝑦 (𝑘)𝑇 (𝑘) |



𝛼 (25)

where 𝑛𝑦 is the total number of eliminations. As indicated by the definition (21), the elimination can concern
a single component (𝑠 = 1) or a group of components (2 ≤ 𝑠 ≤ 𝑛 − 1). As a particular case, if we consider
only the case of a group of 𝑠 components we have 𝑛𝑦 ≤ C𝑠

𝑞+𝑛. In section 4, we will come back to this point
which can be the source of some complexity.

• In the last step gathering inequalities (19) and (25) allows to describe the domain P𝑦 (𝛼, 𝜃𝑐) by:

𝑅(𝑘)( 𝑦̃(𝑘) − 𝑦̃𝑐 (𝜃𝑐, 𝑘)) ≤ 𝐷 (𝑘) 𝛼 (26)

with:

𝑅(𝑘) =
[
𝑔1(𝑘) . . . 𝑔𝑛𝑦 (𝑘) −𝑔1(𝑘) . . . −𝑔𝑛𝑦 (𝑘) 𝐼𝑛 . . . −𝐼𝑛

]𝑇
, 𝑅(𝑘) ∈ IR2(𝑛𝑦+𝑛)×𝑛 (27a)

𝐷 (𝑘) =| 𝑅(𝑘)𝑇 (𝑘) |, 𝐷 (𝑘) ∈ IR2(𝑛𝑦+𝑛)×(𝑛+𝑞) (27b)

Note that this domain can also be defined by the hyperplanes of equation :

𝑅(𝑘) ( 𝑦̃(𝑘) − 𝑦̃𝑐 (𝜃𝑐, 𝑘)) = 𝐷 (𝑘) 𝛼 (28a)
𝐷 (𝑘) =| 𝑅(𝑘)𝑇 (𝑘) | (28b)

which depend linearly on the parameters 𝜃𝑐, 𝛼 =
[
𝜆𝑇 , 𝛿𝑇

]𝑇 of the model. Therefore, the convex domain
defined by the inequalities (26) also depends on these parameters. As recalled at the beginning of section 3, it
is necessary to adjust these parameters to guarantee that the 𝑦̃(𝑘) measures belong to the domain P𝑦 (𝛼, 𝜃𝑐).

3.3. Precision criterion
Themain result of section 3.2 provides the bounded domain to which themeasurements 𝑦̃(𝑘) belong. Remem-
ber that this domain is characterized by several parameters, i.e., the center 𝜃𝑐 of the parameter domain, the
shape of the domain described by the 𝜆 parameter and the bound 𝛿 of the error. Adjusting these parameters
refers to a problem of identification, for which we have to define a criterion to be optimized. It is clear that the
”best” model is that which can explain all the measurements with the smaller fluctuations of its parameters,
these fluctuations depending on 𝜆 and 𝛿.

For that purpose, we propose to compute the distances between the centre 𝑦̃𝑐 (𝜃𝑐, 𝑘) ofP𝑦 (𝛼, 𝜃𝑐) and its vertices
without any distinctions between vertices and pseudo-vertices (see Figure ?? in the toy example in section 3.1).
This evaluation of the accuracy consists of 3 steps.
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FirstFirstFirst, it is necessary to determine the intersections of the hyperplanes (28) defining the domain 𝑃𝑦 (𝛼, 𝜃𝑐), in
order to identify the vertices of this domain. As the hyperplanes are defined in a space of dimension 𝑛, finding
these intersections can be reduced to the solution of linear systems of 𝑛 equations with 𝑛 unknowns. The
objective here being not to propose the most efficient approach in terms of computation volume for the search
of these vertices, the approach we have used is naive. It uses the brute force principle which enumerates all the
full rank matrices Γ𝑖 (𝑘) extracted from the matrix 𝑅(𝑘) defined by:

Γ𝑖 (𝑘) =
[
𝑑𝑇𝑖1 (𝑘) . . . 𝑑𝑇𝑖𝑛 (𝑘)

]𝑇
, 𝑖 𝑗 ∈ {1 : 2(𝑛𝑦 + 𝑛)}, Γ𝑖 (𝑘) ∈ IR𝑛×𝑛 (29)

which consists of 𝑛 independent row vectors of the matrix 𝐷 (𝑘) (28b) (in a formal way, we can note that, if we
consider the space E generated by the column vectors of 𝑅(𝑘), the column vectors of the matrices Γ𝑖 (𝑘) also
generate E). We cannot know a priori the number 𝑛𝛾,𝑘 of matrices Γ𝑖 (𝑘), due to the rank condition on these
matrices, but necessarily 𝑛𝛾,𝑘 ≤ C𝑛2(𝑛𝑦+𝑛) .

Then, using (28a) in which 𝑅(𝑘) has been reduced to Γ𝑖 (𝑘), determine the points 𝑆𝑖 (𝑘) such that:

Γ𝑖 (𝑘) (𝑆𝑖 (𝑘) − 𝑦̃𝑐 (𝜃𝑐, 𝑘)) =| Γ𝑖 (𝑘)𝑇 (𝑘) | 𝛼, 𝑖 = 1, . . . , 𝑛𝛾,𝑘 (30)

We then have the coordinates of the intersections of hyperplanes:

𝑆𝑖 (𝑘) = 𝑦̃𝑐 (𝜃𝑐, 𝑘) + Γ−1
𝑖 (𝑘) | Γ𝑖 (𝑘)𝑇 (𝑘) | 𝛼, 𝑖 = 1, . . . , 𝑛𝛾,𝑘 (31)

which is a linear expression in respect to the parameters 𝜃𝑐 and 𝛼.

SecondSecondSecond, the quadratic distance Δ𝑖 (𝑘) between the point 𝑆𝑖 (𝑘) and the centre 𝑦̃𝑐 (𝜃𝑐, 𝑘) of the domain P𝑦 (𝛼, 𝜃𝑐)
is evaluated :

Δ𝑖 (𝑘) =∥ 𝑆𝑖 (𝑘) − 𝑦̃𝑐 (𝜃𝑐, 𝑘) ∥2
2, 𝑖 = 1, . . . , 𝑛𝛾,𝑘 (32)

Given (31), the distance is directly explained in terms of the parameters 𝛼 :

Δ𝑖 (𝑘) = 𝛼𝑇𝑄𝑖 (𝑘)𝛼, 𝑖 = 1, . . . , 𝑛𝛾,𝑘 (33)

with
𝑄𝑖 (𝑘) =| Γ𝑖 (𝑘)𝑇 (𝑘) |𝑇 Γ−𝑇

𝑖 (𝑘)Γ−1
𝑖 (𝑘) | Γ𝑖 (𝑘)𝑇 (𝑘) |, 𝑖 = 1, . . . , 𝑛𝛾,𝑘 (34)

Consequently, the quadratic mean of Δ𝑖 (𝑘) at a time 𝑘 is:

Δ(𝑘) = 𝛼𝑇
(

1
𝑛𝑘

𝑛𝛾,𝑘∑
𝑖=1

𝑄𝑖 (𝑘)
)
𝛼

ThirdThirdThird, taking into account all the available data, the criterion of precision may be expressed:

𝐽 (𝛼) = 𝛼𝑇
𝑁∑
𝑘=1

(
1
𝑛𝛾,𝑘

𝑛𝑘∑
𝑖=1

𝑄𝑖 (𝑘)
)
𝛼 (35)

This criterion is clearly a quadratic function of the magnitude of the uncertainties 𝛼 which include those
affecting themodel outputs and its parameters (1). In order to improve the accuracy of themodel, it is therefore
necessary to estimate the value of 𝛼 which makes the criterion 𝐽 minimal.
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4. PROBLEM SOLVING
Given the previous formulations, the characterization of the uncertainmodel takes into account two objectives.

The first one concerns the consistency of the data with the bounds of the model domain model, i.e., the param-
eter domain must be designed in order to explain all the available data. The second is an accuracy constraint,
as the model parameters must control the volume of the domain.

For the first objective the principle of parameter estimation is to explain all themeasurements. Thus, the vector
𝛼 (18a) must be calculated in such a way that 𝑦̃(𝑘) ∈ P𝑦 (𝛼, 𝜃𝑐). So 𝑅(𝑘) 𝑦̃(𝑘) ≤ 𝑑 (𝑘, 𝛼, 𝜃𝑐) describes all the
values of 𝛼 and 𝜃𝑐 which are consistent with the measurements at each instant 𝑘 . Then, taking into account
the definition (11b) of 𝑦̃𝑐 (𝜃𝑐, 𝑘), we have from (26) :

𝑅(𝑘) 𝑋̃ (𝑘)𝜃𝑐+ | 𝑅(𝑘)𝑇 (𝑘) | 𝛼 ≥ 𝑅(𝑘) 𝑦̃(𝑘), 𝑘 = 1, . . . , 𝑁. (36)

Thus, from (36), all the measurements 𝑦̃(𝑘), 𝑘 = 1, . . . , 𝑁 , belong to P𝑦 (𝛼, 𝜃𝑐) if the values of 𝜃𝑐 and 𝛼 are
such that the following inequality holds:

𝐴𝑁

[
𝛼

𝜃𝑐

]
≥ 𝑏𝑁 (37)

where

𝐴𝑁 =


| 𝑅(1)𝑇 (1) | | 𝑅(1) 𝑋̃ (1) |

. . . . . .

| 𝑅(𝑁)𝑇 (𝑁) | | 𝑅(𝑁) 𝑋̃ (𝑁) |

 𝑏𝑁 =


𝑅(1) 𝑦̃(1)
. . .

𝑅(𝑁) 𝑦̃(𝑁)

 (38)

Then, for the second objective, the procedure of parameter estimation is reduced to a convex optimisation
problem that consists to minimize the criterion (35) under linear inequality constraints (37) which define a
domain in IR𝑝+𝑞+𝑛 imposed by the measurements. In other words, according to 𝜃, 𝜆, 𝛿 we have to mimimise:

𝐽 (𝛼) = 𝛼𝑇
(
𝑁∑
𝑘=1

1
𝑛𝑘

𝑛𝑘∑
𝑖=1

𝑄𝑖 (𝑘)
)
𝛼 (39)

under the constraint (37). The search for the solution 𝜃, 𝜆̂, 𝛿 is based on algorithms solving convex optimisation
problems in particular on the quadratic programming theory widely evoked in the literature [28,29]. Finally, the
proposed procedure is summarized by the two algorithms 1 and 2, the first dedicated to the synthesis of the
model and the second to its validation.

Algorithm 1Model Identification

1: Collect a set of 𝑁 measurement 𝑦̃(𝑘) and 𝑋̃ (𝑘) for the system in normal operation.
2: Define the model structure (1): choose the structure (2) of the matrices 𝑀 (𝜆) and 𝑍 (𝛿).
3: Define matrix 𝑇 (𝑘), k=1,…, N (16)
4: Define co-kernels 𝑔𝑠 (𝑘) (22)
5: Define matrices 𝑅(𝑘) and 𝐷 (𝑘), k=1,…, N (27)
6: Define matrix Γ𝑖 (𝑘) containing linearly independent row of 𝑅(𝑘) (29)
7: Define matrix 𝑄𝑖 (𝑘) (34)
8: Solve problem (39) and obtain model parameters 𝜃, 𝜆̂, 𝛿

The implementation of the proposed procedure does not present any particular difficulty, except for the choice
of the initial values of the parameters to be estimated. However, the reader’s attention should be drawn to the
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Algorithm 2 Identified model validation

1: Adapt model (1) with identified parameters 𝜃, 𝜆̂, 𝛿
2: Construct domain P𝜃 (𝜆̂, 𝜃) (4)
3: Using data 𝑋 (𝑘) construct domain P𝑦 (𝜆̂, 𝛿, 𝜃)
4: Verify that 𝑃𝑦 (𝜆̂, 𝛿, 𝜃) contains all the output measurements 𝑦̃(𝑘).

possible numerical complexity whichmay be due, on the one hand, to the dimension of thematrices involved in
the generation of the vertices of the domain 𝑃𝑦 , and, on the other hand, to the number of inequality constraints
to be taken into account.

We also mentioned the dimension problem in the second step of section 3.2 about the coupling of the 𝑦̃(𝑘)
outputs to the uncertain parameters. For this purpose, ad-hoc combinations of 𝑛 outputs allowed to eliminate
the influence of a number 𝑠 of uncertain parameters from a predefined list (21), this number being between
1 and 𝑛 − 1. If all the eliminations were possible, they would be 𝐶1

𝑞+𝑛 + 𝐶2
𝑞+𝑛 + · · · + 𝐶𝑛−1

𝑞+𝑛 . Although these
eliminations are simple to implement, their number can become important, for example 967 for 𝑛 = 8 and
𝑞 = 2, knowing that they must be done at each time 𝑘 of measurement. The possible solution consists in
applying this principle of elimination only for the largest value of 𝑠, i.e., 𝑛 − 1, which limits the number of
eliminations to 𝐶𝑛−1

𝑞+𝑛 , i.e., 120 with the preceding values of 𝑛 and 𝑞.

Regarding the search for the intersections 𝑆𝑖 (𝑘) (31) of the hyperplanes (28)which define the domain 𝑃𝑦 (𝜆, 𝛿, 𝜃𝑐),
the implemented computations involve resolutions of linear systems of dimension 𝑛 which is that of the sys-
tem output. The number 𝑛𝛾,𝑘 of intersections is bounded by𝐶𝑛2(𝑛𝑦+𝑛) where 𝑛𝑦 is itself bounded by𝐶

𝑠
𝑞+𝑛 whose

order of magnitude we have already mentioned. Finally, let us recall that the search for intersections, which
nevertheless remain simple operations to implement, must be done at each moment.

The above dimensions can be partly explained by the fact that the polytopic domains are accurate, since on
the one hand no approximations were made for their evaluation and on the other hand the dependencies
between variables due to uncertainties were taken into account. In the end, it is still possible to use a quantified
simplification technique for polytopic domains. For standard zonotopes, this problem is addressed by applying
reduction techniques that overapproximate a given zonotope by another with fewer generators [30,31].

5. EXAMPLES
The first three examples that follow are from the same system, but different by the nature of the data that have
been generated : a pseudo-static system, i.e., where the matrix 𝑋 (𝑘) is constant, a system where the directions
of parametric uncertainties are not known a priori, a dynamic system. The last example is based on the more
realistic case of a DC motor whose model has two uncertain parameters.

5.1. A static system
The system (1) is used with the definitions

𝑋̃ (𝑘) =
[
−1.5 0.5
−1.0 3.0

]
, 𝑀 =

[
−.3 .1 −.3
−.2 .5 .1

]
, 𝑍 =

[
1 0
0 1

]
, 𝜃𝑐 =

[
5
5

]
, 𝛿 =

[
1
1

]
, 𝜆 =

[
1 1.5 2

]
(40)

It is considered as static because the coefficients of the matrix 𝑋 (𝑘) are constant and its dimensions are 𝑛 =
2, 𝑝 = 2, 𝑞 = 3. This example of very reduced complexity is made for pedagogical purposes to simplify the
presentation of the results. Moreover the reduced dimension of the state allows a graphical visualization of
the parameters and outputs domains. By referring to the definitions (20 to 27) the reader will be able to easily
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verify some intermediate results:

𝑋̃𝑀 =

[
0.35 0.10 0.50
−0.30 1.40 0.60

]
𝑔1 =

[
0.30
0.35

]
𝑔2 =

[
−1.40

0.10

]
𝑔3 =

[
−0.60

0.40

]
𝑅 =



0.30 0.35
−1.40 0.10
−0.60 0.40
−0.30 −0.35

1.40 −0.10
0.60 −0.40

1 0
0 1

−1 0
0 −1


(41)

The reader will have noted that there are five orthogonal vectors to the left of the 𝑇 matrix, but only the first
three are useful for the elimination of uncertain variables. Hereafter we give the first matrix Γ1 (29) extracted
from 𝑅 and the resulting matrix 𝑄1 (34).

Γ1 =

[
0.30 0.35

−1.40 0.10

]
, 𝑄1 =



0.213 0.385 0.528 0.794 0.300
0.385 1.970 1.838 2.173 1.400
0.528 1.838 1.922 2.482 1.338
0.794 2.173 2.482 3.392 1.615
0.300 1.400 1.338 1.615 1.000


(42)

The matrices Γ𝑖 et 𝑄𝑖 which are deduced from 𝑅 do not depend on time 𝑘 , since 𝑋 is a constant matrix.
The variables 𝑣(𝑘), 𝑤(𝑘), (𝑘 = 1, . . . , 250), were generated from a uniform distribution. Since this is a simu-
lation, we can compare the domains constructed directly from the data and those identified by the procedure
proposed above. This comparison can be made on the one hand on the parameters and on the other hand on
the outputs of the system.

The Figure 3, in the {𝜃1, 𝜃2} space visualizes the values taken by 𝜃 (𝑘) over time marked with blue points, the
orthotope P(𝜃) calculated from the values of the parameters used for the generation of the data, the paral-
lelotope P𝜃 (𝜆̂, 𝜃, 𝛿) obtained after identification of the model parameters. We note that P𝜃 (𝜆̂, 𝜃, 𝛿) perfectly
frames the values of the parameters 𝜃 (𝑘) with aminimal volumewhose reduction with respect to the orthotope
P(𝜃) can be appreciated.

The Figure 4, in the {𝑦̃1, 𝑦̃2} space, relative to the measurement domain, compares the position of the output
measurements 𝑦̃(𝑘) to the domain P𝑦 (𝜆̂, 𝛿, 𝜃) constructed after identification of the model parameters. In ad-
dition to the visual comparison, a quantitative appreciation of the domains can be made from their volume [27]

: 10.1 for the convex defined from the output measurements, 12.1 for the one evaluated from the identified
model. Obviously, the difference observed is directly linked to the number of vertices of the polytopic domain,
which itself depends on the zonotope of the parameter model reduced here to three generating vectors for the
𝑀 matrix.

In conclusion, independently of the values of the identified parameters, we can see that the domains P𝜃 (𝜆̂, 𝜃, 𝛿)
and P𝑦 (𝜆̂, 𝛿, 𝜃) resulting from these parameters are in accordance with the objective, i.e., they contain all the
measurements and their volumes respect the desired precision condition. The Table 1 allows to compare the
values of the identified parameters to their true values, i.e., those used for the generation of the data. As in any
identification method, an important parameter is the richness of the information, this richness concerning the
number of information and their distribution in space. It is clear that the nature of the excitations applied to
the system is a key element for obtaining pertinent information and consequently representative parameters
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Figure 3. Parameters domain (static system).
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Figure 4. Output domain (static system).

Table 1. True and identified parameters

𝜆1 𝜆2 𝜆3 𝛿1 𝛿2 𝜃1 𝜃2

Identified 0.91 1.24 1.77 0.07 0.26 5.02 5.02
True 1.00 1.50 2.00 0.10 0.10 5.00 5.00

of the real system. We have used several other databases and in particular for the example treated, the use
of 1000 observations makes it possible to obtain identified parameters whose relative deviation from the real
parameters is of the order of 1 percent.

Remark 3. In the same spirit, a priori knowledge about the magnitudes of the parameters 𝜆 and 𝛿 can also be
taken into account. If this knowledge is expressed as an inequality

𝜆𝑚𝑖𝑛 ≤ 𝜆 ≤ 𝜆𝑚𝑖𝑛
𝛿𝑚𝑖𝑛 ≤ 𝛿 ≤ 𝛿𝑚𝑎𝑥

(43)

it is then sufficient to modify the system (37) accordingly (43).

5.2. About uncertainty directions
The formulation (1) uses the matrix 𝑀 which is an image of the directions of the uncertainty influence. If
for many physical systems a phenomenological modeling makes it possible to know these directions, a certain
number of situations aremore complex. The case where thismatrix𝑀 is unknown is presented in the following
example and its search is done in a heuristic way. The following structure was adopted, the 7 directions having
been chosen arbitrarily:

𝑀 𝑠 =

[
0.3 0.2 −0.3 0.0 0.2 0.4 0.1

−0.1 0.5 0.2 0.2 0.0 0.1 0.6

]
(44)

The other data of the previous example have been kept. The previous proposed procedure applied to deter-
mine the center 𝜃𝑐 of the parameters domain and the bounds 𝜆 and 𝛿 of the uncertainties. Figure 5 visualizes
the domain relative to the parameters. The blue markers locate the variable parameters, the solid and dashed
contours correspond respectively to the domain P𝜃 (𝜃, 𝜆̂, 𝛿) constructed from the exact directions of the uncer-
tainties and the P𝑠

𝜃 (𝜃, 𝜆̂, 𝛿) domain constructed from the 𝑀 𝑠 directions. It is clear that the P𝑠
𝜃 (𝜃, 𝜆̂, 𝛿) domain

contains all the realizations of the variable parameters of the model.

Figure 6 visualizes the identified domain of the outputs. Thebluemarkers locate themeasured outputs, the solid
and dashed contours correspond respectively to the P𝑦 (𝜃, 𝜆̂, 𝛿) domain constructed from the exact directions
of the uncertainties and to the P𝑠

𝑦 (𝜃, 𝜆̂, 𝛿) domain constructed from the𝑀 𝑠 directions. The P𝑠
𝑦 (𝜃, 𝜆̂, 𝛿) domain

does contain all themeasurements and its volume is quite comparable to the actual volume ofP𝑦 (𝜃, 𝜆̂, 𝛿). Thus,
the lack of knowledge of the effective directions of uncertainty was compensated by an over-dimensioned
choice of their number and by the ad-hoc identification of the bounds of the uncertainties.
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Figure 5. Parameters domain (surdimensionned model).
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Figure 6. Output domain (surdimensionned model).
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Figure 7. System outputs (time varying system).

With regard to the identification of the parameters, we obtained 𝜃𝑐 =
[
4.978 5.056

]
, values very close to the

true values. The values of the 𝜆 parameters are not given, as they cannot be compared to the true values given
the chosen dimensions.

5.3. A time­varying system
This third example concerns a system simulated with a matrix 𝑋 of which two terms vary over time:

𝑋 (𝑘) =

[
𝑥11(𝑘) .5
−1 𝑥22(𝑘)

]
, 𝑘 = 1, . . . , 200

𝑥11(𝑘) = −0.5 + 0.5 cos(0.08 𝑘 sin(0.08 𝑘))
𝑥22(𝑘) = 1 + 0.5 sin(0.04 𝑘 cos(0.02 𝑘))

(45)

The output 𝑦(𝑘) was generated using the same matrices 𝑀, 𝑍, 𝜃𝑐, 𝜆 as those used in the example in section 5.1.
The matrix 𝑋 (𝑘)𝑀 is now expressed:

𝑋 (𝑘)𝑀 =

[
−0.3𝑥11(𝑘) − 0.1 0.1𝑥11(𝑘) + 0.25 −0.3𝑥11(𝑘) + 0.05
0.3 − 0.2𝑥22(𝑘) −0.1 + 0.5𝑥22(𝑘) 9.3 − 0.1𝑥22(𝑘)

]
and the vectors 𝑔𝑖 (𝑘) can be computed analytically at each time instant. Figure 7 shows the evolution of the
two components of the output 𝑦 of the system. After implementing the procedure proposed in sections 3 and
4, the system parameters were identified. The Table 2 gathers the values of the identified parameters and those
of the parameters used to generate the data. As before, we notice a significant proximity of the identified values
to the real values, while knowing that an increase in the number of measurements and their richness can still
improve the quality of the estimation. Figures 8 and 9 are relative to the parameter domain on the one hand
and to the output domain on the other.
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Table 2. True and identified parameters

𝜆1 𝜆2 𝜆3 𝜃1 𝜃2

Identified 1.07 1.32 1.84 4.97 4.99
True 1.00 1.50 2.00 5.00 5.00
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Figure 8. Parameter domain. Time varying system.
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Figure 9. Output domain. Time varying system.

In conclusion, we can see that the domains P𝜃 (𝜆̂, 𝜃, 𝛿) and P𝑦 (𝜆̂, 𝛿, 𝜃) resulting from these parameters are in
accordance with the objective, i.e., they contain all the measurements and their volumes respect the desired
precision condition.

5.4. A dynamical system
The following continuous system


𝑑𝑥1(𝑡)
𝑑𝑡

𝑑𝑥2(𝑡)
𝑑𝑡

 =


− 𝑓
𝐽

𝐾𝑚
𝐽−𝐾𝑒

𝐿

−𝑅
𝐿


[
𝑥1(𝑡)
𝑥2(𝑡)

]
+


0
1
𝐿

 𝑢(𝑡)
𝑦1(𝑡) = 𝑥1(𝑡)
𝑦2(𝑡) = 𝑥2(𝑡)

(46)

describes in a conventional way the simplified dynamics of a 𝐷𝐶 motor where 𝑥1 and 𝑥2 are respectively the
motor rotation speed and its excitation current, 𝑅 and 𝐿 being the resistance and the inductance of the excita-
tion circuit. The parameters 𝐾𝑚 and 𝐾𝑒 , respectively related to the motor torque and the counter electromotive
force, are considered uncertain, because they depend on the temperature of the environment and on distur-
bances affecting the magnetic flux in the motor. For the simulation, the system is set in discrete form with a
sampling period equal to 0.1𝑠:

𝑥1,𝑘+1 = −0.2 𝑥1,𝑘 + (0.5 − 0.3𝜆1𝑣1,𝑘 + 0.1𝜆2𝑣2,𝑘 − 0.3𝜆3𝑣3,𝑘 )𝑥2,𝑘
𝑥2,𝑘+1 = (−0.2 − 0.2𝜆1𝑣1,𝑘 + 0.5𝜆2𝑣2,𝑘 + 0.1𝜆3𝑣3,𝑘 ) 𝑥1,𝑘 − 0.9 𝑥2,𝑘 + 0.1 𝑢𝑘
𝑦1,𝑘 = 𝑥1,𝑘 + 𝛿1𝑤1,𝑘
𝑦2,𝑘 = 𝑥1,𝑘 + 𝛿2𝑤2,𝑘

(47)

where the uncertainties affect the two parameters 𝐾𝑚 and 𝐾𝑒 through 𝜆 =
[
𝜆1 𝜆2 𝜆3

]𝑇 and the measure-
ments of the two outputs via 𝛿 =

[
𝛿1 𝛿2

]𝑇 . Figure 10 visualizes the input 𝑢 and the measurements of the two
outputs. To keep the presentation simple, we limit ourselves to the estimation of the uncertain parameters of
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Figure 10. Input and outputs.

the system. Therefore the model used for this estimation is written :

𝑥1,𝑘+1 = −0.2 𝑥1,𝑘 + 𝜃1,𝑘 𝑥2,𝑘
𝑥2,𝑘+1 = 𝜃2,𝑘 𝑥1,𝑘 − 0.9 𝑥2,𝑘 + 0.1 𝑢𝑘
𝜃1,𝑘 = 𝜃1,𝑐 + 𝑚𝑇1𝐷𝑖𝑎𝑔(𝜆)𝑣𝑘
𝜃2,𝑘 = 𝜃2,𝑐 + 𝑚𝑇2𝐷𝑖𝑎𝑔(𝜆)𝑣𝑘
𝑦1,𝑘 = 𝑥1,𝑘 + 𝛿1𝑤1,𝑘
𝑦2,𝑘 = 𝑥1,𝑘 + 𝛿2𝑤2,𝑘

(48)

It is now necessary to structure this model in the form defined in (1). Following remark (2), after eliminating
the states according to the measurements, we obtain :[

𝑦1,𝑘+1
𝑦2,𝑘+1

]
=

[
𝑦2,𝑘 0
0 𝑦1,𝑘

] [
𝜃1,𝑐
𝜃2,𝑐

]
+

[
𝑦2,𝑘 0
0 𝑦1,𝑘

] [
𝑚𝑇12,𝜆
𝑚𝑇21,𝜆

]
𝑣𝑘 +

[
1 0
0 1

] [
𝛿1
𝛿2

]
(49)

the terms 𝛿1 and 𝛿2 being bounded, and with :[
𝑦1,𝑘+1
𝑦2,𝑘+1

]
=

[
𝑦1,𝑘+1 + 0.2 𝑦1,𝑘

𝑦2,𝑘+1 + 0.9 𝑦2,𝑘 − 0.1 𝑢𝑘

]
(50)

The 𝑀 matrix is identical to the one used in section 5.1. In order to limit the number of the graphical and
numerical results, we present in Figure 11 only the parameter domain. The blue points, in the 𝜃1, 𝜃2 plane,
correspond to the values of 𝜃 (𝑘) from the simulation. The blue line is the contour of the convex domain
of minimal volume which contains the values of 𝜃 (𝑘). The red line is the contour of the domain 𝑃𝜃 (𝜆̂, 𝛿, 𝜃)
identified which is a very satisfactory approximation of the domain of the parameters used in the simulation.

The last graph (12) compares the results of our approach with those of a simpler approach which does not
take into account the couplings between model parameters due to uncertainties. The implementation of the
latter is limited to taking into account only the inequalities (19) to define the domain of the parameters. The
comparison of Figures 11 and 12 shows the interest of taking into account the coupling of the parameters.

6. CONCLUSION
An approach, consisting in explaining the set of measurements while optimizing an accuracy criterion, is
proposed in the most general case where the parameters are variable in time without considering the notion
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Figure 11. Parameter domain with taking interaction
between the model parameter.
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Figure 12. Parameter domain without taking interaction
between the model parameter.

of speed of variation of the parameters. Moreover, the characterization of the uncertainties of a MIMOmodel
highlights the dependencies between the model outputs, these dependencies being created by the parameters
to be estimated. A technique taking into account these dependencies, combined with the calculation of an
accuracy criterion is proposed. It provides an optimal solution (via the accuracy criterion) in the form of a set
of parameters, its central value and the limits of the equation error.

In the future, this approach could be extended to other model structures. Moreover, it seems relevant to us
to take up and deepen a remark that has been made about the richness of the excitation signals, namely: how
to choose, when possible, the nature of the excitations to be applied to a system with uncertain parameters
so as to best characterize the bounds of these parameters? A second area to explore concerns the presence of
non-linearities. When these nonlinearities bring a bounded contribution to the evolution of the state variables
of the system, to what extent can we also model their effects by bounded variable parameters ?
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